

January 12, 2023

Honorable Chairman Carthy and Members of the Planning Board Town of North Castle 15 Bedford Road Armonk, New York 10504

RE:

JMC Project 20044

4 Tripp Lane Zoning Compliance

4 Tripp Lane

Town of North Castle, New York

Site Planning
Civil Engineering
Landscape Architecture
Land Surveying
Transportation Engineering

Environmental Studies
Entitlements
Construction Services
3D Visualization
Laser Scanning

Response to Kellard Sessions and Town of North Castle Planning Department Comments

Chairman Carthy and Members of the Planning Board:

This letter has been prepared to address comments in correspondence received from Kellard Sessions, dated November 22, 2022, and the Town's Planning Department staff report dated, October 13, 2022.

To assist in your review of the revised documents, we are pleased to provide the following, which restates the comments from the above referenced memorandums, followed by our responses:

Kellard Sessions Memorandum to the Town of North Castle Planning Board, dated November 22, 2022:

General Comments

The comments below reflect the original review comments from the October 9, 2020, memorandum and the revised comments are outlined below in bold.

Comment No. 1

The applicant has provided a Gross Land Coverage Plan to demonstrate compliance with the maximum permitted gross land coverage for the zoning district. The plan indicates the removal of an existing sport court and a portion of the existing drive, both completed without permits, to reduce the land coverage, as necessary, to comply. We note, however, that the plan appears to require the addition of two areas of existing coverage, currently not accounted for; (1) the northernmost portion of the Boulder wall along the eastern property line appears to exceed 4 feet in height, and (2) the plan makes reference to a concrete patio north of the shed building. Although not shown on the plan, based on review of available Westchester County aerial mapping, the patio appears to exist. The plan shall be revised to include these additional coverage areas and the calculations adjusted accordingly so a determination can be made as to whether the total allowable coverage has been exceeded.

JMC Planning Engineering Landscape Architecture & Land Surveying, PLLC | JMC Site Development Consultants, LLC

It is noted that the applicant has included all portions of the boulder wall greater than four (4) feet in height into the coverage calculations. Additionally, the applicant has provided photo of the previously existing concrete patio north of the existing shed. The square footage of the existing shed should be provided to determine if it will be considered an accessory structure for zoning compliance.

Response No. 1

The vinyl shed is approximately 170 square feet. The side yard setback for a principal building is 20 feet, therefore the setback for the shed would be 10 feet. As shown on the plans, the shed is 15 feet away from the side yard property line. A reference to the Town's code has been included below for reference.

(g) Except for stables, one-story accessory buildings, less than 800 square feet in area, may be located not nearer to any side or rear lot line than 1/2 the distance established in the foregoing schedule for principal buildings in the respective districts, but not nearer to any street than the required front yard setback distances.

Comment No. 2

The applicant will need to demonstrate to the Planning Board the levels of disturbances associated with the tree removal, filling and grading, construction of additional structures, walks, walls, patios, etc. This office will require an engineered site plan and comparative plan analysis using available historical Westchester County aerial mapping and GIS topography. This plan shall be used as the baseline to establish the various disturbances and the associated mitigation that will be required.

It is noted that the applicant has provided engineered site plans in efforts to establish a baseline plan to compare the disturbances that have occurred to the site. Comments to the specific areas of disturbance are further addressed throughout the memo.

Response No. 2

All comments regarding the specific areas of disturbance will be addressed later in the comment response letter.

Comment No. 3

The applicant shall provide floor plans and elevations for the proposed additions to the existing residence, the pool cabana, and the shed. The plans shall clarify whether any services or utilities including water, sewer and electric are provided at the cabana and / or the shed.

It is indicated on the plans that the proposed cabana has a BBQ/kitchen area. Please revisit the plans to include any services or utilities provided for these improvements.

Response No. 3

A site investigation was performed by JMC on December 20, 2022, and the photos that were taken

during this investigation have been included with this submission on JMC Drawing P-1. There appears to be no water or gas service to the BBQ area as there are no sinks and a portable propane grill appears to be what is used to BBQ in this area. Outlets to accommodate electric services were identified but no wiring was seen going to these outlets. The string lights seem to get power from outlets associated with the pool equipment via an extension cord.

Comment No. 4

The applicant will be required to provide confirmation from the Westchester County Health Department (WCHD) that the improvements and expansions to the residence and cabana do not require upgrades or modifications to the on-site wastewater treatment system.

It is noted that the applicant has begun discussions with the WCHD and that all correspondence will be provided to this office for review.

Response No. 4

All correspondence will be provided to Kellard Sessions upon receipt.

Comment No. 5

The plan shall illustrate and dimension all minimum required yard setbacks.

The applicant has provided zoning setback dimensions on plans. Additionally, the applicant shall provide a Bulk Zoning Table and list any variances that may be required for the accessory structures.

Response No. 5

The Table of Land Use (Bulk Zoning Table) shown on JMC drawing C-000 has been updated to outline all variances to the Town's Code that will be required because of the work performed.

Comment No. 6

As part of an ongoing application with the adjacent property to the east, it was discovered that a locally regulated wetland exists at the rear of the site. The applicant will be required to investigate this wetland system to identify the boundary and associated 100 foot wetland buffer. Based on review of available Westchester County aerial mapping, it appears that this system is potentially connected to or continues through the subject property (prior to placement of fill) to a system on the west side of the property. The wetland boundary shall be field located and established with sequentially number flags for confirmation by the Town Wetland Consultant. Prior disturbances are likely to have occurred within the regulated buffer. If so, a local Wetland Permit will be required, and the applicant will be required to prepare a wetland mitigation plan in accordance with Chapter340, Wetlands and Watercourse Protection of the Town Code. The plan will require referral to the Conservation Board for recommendation of approval. Please notify this office once the wetland boundary has been established in the field.

The applicant shall indicate all site and neighboring wetlands and watercourses on the pre-

existing conditions plan.

Response No. 6

Survey information was obtained from the Town of North Castle's Planning Board website that included the extents of the town regulated wetland located on the adjacent property. This was the only information available as there is no historical information on this town regulated wetland. This wetland was delineated on April 18, 2022, by Ecological Solutions, LLC. The wetland buffer and the approximate amount of previous disturbance within this buffer are now shown on JMC Drawing C-110.

JMC met with a representative from Kellard Sessions on December 20, 2022, on site to investigate any potential wetlands and if a wetland mitigation plan would need to be prepared to mitigate the disturbances to either the wetland or wetland buffer area. It was determined that the wetlands in question were limited to the adjacent 2 Tripp Lane property and that there was in fact work performed within this wetland's buffer area at a total of 7,775 sf as shown on JMC drawing C-110.

Comment No. 7

The Wetland Mitigation Plan, if necessary, shall illustrate and quantifying the previous disturbance areas to the wetland and/or wetland buffer. The plan shall include a summary table that quantifies the total wetland and wetland buffer area on site, total disturbance areas within each, and total pervious and impervious cover pre and post development. Mitigation shall be provided at a ratio of 2:1 minimum.

As previously mentioned, the applicant shall indicate all site and neighboring wetlands and watercourses on the pre-existing conditions plan. The plan currently indicates approximately 7,775 sf of disturbance within the wetland buffer. The applicant shall provide an updated wetland/wetland buffer disturbance area and required 2:1 mitigation based on the updated wetland delineation and available aerial mapping. The plan shall include a detailed mitigation table quantifying disturbances and land cover (pervious/impervious) within the wetland and wetland buffer and the mitigation provided.

Response No. 7

It is understood by the client that both wetland mitigation and tree removal mitigation will be required. An area totaling approximately 15,550 sf was identified as the wetland buffer disturbance mitigation area and is located in the back portion of the property where the majority of the trees that were removed were once located. The mitigation area includes tree replacement that includes shade trees at 3" caliper, understory and flowering trees at 8' - 10' height, and sapling trees planted with a meadow mix within this mitigation area. The applicant is also proposing to remove the Japanese barberry and invasive species within the remaining wetland buffer area. See response in Comment No. 8 for additional information.

Comment No. 8

The applicant has cleared a significant number of trees on the property. The quantity, size and species are not known. As required by Chapter 308, Trees of the Town Code, the applicant will be

required to provide a tree restoration plan to mitigate the unapproved removal of existing vegetation. The Planning Board will need to determine whether the restoration plan is ultimately appropriate for the level of disturbance.

It is noted that the applicant has used a neighboring property to establish a tree sample area to base the tree mitigation calculations for the previous removal of all regulated trees. It is noted that the applicant is identifying all trees greater than eight (8) inches in diameter and all trees greater than 24 inches in diameter from the 5,000 s.f. tree sample area. The applicant has proposed tree mitigation for consideration by the Planning Board.

The applicant shall use the information gathered from the tree sample area and prorate the mitigation based on a comparison of caliper inches removed versus caliper inches provided. Please update the tree mitigation calculations as needed.

Response No. 8

A sample area of an adjacent 5,000 s.f. was completed by JMC and established that there might have been approximately 1,200 inches of trees removed from the applicant's site based on this field data. We would also like to point out that there may have been invasive species such as Norway Maples that should not be counted towards the replacement value.

The standard tree planted is generally 3" in caliper. Trying to reach the 1,200-inch replacement value would necessitate the applicant installing (400) trees. The site physically could not accommodate that many trees. The applicant is proposing the following measures for mitigation:

- 1) Installation of (29) 3" caliper native shade trees = 87 caliper inches
- 2) Installation of (23) 8' 10' native understory and flowering trees @ approx. 1.5 caliper = 34.5 caliper inches
- 3) Installation of (50) tubelings (native canopy and understory mix of trees TBD) approx. ½ Cal. Inches each = 25 caliper inches

This would total approximately 146.5 caliper inches which is short of the 400 caliper inches for mitigation. However, it is important to note that the applicant has proposed the concentration of the plantings in the wetland buffer area, combined with the 16,000 s.f. of wetland meadow proposed in this buffer along with the invasive species removal in the buffer area. We believe that this combined approach would serve to better align with the spirit of the mitigation and environmental improvements, instead of just a numeric approach of meeting caliper inches of tree replacement.

We have attached the Landscape Mitigation Plan for your consideration.

Comment No. 9

The applicant imported an unknown quantity of fill to regrade the rear yard. The baseline plan noted in Comment #2 above will be used as the basis for determination of the approximate quantity of fill imported to the site. The applicant shall prepare a cut/fill calculation and will be required to demonstrate compliance with Chapter 161, Filling and Grading of the Town Code, specifically as a relates to the soil source, import quantity and compliance with 6 NYCRR part 360. At a minimum, the applicant will be required to provide certification that the soil meets the Unrestricted Soil Use Group

for residential sites. The applicant will be required to complete soil sampling and testing in accordance with New York State Department of Environmental Conservation (NYSDEC) protocol and provide a soils analysis report certified by a NYS Certified Laboratory and Soils Scientist or Engineer to demonstrate that the material imported to the site is suitable.

The applicant shall overlay the survey topography onto the GIS topography to determine the appropriate cut and fill volumes established between pre-existing conditions and existing conditions.

The fill sampling and testing was reviewed by the Town's Environmental Consultant. It was recommended that based on some of the low-level contamination present, that the fill remain in place. However, a demarcation layer (orange fence or geotextile membrane) be placed above the fill section and a minimum six (6) inch layer of topsoil be placed atop the demarcation layer to cap the material. The applicant shall review the recommendations provided in the report and revise the plans to include appropriate notes and details to include the recommendations.

Response No. 9

Detail #18 has been added to JMC Drawing C-901 to illustrate the installation of the demarcation layer.

Comment No. 10

The property is served by an on-site wastewater treatment system. The plan shall illustrate the location of the existing septic field and tanks based on available WCHD as-builts and record data. It is assumed that the imported fill material and regrading activities that occurred at the rear of the property was also placed above the existing septic field, potentially compromising its function. The applicant will be required to provide a determination, confirmed by the WCHD, that the septic system continues to operate as intended. Any upgrades or modifications that may become necessary will need to be illustrated on the plan and approved by the Westchester County Health Department.

As previously mentioned, the applicant has begun discussion with the WCDH and will forward all correspondence to this office for review. Additionally, it should be noted that if the existing septic field trenches are to remain, a plan shall be provided to protect the existing septic fields during the removal of the portion of existing asphalt driveway.

Response No. 10

The client has not yet received any correspondence from the WCDOH but as soon as anything is received, the Town will be notified.

Comment No. 11

The applicant has developed several improvements and altered the land cover characteristics for the site which has resulted in an increase in impervious surface and an associated increase in stormwater runoff. As required by Chapter 267, Stormwater Management of the Town Code, the applicant shall prepare a Stormwater Pollution Prevention Plan, inclusive of stormwater mitigation and attenuation measures, to mitigate stormwater runoff through the 100-year, 24-hour storm event.

For the purpose of the analysis, the baseline map noted above shall be used to establish pre-developed conditions and a comparative analysis to the current site conditions shall be prepared.

The applicant has provided a Stormwater Management report. The applicant shall revise said report and clarify if the existing court and portion of the existing asphalt driveway to be removed are included in the stormwater mitigation calculations, as it appears they have been included. Additionally, there are differing references to the amount of Stormtech units being provided. Please clarify and resubmit for review.

Response No. 11

The basketball court and the portion of the driveway that are both to be removed are no longer included in the stormwater calculations. The amount of Stormtech units has been coordinated between all drawings and documents.

Comment No. 12

The plan shall clearly illustrate the location of any existing drainage systems, conveyance systems and connections. Any connections that may exist, to this storm system located in Tripp Lane, will require approval by the Town Highway Department.

Comment addressed.

Response No. 12

Comment addressed.

Comment No. 13

As part of the stormwater mitigation system design, the applicant will be required to perform deep and soil percolation testing in the vicinity of any proposed stormwater mitigation practices. The soil testing shall be witnessed by the Town Engineer. Please contact this office to schedule the required soil testing.

Comment addressed.

Response No. 13

Comment addressed.

Comment No. 14

The applicant will be required to provide certification for the proper construction and stability of all retaining walls greater than or equal to 4 feet in height. Details of their construction shall be provided on the plan.

The applicant has provided a retaining wall plan and back up calculations in certifying the stability of the existing walls. It is noted that the applicant is to reconstruct a portion of the stone wall on

the east side of the property. Design and details for this construction has been provided.

Response No. 14

Comment Addressed.

Comment No. 15

The plan shall clearly illustrate and identify the various fences located throughout the site, indicating their height and material. Fence details shall be provided on the plan.

The plans call for a six (6) foot high black vinyl coated chain link fence; however, the two (2) fence details provided are for proposed fence of 5 feet 3 inches and 5 feet 2 inches. Please coordinate between the plan and details.

Additionally, the plan shall indicate a pool enclosure that complies with NYS Building Code.

Response No. 15

The fence labels shown on JMC Drawing C-110 have been coordinated with details #10 and #11 shown on JMC Drawing C-901. A fence surrounding the pool area (including a gate) is now shown on the Site Plans and a detail of the fence and gate has been included on JMC Drawing C-900 as Detail #5.

Comment No. 16

Driveway piers and a gate has been installed at the front property line. The Town requires that gates be set back a minimum of 20 feet from the right of way to permit adequate area for a vehicle to pull off the road as well as to account for potential future road widening. The piers and gate shall be relocated accordingly, and appropriate details of their construction included on the plans.

It is noted that a waiver is requested by the applicant.

Response No. 16

The client awaits a decision on the requested waiver.

Comment No. 17

The driveway curb cut is greater than 18 feet in width which is the maximum permitted by the Town Highway Department. The plan shall be revised to demonstrate compliance and include all details necessary for work and restoration within the Town Right of Way.

It is noted that a waiver is requested by the applicant.

Response No. 17

The client awaits a decision on the requested waiver.

Town of North Castle Planning Department Staff Report, dated October 13, 2022:

Procedural Comments

Comment No. 1

The Proposed Action would be classified as a Type II Action pursuant to the State Environmental Quality Review Act (SEQRA).

Response No. 1

So noted.

Comment No. 2

A neighbor notification meeting regarding the proposed amendment will need to be scheduled.

Response No. 2

The applicant will coordinate with the Planning Board regarding an appropriate time to schedule the neighbor notification meeting when the plans and all submission documents are advanced far enough.

Comment No. 3

Pursuant to Section 12-18.A of the Town Code, all site development plans submitted to the Planning Board are required to be referred to the Architectural Review Board (ARB) for review and comment.

Response No. 3

The applicant will coordinate with the Planning Board regarding an appropriate time to be referred to the ARB when the plans and all submission documents are advanced far enough.

Comment No. 4

Pursuant to Section 340-5.B of the Town Code, the Conservation Board is required to review the proposed wetland application and, within 45 days of receipt thereof, file a written report and its recommendation concerning the application with the Planning Board. Such report is required to evaluate the proposed regulated activity in terms of the findings, intent and standards of Chapter 340.

Response No. 4

The applicant has met with the Town's wetland consultant (Kellard Sessions) and the tree mitigation

plan (JMC Drawing C-130) has been updated to reflect comments and suggestions received following this meeting.

General Comments

Comment No. 1

The Applicant has determined that approximately 171 trees were removed from the site. The Applicant's cover letter indicates that the 255 arborvitae plants previously planted along the perimeter are proposed as mitigation for the previous tree removal.

Response No. 1

Please see response No. 8 which identifies tree replacement as well tree mitigation approach.

Comment No. 2

The site plan has been revised to depict the location of the Town-regulated wetland buffer. The plans should be revised to quantify the amount of disturbance within the buffer (square feet) and prepare a 2:1 mitigation plan for review.

Response No. 2

Survey information was obtained from the Town of North Castle's Planning Board website that included the extents of the town regulated wetland located on the adjacent property. This was the only information available as there is no historical information on this town regulated wetland. This wetland was delineated on April 18, 2022, by Ecological Solutions, LLC. The wetland buffer and the approximate amount of previous disturbance within this buffer are now shown on JMC Drawing C-110.

JMC met with a representative from Kellard Sessions on December 20, 2022, on site to investigate any potential wetlands and if a wetland mitigation plan would need to be prepared to mitigate the disturbances to either the wetland or wetland buffer area. It was determined that the wetlands in question were limited to the adjacent 2 Tripp Lane property and that there was in fact work performed within this wetland's buffer area at a total of 7,775 sf as shown on JMC drawing C-110. A mitigation of 15,550 sf would be required is shown on JMC Drawing C-130.

Comment No. 3

The Applicant has brought fill onto the site without the benefit of a fill permit issued by the Building Department.

Response No. 3

The applicant awaits further determination from the Planning Board about the process for legalizing the imported fill.

Comment No. 4

The driveway piers detail should be revised to dimension the base of the pier to the top of the light fixture. This dimension can't exceed 8 feet in height.

Response No. 4

Detail #12 On JMC Drawing C-901 has been updated to correctly dimension the driveway piers. A variance will be required for the height of the driveway piers.

Comment No. 5

The proposed (legalization) driveway gates are located on the property line. Driveway gates should be located a minimum of 20 feet from the front property line to permit adequate vehicular pull off from the right-of-way should Tripp Lane ever be expanded to the edge of the right-of-way.

Response No. 5

The client awaits a decision on the requested waiver.

Comment No. 6

The Applicant should submit floor plans and elevations for the proposed (legalization) shed.

Response No. 6

Floor plans and elevations have been provided for the improvements to the residence along with the Cabana. The Shed was prefabricated therefore no specification sheets, floor plans, elevations were provided to the client. A picture of the shed is now included on the Gross Land Coverage Calculation drawing.

Comment No. 7

An updated gross land coverage calculations worksheet should be submitted for review.

Response No. 7

It is the Architect's opinion that the basement and garage should not be included in the gross floor area calculations as shown on the average grade diagram on drawing A1.

Comment No. 8

The submitted gross floor area calculations worksheet does not include the floor area of the garage or basement. Garage space is required to be counted as part of gross floor area. The Applicant shall also provide an exhibit demonstrating that the basement level would be excluded pursuant to the definition of gross floor area.

Response No. 8

It is the Architect's opinion that the basement and garage should not be included in the gross floor area calculations as shown on the average grade diagram on drawing A1.

We trust that the above, along with the enclosed documents and drawings, address comments from the Town's Consultant's to further along the application to the Town's Zoning Board of Appeals. We look forward to your continued review throughout the Site Plan approval process and discussing this matter with you further. Should you have any questions or require additional information regarding the information provided above, please do not hesitate to contact our office at 914-273-5225.

Sincerely,

JMC Planning Engineering Landscape Architecture & Land Surveying, PLLC

Rick Bollander, PE Project Manager

p:\2020\20044\admin\ltcomment response 01-09-2023.docx

SITE DEVELOPMENT PLAN APPROVAL DRAWINGS

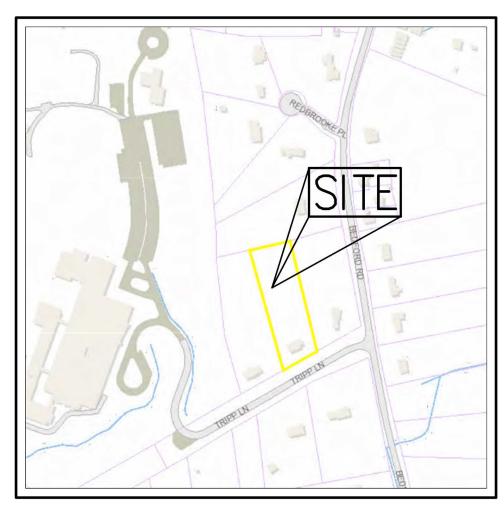
PEREIRA RESIDENCE

4 TRIPP LANE
TAX MAP SECTION 108.02 | BLOCK 1 | LOT 10
WESTCHESTER COUNTY
NORTH CASTLE, NY

Applicant / Owner:
MR. & MRS. PEREIRA
4 TRIPP LANE

TOWN OF NORTH CASTLE, NY APPLICANT PHONE: (914) 391-6979

Architect:


GET MY C.O. 57 WHEELER AVENUE, SUITE 203 PLEASANTVILLE, NY 10570 (914) 727-0980

Surveyor:

SUMMIT LAND SURVEYING P.C. 21 DRAKE LANE WHITE PLAINS, NY 10607 (914) 629-7758

Site Planner, Civil Engineer and Landscape Architect: 120 BEDFORD ROAD ARMONK, NY 10504 (914) 273-5225

JMC Drawing List:

C-000 COVER SHEET

C-100 PRE-EXISTING CONDITIONS MAP

C-110 EXISTING CONDITIONS MAP AND DEMOLITION PLAN

C-130 TREE MITIGATION PLAN

C-200 SITE PLAN

C-310 GROSS LAND COVERAGE PLAN

C-410 CUT AND FILL PLAN

C-900 CONSTRUCTION DETAILS

C-901 CONSTRUCTION DETAILS

TABLE OF LAND USE

TOWN OF NORTH CASTLE, N.Y. SECTION 108.02, BLOCK 1, LOT 10

ZONE "R-2A." - "ONE FAMILY RESIDENTIAL DISTRICT" (2 ACRES)							
DESCRIPTION		REQUIRED	PROVIDED				
MINIMUM LOT AREA (ACRES / S.F.)	2	±2.06/±89,820				
MINIMUM LOT FRONTAGE	(FEET)	150	±183.6				
MINIMUM LOT WIDTH	(FEET)	150	±175				
MINIMUM LOT DEPTH	(FEET)	150	±513.3				
MINIMUM YARDS							
FRONT	(FEET)	50	±55.13				
SIDE	(FEET)	30	±35.17				
REAR	(FEET)	50	±402.19				
ACCESSORY BUILDING SIDE YARD SETBACK	(FEET)	10	15				
MAXIMUM BUILDING HEIGHT	(FEET)	30	<30				
MAXIMUM BUILDING COVERAGE	(PERCENT)	8	3.92				
MINIMUM DWELLING UNIT SIZE (§355–70)	(S.F.)	1,400	2,786				
MINIMUM DRIVEWAY PIER/GATE SETBACK FROM RIGHT-	-OF-WAY (FEET)	20	±0.65 (1)				
MAXIMUM DRIVEWAY CURB CUT	(FEET)	18	±24.6 (1)				
MAXIMUM DRIVEWAY PIER HEIGHT	(FEET)	8	9 (1)				

(1) WILL REQUIRE A VARIANCE.

GENERAL CONSTRUCTION NOTES APPLY TO ALL WORK HEREIN

- 1. PRIOR TO CONSTRUCTION, THE CONTRACTOR SHALL CALL 811 "DIG SAFELY" (1-800-962-7962) TO HAVE UNDERGROUND UTILITIES LOCATED. EXPLORATORY EXCAVATIONS SHALL COMPLY WITH CODE 753 REQUIREMENTS. NO WORK SHALL COMMENCE UNTIL ALL THE OPERATORS HAVE NOTIFIED THE CONTRACTOR THAT THEIR UTILITIES HAVE BEEN LOCATED. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE PRESERVATION OF ALL PUBLIC AND PRIVATE UNDERGROUND AND SURFACE UTILITIES AND STRUCTURES AT OR ADJACENT TO THE SITE OF CONSTRUCTION, INSOFAR AS THEY MAY BE ENDANGERED BY THE CONTRACTOR'S OPERATIONS. THIS SHALL HOLD TRUE WHETHER OR NOT THEY ARE SHOWN ON THE CONTRACT DRAWINGS. IF THEY ARE SHOWN ON THE DRAWINGS, THEIR LOCATIONS ARE NOT GUARANTEED EVEN THOUGH THE INFORMATION WAS OBTAINED FROM THE BEST AVAILABLE SOURCES, AND IN ANY EVENT, OTHER UTILITIES ON THESE PLANS MAY BE ENCOUNTERED IN THE FIELD. THE CONTRACTOR SHALL, AT HIS OWN EXPENSE, IMMEDIATELY REPAIR OR REPLACE ANY STRUCTURES OR UTILITIES THAT HE DAMAGES, AND SHALL CONSTANTLY PROCEED WITH CAUTION TO PREVENT UNDUE INTERRUPTION OF UTILITY SERVICE.
- 2. CONTRACTOR SHALL HAND DIG TEST PITS TO VERIFY THE LOCATION OF ALL EXISTING UNDERGROUND UTILITIES PRIOR TO THE START OF CONSTRUCTION. CONTRACTOR SHALL VERIFY EXISTING UTILITIES DEPTHS AND ADVISE OF ANY CONFLICTS WITH PROPOSED UTILITIES. IF CONFLICTS ARE PRESENT. THE OWNER'S FIELD REPRESENTATIVE, JMC, PLLC AND THE APPLICABLE MUNICIPALITY OR AGENCY SHALL BE NOTIFIED IN WRITING. THE EXISTING/PROPOSED UTILITIES RELOCATION SHALL BE DESIGNED BY JMC, PLLC.
- 3. CONTRACTOR IS RESPONSIBLE FOR OBTAINING ANY AND ALL LOCAL PERMITS REQUIRED.
- 4. ALL WORK SHALL BE DONE IN STRICT COMPLIANCE WITH ALL APPLICABLE NATIONAL, STATE, AND LOCAL CODES, STANDARDS, ORDINANCES, RULES, AND REGULATIONS. ALL CONSTRUCTION WORK SHALL BE PERFORMED IN ACCORDANCE WITH ALL SAFETY CODES. APPLICABLE SAFETY CODES MEAN THE LATEST EDITION INCLUDING ANY AND ALL AMENDMENTS, REVISIONS, AND ADDITIONS THERETO, TO THE FEDERAL DEPARTMENT OF LABOR, OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION'S OCCUPATIONAL SAFETY AND HEALTH STANDARDS (OSHA); AND APPLICABLE SAFETY, HEALTH REGULATIONS AND BUILDING CODES FOR CONSTRUCTION IN THE STATE OF NEW YORK. THE CONTRACTOR SHALL BE RESPONSIBLE FOR GUARDING AND PROTECTING ALL OPEN EXCAVATIONS IN ACCORDANCE WITH THE PROVISION OF SECTION 107-05 (SAFETY AND HEALTH REQUIREMENTS) OF THE NYSDOT STANDARD SPECIFICATIONS. IF THE CONTRACTOR PERFORMS ANY HAZARDOUS CONSTRUCTION PRACTICES, ALL OPERATIONS IN THE AFFECTED AREA SHALL BE DISCONTINUED AND IMMEDIATE ACTION SHALL BE TAKEN TO CORRECT THE SITUATION TO THE SATISFACTION OF THE APPROVAL AUTHORITY HAVING JURISDICTION.
- 5. CONTRACTOR SHALL MAINTAIN ACCESS TO ALL PROPERTIES AFFECTED BY THE SCOPE OF WORK SHOWN HEREON AT ALL TIMES TO THE SATISFACTION OF THE OWNERS REPRESENTATIVE. RAMPING CONSTRUCTION TO PROVIDE ACCESS MAY BE CONSTRUCTED WITH SUBBASE MATERIAL EXCEPT THAT TEMPORARY ASPHALT CONCRETE SHALL BE PLACED AS DIRECTED BY THE ENGINEER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING SAFE PEDESTRIAN ACCESS AT ALL TIMES.
- 6. CONTRACTOR SHALL MAINTAIN THE INTEGRITY OF EXISTING PAVEMENT TO REMAIN.

SUBSURFACE UTILITY LOCATIONS ARE BASED ON A COMPILATION OF FIELD EVIDENCE, AVAILABLE RECORD PLANS AND/OR UTILITY MARK-OUTS. THE LOCATION OR COMPLETENESS OF UNDERGROUND INFORMATION CANNOT BE GUARANTEED. VERIFY THE ACTUAL LOCATION OF ALL UTILITIES PRIOR TO EXCAVATION OR CONSTRUCTION.

APPROVED BY TOWN OF NORTH CASTLE PLANNING BOARD: RESOLUTION, DATED:

CHRISTOPHER CARTHY, CHAIRMAN
TOWN OF NORTH CASTLE PLANNING BOARD

ENGINEERING PLANS REVIEWED FOR CONFORMANCE TO RESOLUTION:

JOSEPH M. CERMELE, P.E.
KELLARD SESSIONS CONSULTING
CONSULTING TOWN ENGINEERS

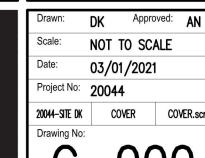
ANY ALTERATION OF PLANS,
SPECIFICATIONS, PLATS AND
REPORTS BEARING THE SEAL
OF A LICENSED PROFESSIONAL
ENGINEER OR LICENSED LAND
SURVEYOR IS A VIOLATION OF
SECTION 7209 OF THE NEW
YORK STATE EDUCATION LAW,
EXCEPT AS PROVIDED FOR BY
SECTION 7209, SUBSECTION 2.

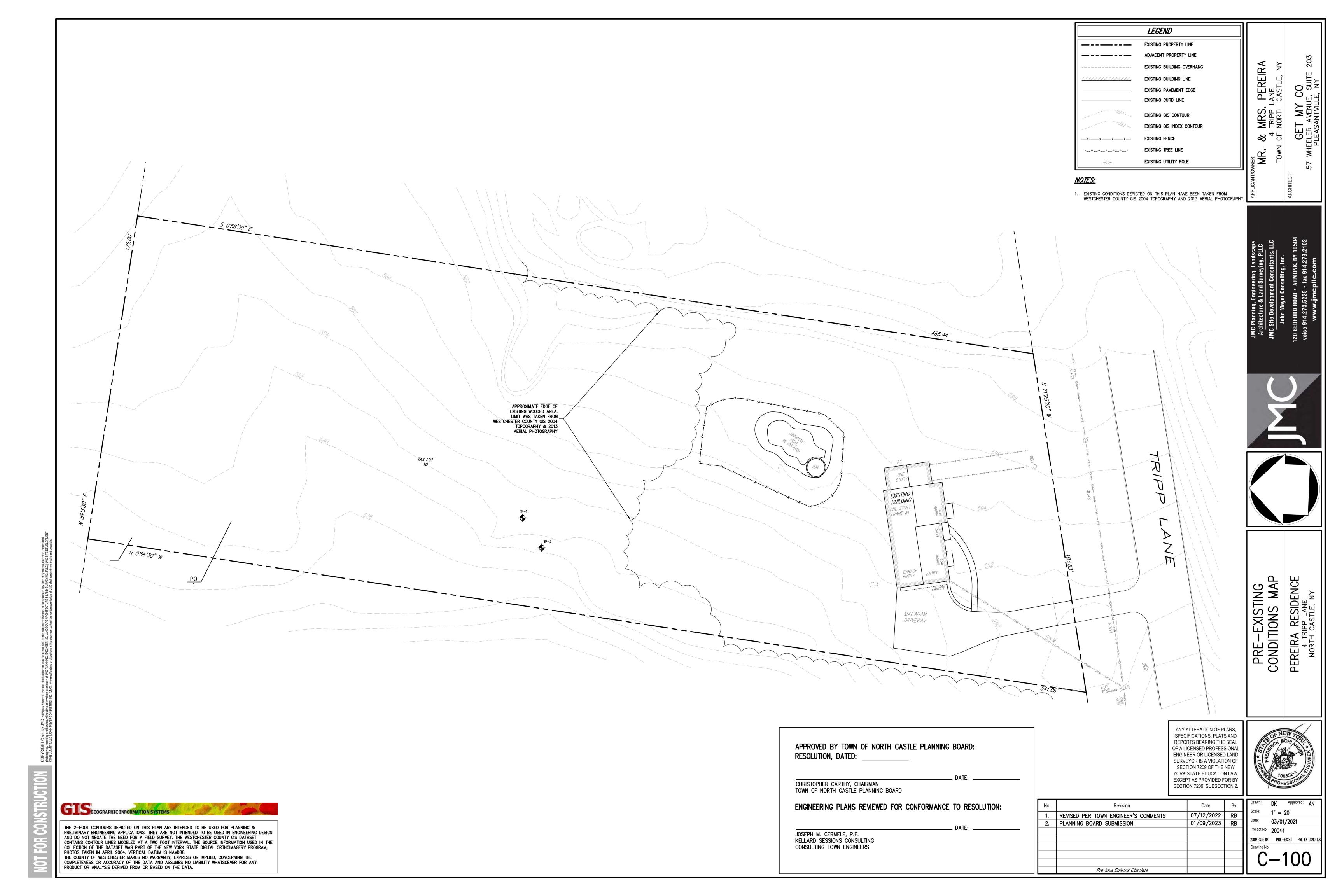
Revision	Date	Ву	
REVISED PER TOWN ENGINEER'S COMMENTS	07/12/2022	RB	
PLANNING BOARD SUBMISSION	01/09/2023	RB	

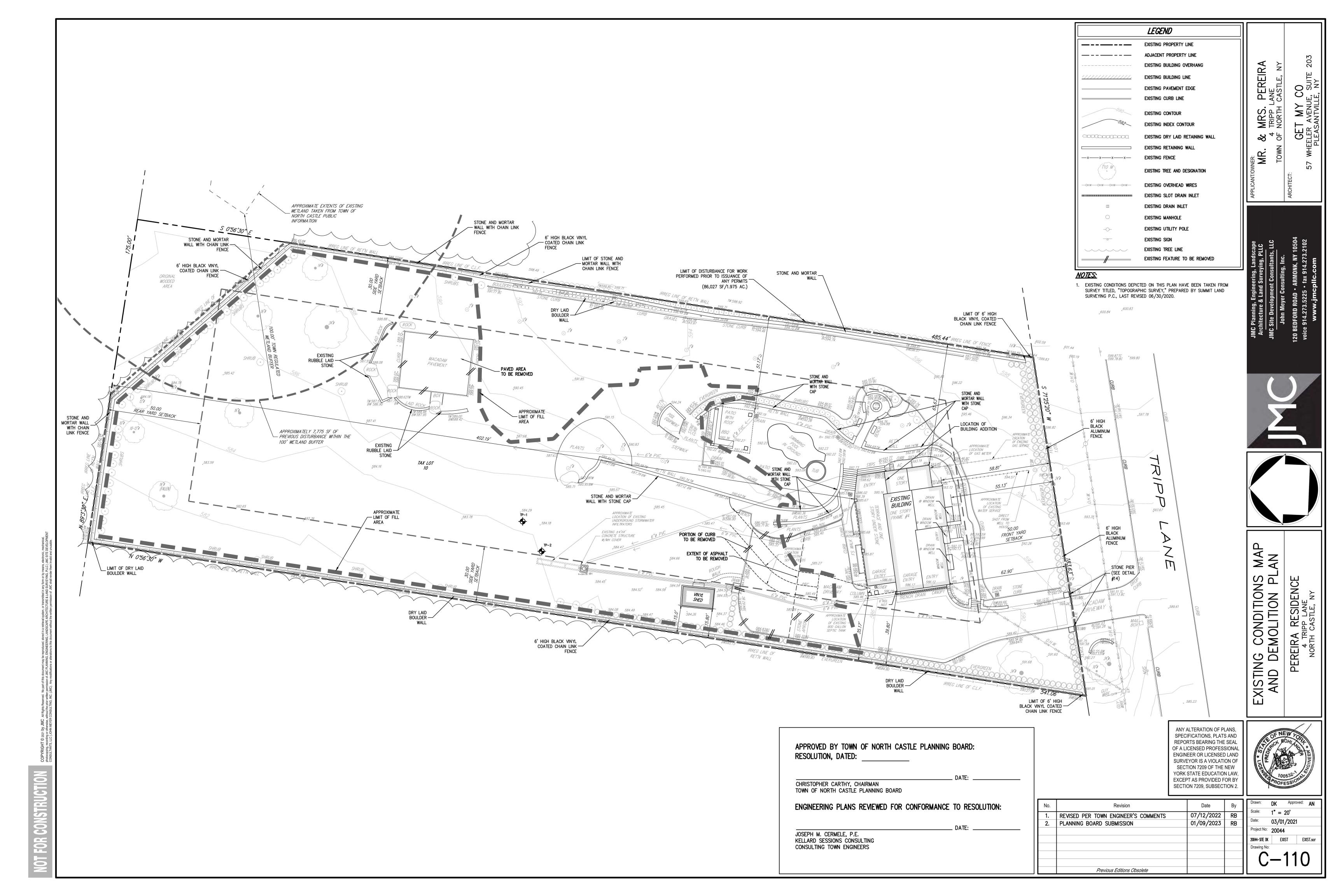
Previous Editions Obsolete

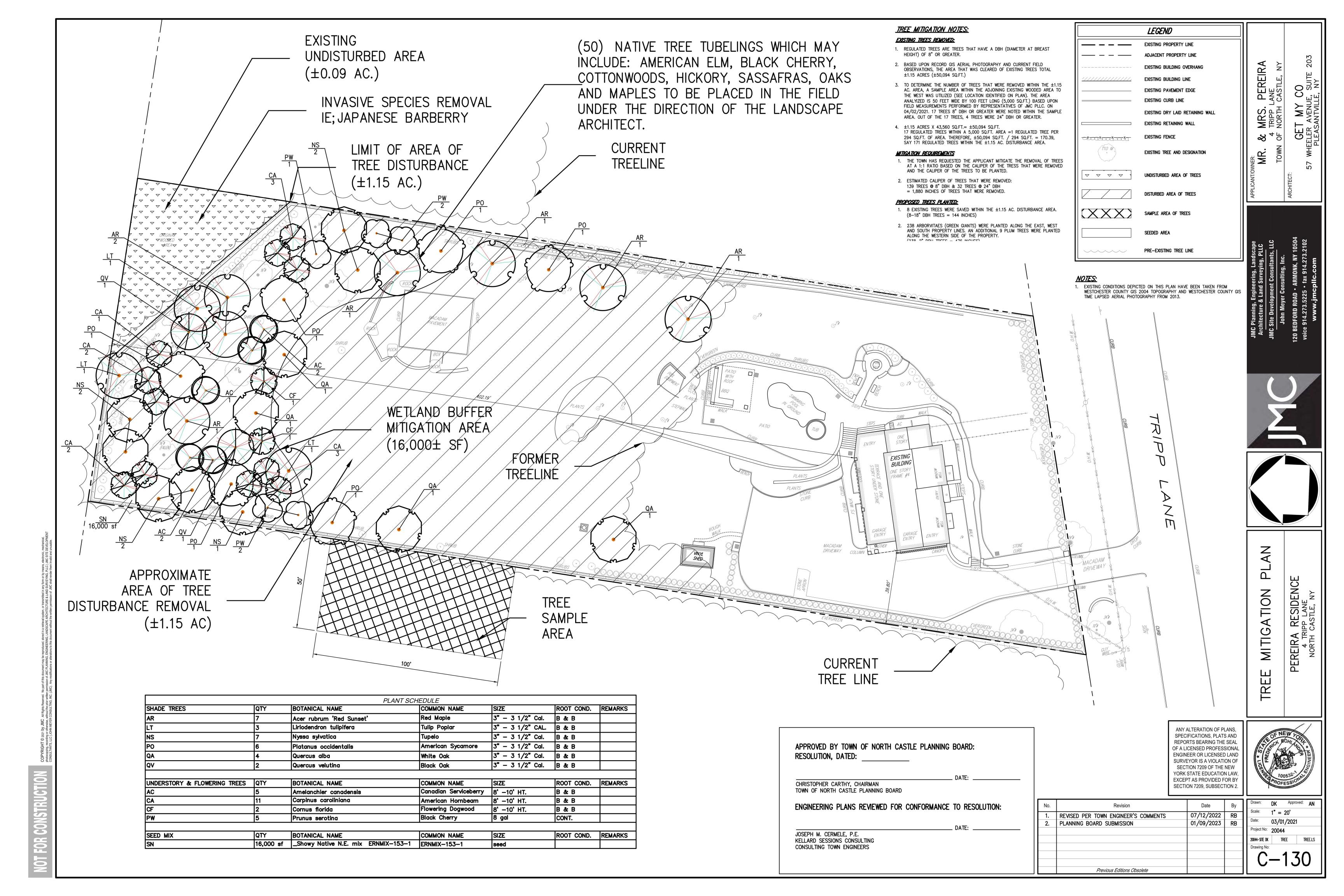
JMC Planning, Engineering, Landscape
Architecture & Land Surveying, PLLC

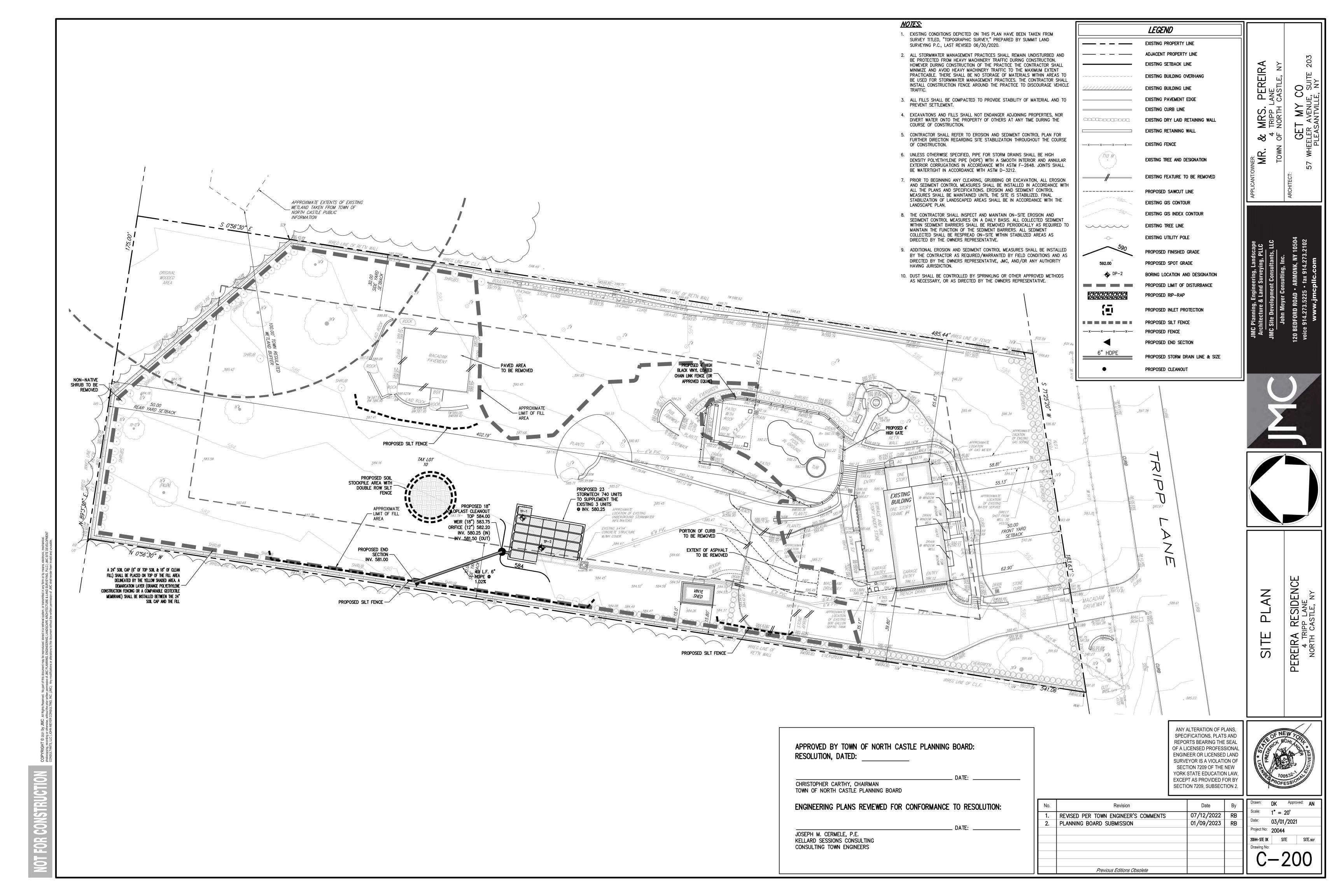
JMC Site Development Consultants, LLC

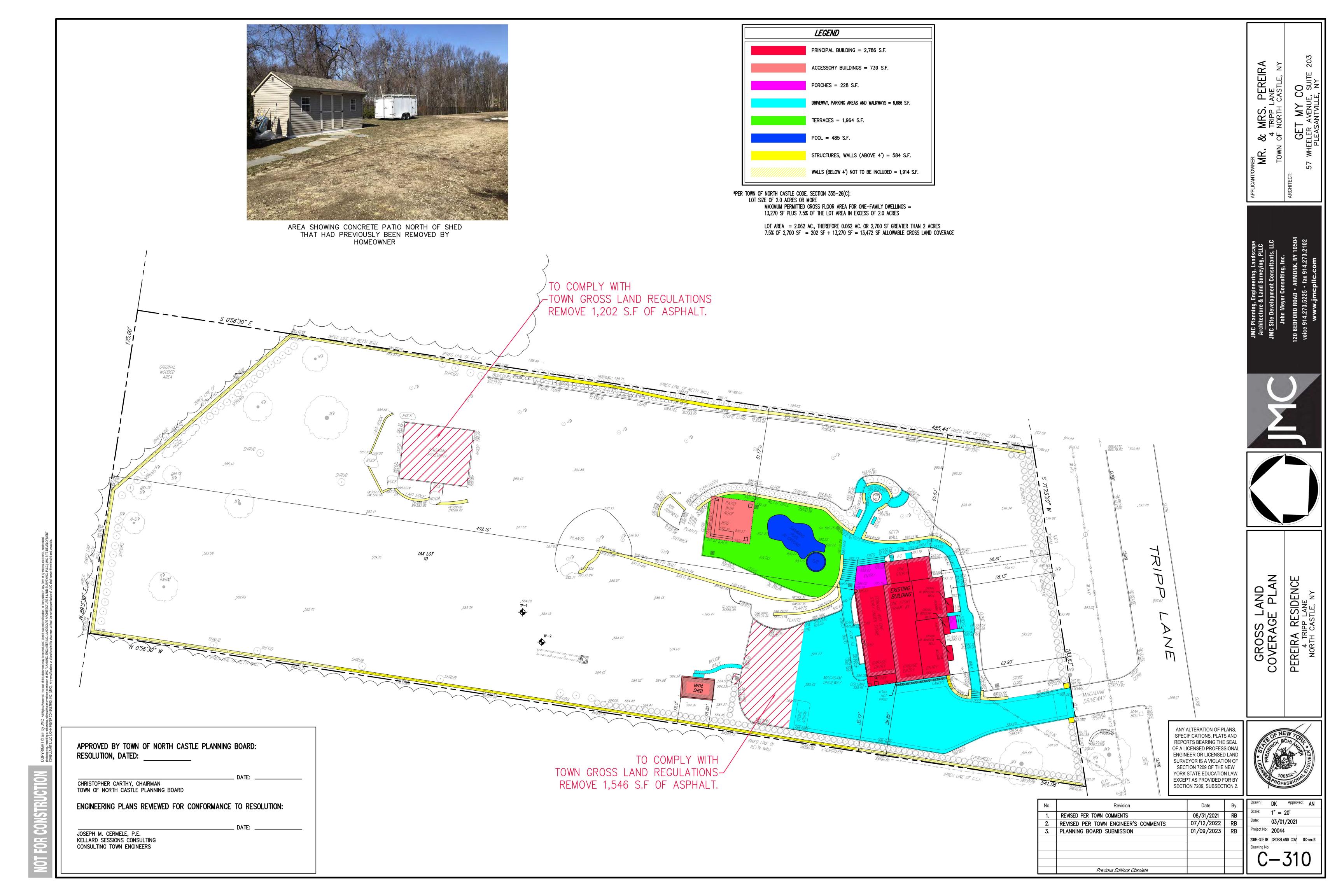

John Meyer Consulting, Inc.

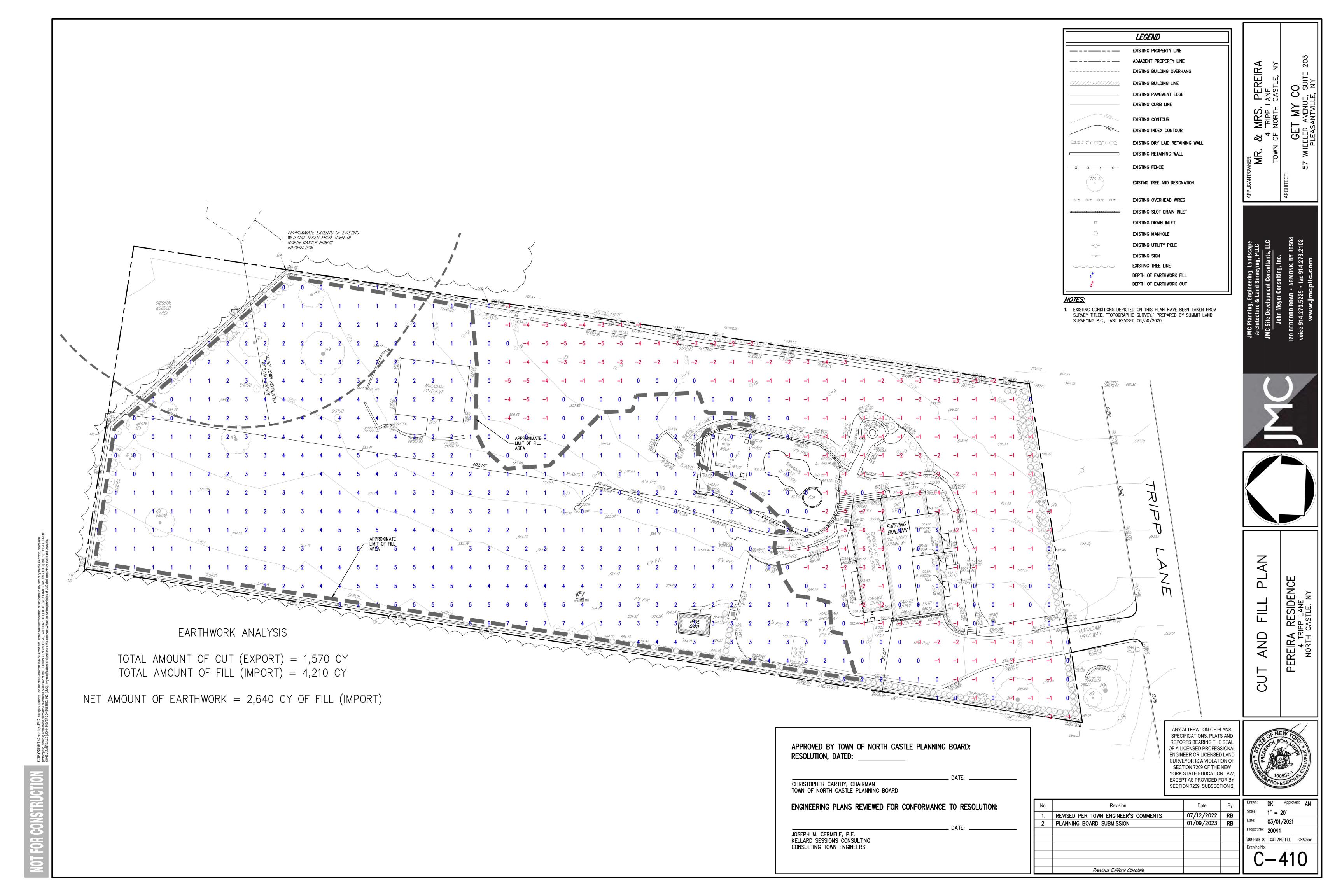

John Meyer Consulting, Inc.

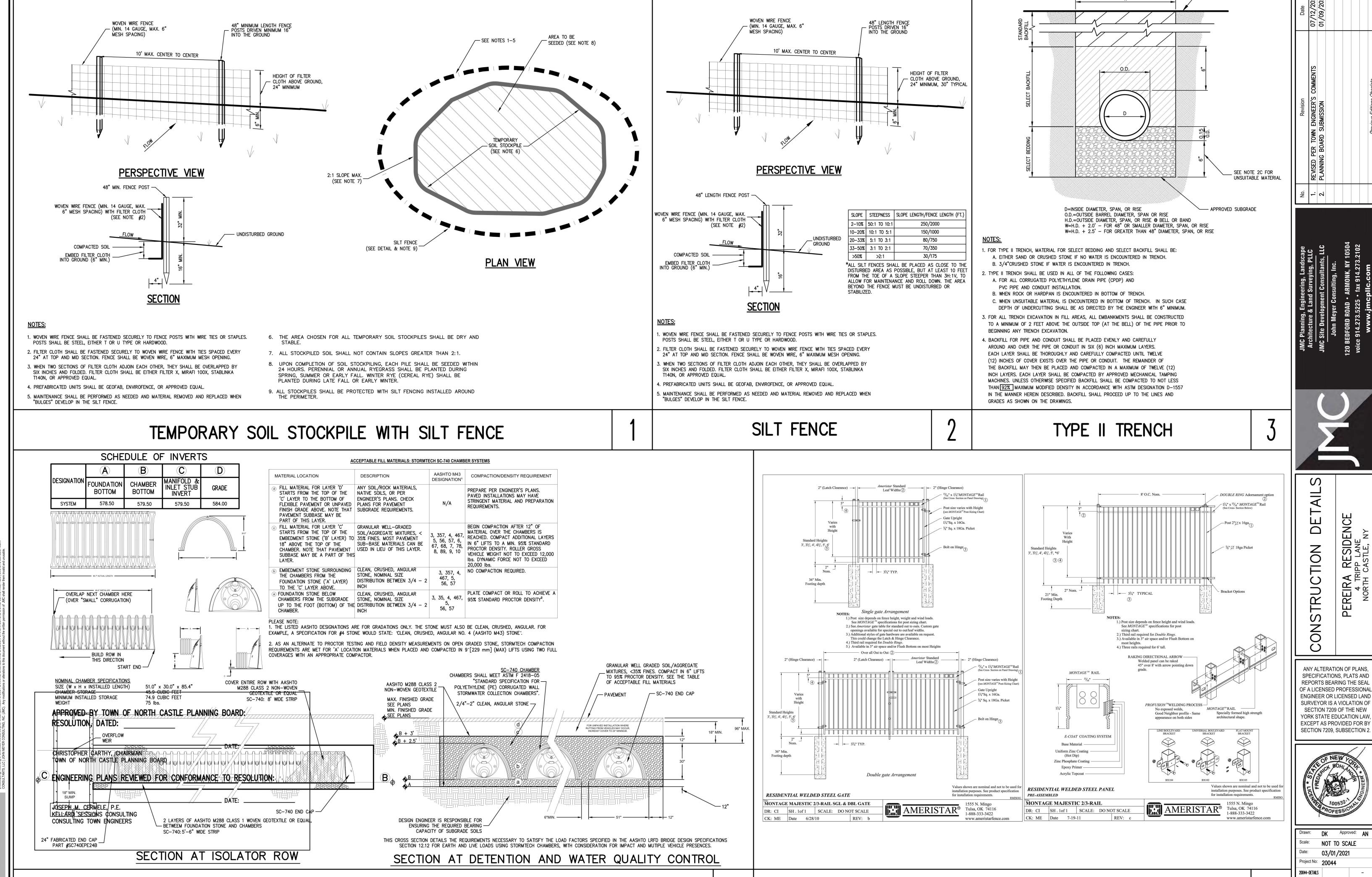

120 BEDFORD ROAD • ARMONK, NY 10504


voice 914.273.5225 • fax 914.273.2102


www.jmcpllc.com







STORMTECH CHAMBERS SC-740

AMERISTAR MONTAGE MAJESTIC FENCE WITH GATE

A-1 STEPS WILL NOT BE REQUIRED IN INLETS LESS THAN FOUR (4) FEET IN DEPTH. STEPS WILL BE

REQUIRED IN INLETS FOUR (4) FEET OR GREATER IN DEPTH. DEPTHS FOR DRAIN INLETS SHALL BE MEASURED FROM FINISHED GRADE TO INSIDE BOTTOM OF STRUCTURE (INCLUDING SUMP AS APPLICABLE). A-2 WHEN STEPS ARE REQUIRED, STEPS SHALL COMPLY WITH THE SAME REQUIREMENTS OF ASTM STANDARD

C-478, ARTICLE 13 ENTITLED "MANHOLE STEPS & LADDERS". A-3 FOR MASONRY STRUCTURES, THE FIRST COURSE OF MASONRY SHALL BE SET IN THE CONCRETE FOUNDATION BEFORE THE CONCRETE HAS SET. CONCRETE FOUNDATION SHALL BE CLASS "A" (4000 psi) CONCRETE, TWELVE (12) INCHES THICK AND SHALL EXTEND SIX (6) INCHES BEYOND THE OUTSIDE FACE THE STRUCTURE.

A-4 IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO FURNISH AND CONSTRUCT THE PROPER SIZE STRUCTURE INCLUDING THE NECESSARY OPENINGS TO ACCOMMODATE THE WORK AS SHOWN ON THE PLANS OR ORDERED BY THE ENGINEER, AT NO ADDITIONAL COST TO THE OWNER.

A-5 ALL NECESSARY PATCHING FOR DRAIN STRUCTURES SHALL BE ACCOMPLISHED WITH NON-SHRINKING CEMENT MORTAR GROUT, APPROVED EQUAL TO SIKA-SET AS MANUFACTURED BY THE SIKA CHEMICAL

A-6 FOUNDATIONS FOR PRECAST CONCRETE STRUCTURES SHALL BE SET ON A COMPACTED LAYER OF APPROVED CRUSHED STONE HAVING A MINIMUM COMPACTED THICKNESS OF EIGHT (8) INCHES.

A-7 ALL PIPES SHALL BE CUT FLUSH WITH THE INSIDE WALL OF THE STRUCTURE.

PROVIDE REINFORCED CONCRETE TOP SLAB FOR OVERSIZED DRAIN INLETS WITH PROPER SIZE OPENING TO ACCOMMODATE INSTALLATION OF FRAME & GRATE.

A-9 FOR MASONRY STRUCTURES GREATER THAN TEN (10) FEET IN DEPTH, THICKNESS OF MASONRY WALLS SHALL BE INCREASED TO TWELVE (12) INCHES.

A-10 FOR ALL STRUCTURES GREATER THAN 10 FEET IN DEPTH, STRUCTURES SHALL PROVIDE MINIMUM INSIDE DIMENSIONS OF 4 FEET X 4 FEET.

NOTES PERTAINING TO MANHOLES

B-1 PRECAST CONCRETE MANHOLES SHALL COMPLY WITH ASTM STANDARD C-478. MANHOLE JOINTS SHALL COMPLY WITH ASTM STANDARD C-443.

B-2 FOR PRECAST CONCRETE MANHOLES FIVE (5) FEET OR LESS IN HEIGHT, TOP CONE SECTION SHALL BE REPLACED WITH PRECAST REINFORCED CONCRETE SLAB (6" MIN. THICKNESS) WITH OPENING OF SUFFICIENT SIZE TO ACCOMMODATE MANHOLE CASTING.

B-3 FOR MANHOLES 10 FEET OR MORE IN DEPTH, MANHOLE DIAMETER SHALL BE FIVE (5) FEET.

B-4 TERMINAL MANHOLE FLOORS SHALL BE SLOPED TOWARD OUTFALL PIPE.

B-5 INVERT CHANNELS FOR PRECAST CONCRETE MANHOLES SHALL BE CONSTRUCTED OF CONCRETE.

B-6 NOTES A-1, A-2, A-4, A-5, A-6 & A-7 UNDER "NOTES PERTAINING TO DRAIN INLETS" ABOVE SHALL

NOTES PERTAINING TO PRECAST CONCRETE STRUCTURES FOR STORM DRAINS, SANITARY SEWERS AND WATER LINES

C-1 ALL PRECAST CONCRETE STRUCTURES SHALL BE DESIGNED TO ACCOMMODATE AN H-20 DESIGN LOAD.

C-2 STEPS SHALL BE LOCATED WITHIN STRUCTURE TO AVOID PLACEMENT OVER PIPES WHEN PRACTICABLE.

UTILITY NOTES

STEPS (SEE UTILITY NOTES A-1, A-2 AND C-2) SEE NOTE A-10 <u>PLAN</u> CAMPBELL FOUNDRY Co. FINISHED GRADE — No. 2815 OR APPROVED \bot STEPS AT 12" O.C. CAST 2'-0" SEE NOTE A-10 IRON OR POLYPROPYLENE -BRICK FOR ADJUSTMENT OR COATED STEEL PRECAST CONCRETE RINGS (SEE DRAINAGE NOTE A-2) (12" MAX.) FOR SIZE AND INVERT, SEE PLAN OR PROFILE 6" SOLID CONC. BLOCK OR PRECAST CONCRETE

REINFORCEMENT AS REQUIRED SEE DRAINAGE NOTE A-3 FOR PRECAST CONCRETE FOR CONCRETE FOUNDATION FOR CONCRETE BLOCK STRUCTURES 4 4 4 4 4 APPROVED COMPACTED CRUSHED STONE FOUNDATION COURSE SECTION A-A - APPROVED SUBGRADE

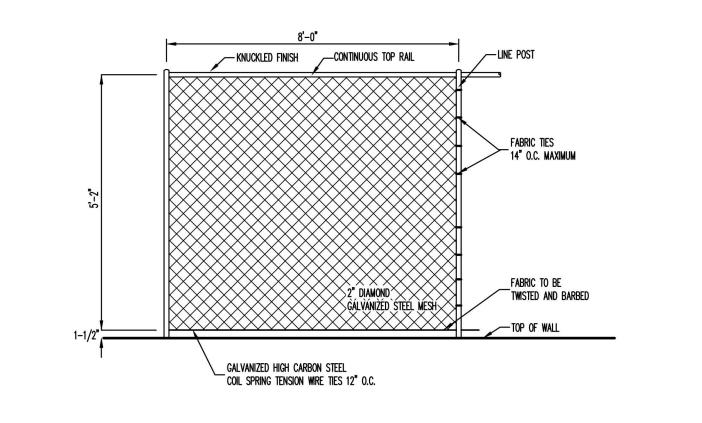
1. SEE NOTES PERTAINING TO DRAIN INLETS UNDER UTILITY NOTES ON THIS DRAWING.

LAWN OR LANDSCAPING-(SEE PLANS) DRIVEWAY WIDTH APPROVED COMPACTED -SUBGRADE 2" TOP COURSE MATERIAL: ASPHALT CONCRETE, TYPE 6F NOTES: MIX/ITEM: NYSDOT ITEM 403.1701 THICKNESSES INDICATED REFER TO COMPACTED MEASURES. . MATERIAL AND MIX/ITEM NUMBERS REFER TO: 6" BASE/SUBBASE COURSE NEW YORK STATE MATERIAL: SUBBASE, TYPE 4 DEPARTMENT OF TRANSPORTATION MIX/ITEM: NYSDOT ITEM 304.05 STANDARD SPECIFICATIONS

SITE DRIVEWAY

STONE CURB

(BELGIAN BLOCK)


CLASS A CONCRETE

FOUNDATION (4,000 PSI)

1. JOINTS SHALL BE NO WIDER THAN 3/4" AND SHALL BE MORTARED.

POINTED AND CLEANED OF EXCESS MORTAR.

JOINTS SHALL BE FULLY FILLED WITH 1:2 CEMENT MORTAR, NEATLY

CHAIN LINK FENCE

BLACK ALUMINUM FENCE

APPROVED BY TOWN OF NORTH CASTLE PLANNING BOARD:

ENGINEERING PLANS REVIEWED FOR CONFORMANCE TO RESOLUTION:

PIPE DIM.

RESOLUTION, DATED:

JOSEPH M. CERMELE, P.E.

KELLARD SESSIONS CONSULTING

CONSULTING TOWN ENGINEERS

CHRISTOPHER CARTHY, CHAIRMAN

TOWN OF NORTH CASTLE PLANNING BOARD

INTERMEDIATE POST-

SPECIFICATIONS:

END POSTS: 4"x4"

1"x1"

3/4" x 1 1/2"

POSTS, RAILS : & PICKETS

INTERMEDIATE POSTS:

RAILS:

COLOR:

CONNECTOR SECTION

- REINFORCED EDGE

PICKETS:

POST SETTING 6'-1" CENTER TO CENTER

CLEAR BETWEEN PICKETS

ALTERNATE CONNECTION

ANY ALTERATION OF PLANS SPECIFICATIONS, PLATS AND REPORTS BEARING THE SEAL OF A LICENSED PROFESSIONAL ENGINEER OR LICENSED LAND SURVEYOR IS A VIOLATION OF SECTION 7209 OF THE NEW YORK STATE EDUCATION LAW, EXCEPT AS PROVIDED FOR BY SECTION 7209, SUBSECTION 2

NOT TO SCALE

SOIL DEMARCATION LAYER

LAWN INLET (TYPE LI)

STONE AND MORTAR WALL

CROSS-SECTION ° HOLES ON 12" CENTERS MAX.

LARGE BELGIAN BLOCK CURBING

SEE PLANS

- PAVEMENT

APPROVED COMPACTED

PIPE DAI.

SKIRT SECTION

(12" DEEP X 8" LONG X 4" WIDE)

FINISHED PAVEMENT GRADE

ELEVATION . TOE PLATE TO BE PUNCHED TO MATCH HOLES IN SKIRT LIP. 3/8" GALV BOLTS TO BE FURNISHED. LENGTH OF TOE PLATE IS W+10" FOR 12" TO 30" DIA. PIPE AND W+22" FOR 36" TO 60" DIA. PIPE. . SKIRT SECTION FOR 12" TO 30" DIA. PIPE TO BE MADE IN ONE PIECE. SKIRT SECTION OF 36" TO 54" DIA. PIPE MAY BE MADE FROM TWO SHEETS JOINED BY RIVETING OR BOLTING ON CENTER LINE, 60" MAY BE CONSTRUCTED IN 3 PIECES. 5. END—SECTIONS AND FITTINGS ARE TO BE GALVANIZED STEEL OR ALUMINIUM ALLOY FOR USE WITH LIKE PIPE 6. WHERE FLARED END—SECTIONS ARE TO BE USED WITH BITUMINOUS COATED AND PAVED METAL PIPE, THEY ARE TO BE GALVANIZED ONLY.

APPROVEDAPPROVED CLEAN TOP SOIL DEMARCATION LAYER (ORANGE CONSTRUCTION FENCE OR GEOTEXTILE MEMBRANE)

COLUMN HEIGHT: 6'-6"

2'-10" X 3'-1" 6" HEIGHT (INCLUDES UPPER SECTION)

8'-0" W (ONE SIDE) 6'-9" HT. @ CENTER 5'-0" HT. @ CONNECTION TO PIER 2'-0" HT.

TOTAL HEIGHT: 9'-0"

GATE AND STONE PIER

STONE AND MORTAR WALL

DRY LAID BOULDER WALL

SHED

END SECTION

Site Planning
Civil Engineering
Landscape Architecture
Land Surveying
Transportation Engineering

Environmental Studies
Entitlements
Construction Services
3D Visualization
Laser Scanning

STORMWATER POLLUTION PREVENTION PLAN

JMC Project 20044
Residential Zoning Compliance Analysis
4 Tripp Lane
Town of North Castle, New York
January 9, 2022

I. INTRODUCTION

This report has been prepared to study the stormwater management aspects of the previous improvements performed by the client prior to the Town's approval and subsequent proposed drainage improvements located at the above address.

The previous improvements included the expansion of the residence, the installation of a pool patio, the installation of a separate patio area located in the backyard, the installation of a basketball court in the backyard and driveway improvements. These previous improvements have increased the square footage of impervious surfaces which will now require stormwater runoff mitigation. These improvements also increased the coverage numbers of the Site over the permitted limit. The applicant is proposing to remove approximately 2,750 square feet of impervious area (the basketball court and a large portion of the driveway) to comply with this requirement.

A hydrologic analysis of the overall site and its sub-drainage areas studied herein was prepared using the USDA Soil Conservation Service TR-55 "Urban Hydrology for Small Watersheds" methodology for the following rainfall event shown in Table 1:

Table I TR-55 24 Hour Rainfall Depths

Design Storm Recurrence Interval	Inches of Rainfall
100 Year Storm Event	9.1

Rainfall depths shown in the table above for the Town of North Castle in Westchester County are taken from the Extreme Precipitation Tables from the Northeast Regional Climate Center 24-hour rainfall frequency data from Cornell University's precip.net.

As detailed below, the previous improvements have caused a net increase in the overall impervious surfaces which will be mitigated by the installation of an additional 23-Stormtech 740 units to supplement the previously installed 3 units. This system will reduce the peak rate of runoff and runoff volume associated with the previous improvements when compared to the pre-existing conditions for the 100-year storm event.

JMC Planning Engineering Landscape Architecture & Land Surveying, PLLC | JMC Site Development Consultants, LLC

II. EXISTING CONDITIONS

Under pre-existing conditions, the Site, in general drains from north to south towards the adjacent lot and eventually towards Byram Hills High School. Three areas were identified as areas where stormwater runoff exits the project site, all located along the southern property line. To simplify the stormwater study, one single design line was used instead of three separate design points, and peak rates of runoff and runoff volumes were reduced at this design line, which incorporates all runoff from the project site.

Existing Drainage Area I (EDA-I) is approximately 2.062 acres and includes the entire project site. Stormwater from this drainage area drains from north to south towards the adjacent lot and eventually towards Byram Hills High School. All runoff leaves the project site along the southern property line which will be designated as Design Line #1, as shown on drawing DA-I. The Curve Number (CN) and Time of Concentration (Tc) for this drainage area are 73 and 9.66 minutes, respectively. Refer to Drawing DA-I in Appendix C.

III. PROPOSED CONDITIONS

As mentioned above, the previous improvements included the expansion of the residence, the installation of a pool patio, the installation of a separate patio area located in the backyard, the installation of a basketball court in the backyard and driveway improvements. These previous improvements have increased the square footage of impervious surfaces which will now require stormwater runoff mitigation. These improvements also increased the coverage numbers of the Site over the permitted limit. The applicant is proposing to remove approximately 2,750 square feet of impervious area (the basketball court and a large portion of the driveway) to comply with this requirement. The previous improvements have caused a net increase in the overall impervious surfaces which will be mitigated by the installation of an additional 23-Stormtech 740 units to supplement the previously installed 3 units. This system will reduce the peak rate of runoff and runoff volume associated with the previous improvements when compared to the pre-existing conditions for the 100-year storm event.

<u>Proposed Drainage Area I (PDA-I)</u> is approximately 1.399 acres, is in the western portion of the site and includes much of the project site. Stormwater from this drainage area drains from north to south towards the adjacent lot and eventually towards Byram Hills High School. All runoff leaves the project site along the southern property line which is designated as Design Line #I, as shown on drawing DA-2. The Curve Number (CN) and Time of Concentration (Tc) for this drainage area are 74 and 9.18 minutes, respectively. Refer to Drawing DA-2 in Appendix C.

Proposed Drainage Area IA (PDA-IA) is approximately 0.136 acres and is located in the central portion of the project site. This area includes the pool and improved pool patio area. Stormwater from this drainage area is collected in several inlets dispersed throughout the patio area and under current conditions is being daylighted in the backyard but under proposed conditions will be conveyed to the improved underground infiltration system that will consist of 26-Stormtech 740 units. This system will outlet in the backyard near where the previous outlet had been located. Runoff then drains towards the adjacent lot and eventually towards Byram Hills High School. All runoff leaves the project site along the southern property line which will be designated as Design Line #1, as shown on drawing DA-2. The Curve Number (CN) and Time of Concentration (Tc) for this drainage area are 88 and 5.00 minutes, respectively. Refer to Drawing DA-2 in Appendix C.

Proposed Drainage Area 1B (PDA-1B) is approximately 0.527 acres and is located in the eastern portion of the project site. This area includes the residence, driveway, shed, walkways and landscaped areas. Stormwater from this drainage area is collected in several inlets dispersed throughout this drainage area and under current conditions is being conveyed to the existing underground infiltration system in the backyard. Under proposed conditions runoff from this area will continue to be conveyed to this underground infiltration system that will now consist of 26-Stormtech 740 units. This system will outlet in the backyard near where the previous outlet had been located. Runoff then drains towards the adjacent lot and eventually towards Byram Hills High School. All runoff leaves the project site along the southern property line which will be designated as Design Line #1, as shown on drawing DA-2. The Curve Number (CN) and Time of Concentration (Tc) for this drainage area are 82 and 8.94 minutes, respectively. Refer to Drawing DA-2 in Appendix C.

The numbers included in the tables below were obtained from calculations included in Appendix A & B of this report.

<u>Table 2</u>

<u>Percent Reduction in Peak Rate of Runoff (Existing vs. Proposed Conditions)</u>

(Cubic Feet per Second)

Storm Recurrence Frequency (Years)	Existing Peak Runoff Rate (cfs) Design Line I	Proposed Peak Runoff Rate (cfs) Design Line I	Percent Reduction (%)
100-year	11.26	11.15	1.0

<u>Table 3</u>
<u>Percent Reduction in Runoff Volume (Existing vs. Proposed Conditions)</u>
(Cubic Feet)

Storm Recurrence Frequency (Years)	Existing Runoff Volume (cf) Design Line I	Proposed Runoff Volume (cf) Design Line I	Percent Reduction (%)
100-year	43,587	34,156	21.6

IV. CONCLUSION

Based on the foregoing, it is our professional opinion that the previous improvements will not have an adverse drainage impact to the site, adjacent properties, or downstream areas with the installation of an additional 23-Stormtech 740 units (a total of 26 units).

Respectfully Submitted,

Rick Bohlander

JMC

Rick Bohlander, PE

Project Manager

P:\2020\20044\DRAINAGE\REPORTS\2023-01-09_rb\Storm Report 01-09-2023.doc

APPENDIX A EXISTING HYDROLOGIC CALCULATIONS

Scenario: 4 Tripp Street - Synthetic Curve, 1 yrs

Table of Contents

	Master Network Summary	1
Armonk	Time-Depth Curve, 100 years (4 Tripp Street - Synthetic Curve, 100 yrs)	2
EDA-1	Time of Concentration Calculations, 100 years (4 Tripp Street - Synthetic Curve, 100 yrs)	4
EDA-1	Runoff CN-Area, 100 years (4 Tripp Street - Synthetic Curve,	6

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (hours)	Peak Flow (ft³/s)
EDA-1	4 Tripp Street - Synthetic Curve, 100 yrs	100	43,587.000	12.150	11.26

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (hours)	Peak Flow (ft³/s)
DP 1	4 Tripp Street - Synthetic Curve, 100 yrs	100	43,587.000	12.150	11.26

Subsection: Time-Depth Curve Return Event: 100 years Label: Armonk Storm Event: 100 Year

Scenario: 4 Tripp Street - Synthetic Curve, 100 yrs

Time-Depth Curve: 100 Year	
Label	100 Year
Start Time	0.000 hours
Increment	0.100 hours
End Time	24.000 hours
Return Event	100 years

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.1	0.1	0.1	0.1
1.000	0.1	0.1	0.1	0.1	0.1
1.500	0.1	0.1	0.2	0.2	0.2
2.000	0.2	0.2	0.2	0.2	0.2
2.500	0.2	0.2	0.2	0.3	0.3
3.000	0.3	0.3	0.3	0.3	0.3
3.500	0.3	0.3	0.4	0.4	0.4
4.000	0.4	0.4	0.4	0.4	0.4
4.500	0.5	0.5	0.5	0.5	0.5
5.000	0.5	0.5	0.5	0.6	0.6
5.500	0.6	0.6	0.6	0.6	0.6
6.000	0.7	0.7	0.7	0.7	0.7
6.500	0.7	0.8	0.8	0.8	0.8
7.000	0.8	0.8	0.9	0.9	0.9
7.500	0.9	0.9	1.0	1.0	1.0
8.000	1.0	1.1	1.1	1.1	1.1
8.500	1.2	1.2	1.2	1.3	1.3
9.000	1.3	1.4	1.4	1.4	1.5
9.500	1.5	1.6	1.6	1.6	1.7
10.000	1.7	1.8	1.8	1.9	1.9
10.500	2.0	2.0	2.1	2.2	2.2
11.000	2.3	2.4	2.4	2.5	2.6
11.500	2.7	2.9	3.1	3.4	3.8
12.000	4.6	5.3	5.7	6.0	6.3
12.500	6.4	6.5	6.6	6.7	6.8
13.000	6.8	6.9	7.0	7.0	7.1
13.500	7.2	7.2	7.3	7.3	7.4
14.000	7.4	7.4	7.5	7.5	7.6
14.500	7.6	7.7	7.7	7.7	7.8
15.000	7.8	7.8	7.9	7.9	7.9
15.500	8.0	8.0	8.0	8.0	8.1
16.000	8.1	8.1	8.1	8.2	8.2
16.500	8.2	8.2	8.2	8.3	8.3

Subsection: Time-Depth Curve Return Event: 100 years
Label: Armonk Storm Event: 100 Year

Scenario: 4 Tripp Street - Synthetic Curve, 100 yrs

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

	This on televispi estimation in the value in case is the				
Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
17.000	8.3	8.3	8.3	8.4	8.4
17.500	8.4	8.4	8.4	8.4	8.5
18.000	8.5	8.5	8.5	8.5	8.5
18.500	8.5	8.6	8.6	8.6	8.6
19.000	8.6	8.6	8.6	8.7	8.7
19.500	8.7	8.7	8.7	8.7	8.7
20.000	8.7	8.7	8.8	8.8	8.8
20.500	8.8	8.8	8.8	8.8	8.8
21.000	8.9	8.9	8.9	8.9	8.9
21.500	8.9	8.9	8.9	8.9	8.9
22.000	9.0	9.0	9.0	9.0	9.0
22.500	9.0	9.0	9.0	9.0	9.0
23.000	9.0	9.1	9.1	9.1	9.1
23.500	9.1	9.1	9.1	9.1	9.1
24.000	9.1	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time of Concentration Calculations

Label: EDA-1

(Composite)

Scenario: 4 Tripp Street - Synthetic Curve, 100 yrs

Time of Concentration Results

Time or concentration results				
Segment #1: TR-55 Sheet Flow				
Hydraulic Length	60.00 ft			
Manning's n	0.400			
Slope	0.067 ft/ft			
2 Year 24 Hour Depth	3.4 in			
Average Velocity	0.12 ft/s			
Segment Time of Concentration	0.142 hours			
Segment #2: TR-55 Shallow Conce	entrated Flow			
Hydraulic Length	200.00 ft			
Is Paved?	False			
Slope	0.035 ft/ft			
Average Velocity	3.02 ft/s			
Segment Time of Concentration	0.018 hours			
Time of Concentration (Composite)				
Time of Concentration	0.161 hours			

Return Event: 100 years

Storm Event: 100 Year

Subsection: Time of Concentration Calculations Return Event: 100 years

Label: EDA-1 Storm Event: 100 Year Scenario: 4 Tripp Street - Synthetic Curve, 100 yrs

==== SCS Channel Flow

Tc = R = Qa / Wp

V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

(Lf / V) / 3600

Where: R= Hydraulic radius

Aq= Flow area, square feet Wp= Wetted perimeter, feet

V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n

Tc= Time of concentration, hours

Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc = Unpaved surface:

V = 16.1345 * (Sf**0.5)

Paved Surface:

V = 20.3282 * (Sf**0.5)

(Lf / V) / 3600

Where: V= Velocity, ft/sec

Sf= Slope, ft/ft

Tc= Time of concentration, hours

Lf= Flow length, feet

Subsection: Runoff CN-Area Return Event: 100 years Label: EDA-1 Storm Event: 100 Year

Scenario: 4 Tripp Street - Synthetic Curve, 100 yrs

Runoff Curve Number Data

Soil/Surface Description	CN	Area (ft²)	C (%)	UC (%)	Adjusted CN
Open space (Lawns,parks etc.) - Good condition; grass cover > 75% - Soil C	74.000	31,144.000	0.0	0.0	74.000
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	5,160.000	0.0	0.0	98.000
Woods - good - Soil C	70.000	53,516.000	0.0	0.0	70.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	89,820.000	(N/A)	(N/A)	72.996

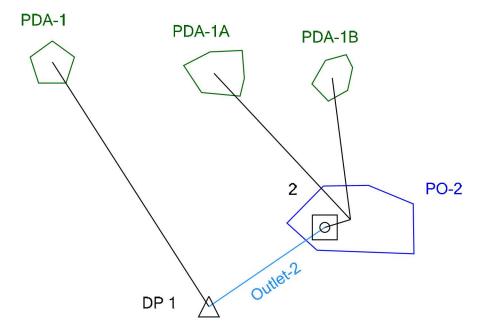
Index

Α

Armonk (Time-Depth Curve, 100 years (4 Tripp Street - Synthetic Curve, 100 yrs))...2, 3

F

EDA-1 (Runoff CN-Area, 100 years (4 Tripp Street - Synthetic Curve, 100 yrs))...6


EDA-1 (Time of Concentration Calculations, 100 years (4 Tripp Street - Synthetic Curve, 100 yrs))...4, 5

M

Master Network Summary...1

APPENDIX B PROPOSED HYDROLOGIC CALCULATIONS

Scenario: 4 Tripp Street - Synthetic Curve, 1 yrs

Table of Contents

	Master Network Summary	1
Armonk	Time-Depth Curve, 100 years (4 Tripp Street - Synthetic Curve, 100 yrs)	2
PDA-1		
	Time of Concentration Calculations, 100 years (4 Tripp Street - Synthetic Curve, 100 yrs)	4
PDA-1B		
	Time of Concentration Calculations, 100 years (4 Tripp Street - Synthetic Curve, 100 yrs)	6
PDA-1		
	Runoff CN-Area, 100 years (4 Tripp Street - Synthetic Curve, 100 yrs)	8
PDA-1A		
	Runoff CN-Area, 100 years (4 Tripp Street - Synthetic Curve, 100 yrs)	g
PDA-1B		
	Runoff CN-Area, 100 years (4 Tripp Street - Synthetic Curve, 100 yrs)	10
PO-2	Storage Chamber System, 100 years (4 Tripp Street - Synthetic Curve, 100 yrs)	11
OCS	Outlet Input Data, 100 years (4 Tripp Street - Synthetic Curve, 100 yrs)	12
PO-2	Elevation-Volume-Flow Table (Pond), 100 years (4 Tripp Street - Synthetic Curve, 100 yrs)	16

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (hours)	Peak Flow (ft³/s)
PDA-1	4 Tripp Street - Synthetic Curve, 100 yrs	100	30,194.000	12.150	7.79
PDA-1A	4 Tripp Street - Synthetic Curve, 100 yrs	100	3,788.000	12.100	0.99
PDA-1B	4 Tripp Street - Synthetic Curve, 100 yrs	100	13,285.000	12.100	3.36

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (hours)	Peak Flow (ft³/s)
DP 1	4 Tripp Street - Synthetic Curve, 100 yrs	100	34,156.000	12.150	11.15

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ft³)
PO-2 (IN)	4 Tripp Street - Synthetic Curve, 100 yrs	100	17,073.000	12.100	4.35	(N/A)	(N/A)
PO-2 (OUT)	4 Tripp Street - Synthetic Curve, 100 yrs	100	3,962.000	12.150	3.35	583.68	2,397.000

Subsection: Time-Depth Curve Return Event: 100 years Label: Armonk Storm Event: 100 Year

Scenario: 4 Tripp Street - Synthetic Curve, 100 yrs

Time-Depth Curve: 100 Year	
Label	100 Year
Start Time	0.000 hours
Increment	0.100 hours
End Time	24.000 hours
Return Event	100 years

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.1	0.1	0.1	0.1
1.000	0.1	0.1	0.1	0.1	0.1
1.500	0.1	0.1	0.2	0.2	0.2
2.000	0.2	0.2	0.2	0.2	0.2
2.500	0.2	0.2	0.2	0.3	0.3
3.000	0.3	0.3	0.3	0.3	0.3
3.500	0.3	0.3	0.4	0.4	0.4
4.000	0.4	0.4	0.4	0.4	0.4
4.500	0.5	0.5	0.5	0.5	0.5
5.000	0.5	0.5	0.5	0.6	0.6
5.500	0.6	0.6	0.6	0.6	0.6
6.000	0.7	0.7	0.7	0.7	0.7
6.500	0.7	0.8	0.8	0.8	0.8
7.000	0.8	0.8	0.9	0.9	0.9
7.500	0.9	0.9	1.0	1.0	1.0
8.000	1.0	1.1	1.1	1.1	1.1
8.500	1.2	1.2	1.2	1.3	1.3
9.000	1.3	1.4	1.4	1.4	1.5
9.500	1.5	1.6	1.6	1.6	1.7
10.000	1.7	1.8	1.8	1.9	1.9
10.500	2.0	2.0	2.1	2.2	2.2
11.000	2.3	2.4	2.4	2.5	2.6
11.500	2.7	2.9	3.1	3.4	3.8
12.000	4.6	5.3	5.7	6.0	6.3
12.500	6.4	6.5	6.6	6.7	6.8
13.000	6.8	6.9	7.0	7.0	7.1
13.500	7.2	7.2	7.3	7.3	7.4
14.000	7.4	7.4	7.5	7.5	7.6
14.500	7.6	7.7	7.7	7.7	7.8
15.000	7.8	7.8	7.9	7.9	7.9
15.500	8.0	8.0	8.0	8.0	8.1
16.000	8.1	8.1	8.1	8.2	8.2
16.500	8.2	8.2	8.2	8.3	8.3

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 2 of 17

Subsection: Time-Depth Curve Return Event: 100 years
Label: Armonk Storm Event: 100 Year

Scenario: 4 Tripp Street - Synthetic Curve, 100 yrs

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth		
(hours)	(in)	(in)	(in)	(in)	(in)		
17.000	8.3	8.3	8.3	8.4	8.4		
17.500	8.4	8.4	8.4	8.4	8.5		
18.000	8.5	8.5	8.5	8.5	8.5		
18.500	8.5	8.6	8.6	8.6	8.6		
19.000	8.6	8.6	8.6	8.7	8.7		
19.500	8.7	8.7	8.7	8.7	8.7		
20.000	8.7	8.7	8.8	8.8	8.8		
20.500	8.8	8.8	8.8	8.8	8.8		
21.000	8.9	8.9	8.9	8.9	8.9		
21.500	8.9	8.9	8.9	8.9	8.9		
22.000	9.0	9.0	9.0	9.0	9.0		
22.500	9.0	9.0	9.0	9.0	9.0		
23.000	9.0	9.1	9.1	9.1	9.1		
23.500	9.1	9.1	9.1	9.1	9.1		
24.000	9.1	(N/A)	(N/A)	(N/A)	(N/A)		

Subsection: Time of Concentration Calculations

Label: PDA-1

Scenario: 4 Tripp Street - Synthetic Curve, 100 yrs

Time of Concentration Results

Time of Concentration Results								
Segment #1: TR-55 Sheet Flow	Segment #1: TR-55 Sheet Flow							
Hydraulic Length	100.00 ft							
Manning's n	0.240							
Slope	0.060 ft/ft							
2 Year 24 Hour Depth	3.4 in							
Average Velocity	0.19 ft/s							
Segment Time of Concentration	0.149 hours							
Segment #2: TR-55 Shallow Conc	entrated Flow							
Hydraulic Length	82.00 ft							
Is Paved?	False							
Slope	0.110 ft/ft							
Average Velocity	5.35 ft/s							
Segment Time of Concentration	0.004 hours							
Time of Concentration (Composite)								
Time of Concentration (Composite)	0.153 hours							

Return Event: 100 years

Storm Event: 100 Year

Subsection: Time of Concentration Calculations Return Event: 100 years Label: PDA-1 Storm Event: 100 Year

Connariou 4 Trinn Street Synthetic Cum (2 100 yrs

Scenario: 4 Tripp Street - Synthetic Curve, 100 yrs

==== SCS Channel Flow

Tc = R = Qa / Wp

V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

(Lf / V) / 3600

Where: R= Hydraulic radius

Aq= Flow area, square feet Wp= Wetted perimeter, feet

V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n

Tc= Time of concentration, hours

Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc = Unpaved surface:

V = 16.1345 * (Sf**0.5)

Paved Surface:

V = 20.3282 * (Sf**0.5)

(Lf / V) / 3600

Where: V= Velocity, ft/sec

Sf= Slope, ft/ft

Tc= Time of concentration, hours

Lf= Flow length, feet

Subsection: Time of Concentration Calculations

Label: PDA-1B

Scenario: 4 Tripp Street - Synthetic Curve, 100 yrs

Time of Concentration Results

Time of Concentration Results	
Segment #1: TR-55 Sheet Flow	
Hydraulic Length	100.00 ft
Manning's n	0.240
Slope	0.070 ft/ft
2 Year 24 Hour Depth	3.4 in
Average Velocity	0.20 ft/s
Segment Time of Concentration	0.140 hours
Segment #2: TR-55 Shallow Conce	ntrated Flow
Hydraulic Length	24.00 ft
Is Paved?	False
Slope	0.042 ft/ft
Average Velocity	3.31 ft/s
Segment Time of Concentration	0.002 hours
Segment #3: TR-55 Channel Flow	
Flow Area	0.2 ft²
Hydraulic Length	233.00 ft
Manning's n	0.012
Slope	0.030 ft/ft
Wetted Perimeter	0.79 ft
Average Velocity	8.53 ft/s
Segment Time of Concentration	0.008 hours
Time of Concentration (Composite)	
Time of Concentration (Composite)	0.149 hours

Return Event: 100 years

Storm Event: 100 Year

Subsection: Time of Concentration Calculations Return Event: 100 years

Label: PDA-1B Storm Event: 100 Year

Scenario: 4 Tripp Street - Synthetic Curve, 100 yrs

==== SCS Channel Flow

Tc = R = Qa / Wp

V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

(Lf / V) / 3600

Where: R= Hydraulic radius

Aq= Flow area, square feet Wp= Wetted perimeter, feet

V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n

Tc= Time of concentration, hours

Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc = Unpaved surface:

V = 16.1345 * (Sf**0.5)

Paved Surface:

V = 20.3282 * (Sf**0.5)

(Lf / V) / 3600

Where: V= Velocity, ft/sec

Sf= Slope, ft/ft

Tc= Time of concentration, hours

Lf= Flow length, feet

==== SCS TR-55 Sheet Flow

 $Tc = \frac{(0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4))}{((P**0.5) * (Sf**0.4))}$

Where: Tc= Time of concentration, hours

n= Manning's n Lf= Flow length, feet

P= 2yr, 24hr Rain depth, inches

Sf= Slope, %

Subsection: Runoff CN-Area Return Event: 100 years Label: PDA-1 Storm Event: 100 Year

Scenario: 4 Tripp Street - Synthetic Curve, 100 yrs

Runoff Curve Number Data

Soil/Surface Description	CN	Area (ft²)	C (%)	UC (%)	Adjusted CN
Open space (Lawns,parks etc.) - Good condition; grass cover > 75% - Soil C	74.000	55,562.000	0.0	0.0	74.000
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	327.000	0.0	0.0	98.000
Woods - good - Soil C	70.000	5,034.000	0.0	0.0	70.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	60,923.000	(N/A)	(N/A)	73.798

Subsection: Runoff CN-Area Return Event: 100 years
Label: PDA-1A Storm Event: 100 Year

Scenario: 4 Tripp Street - Synthetic Curve, 100 yrs

Runoff Curve Number Data

Soil/Surface Description	CN	Area (ft²)	C (%)	UC (%)	Adjusted CN
Open space (Lawns,parks etc.) - Good condition; grass cover > 75% - Soil C	74.000	2,401.000	0.0	0.0	74.000
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	3,521.000	0.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	5,922.000	(N/A)	(N/A)	88.270

Subsection: Runoff CN-Area Return Event: 100 years
Label: PDA-1B Storm Event: 100 Year

Scenario: 4 Tripp Street - Synthetic Curve, 100 yrs

Runoff Curve Number Data

Soil/Surface Description	CN	Area (ft²)	C (%)	UC (%)	Adjusted CN
Open space (Lawns,parks etc.) - Good condition; grass cover > 75% - Soil C	74.000	12,539.000	0.0	0.0	74.000
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	8,356.000	0.0	0.0	98.000
Woods - good - Soil C	70.000	2,080.000	0.0	0.0	70.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	22,975.000	(N/A)	(N/A)	82.367

Subsection: Storage Chamber System

Return Event: 100 years Label: PO-2 Storm Event: 100 Year

Scenario: 4 Tripp Street - Synthetic Curve, 100 yrs

Storage Chamber	_	_	
ID	130	Notes	Created on 02/10/2010. Please check with the manufacturer for the latest data.
Label	SC-740 Chamber		
Storage Chamber			
Effective Length	7.12 ft	Manufacturer	StormTech
Section Length Varies?	False	Default Spacing	0.50 ft

Depth-Incremental Volume Per Unit Length Curve

Depth	Incremental Volume Per Unit
(ft)	Length
	(ft³/ft)
0.08	0.31
0.17	0.31
0.25	0.31
0.33	0.30
0.42	0.30
0.50	0.30
0.58	0.29
0.67	0.29
0.75	0.28
0.83	0.28
0.92	0.27
1.00	0.27
1.08	0.26
1.17	0.25
1.25	0.25
1.33	0.24
1.42	0.23
1.50	0.22
1.58	0.21
1.67	0.20
1.75	0.19
1.83	0.18
1.92	0.17
2.00	0.15
2.08	0.13
2.17	0.11
2.25	0.09
=	•

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Storage Chamber System

Label: PO-2

Scenario: 4 Tripp Street - Synthetic Curve, 100 yrs **Depth-Incremental Volume Per Unit Length Curve**

Depth (ft)		Incremental Volume Per Unit Length (ft³/ft)
	2.33	0.04
	2.42	0.02
	2.50	0.01

Storage Chamber			
Storage Chamber Type	Incremental Volume Per Unit Length	Maximum Width	4.25 ft
Storage Chamber (Pond)			
Chamber System Invert	579.25 ft		
Chamber System Rows	13		
Chambers per Row	2		
Chamber System Fill Void Space	40.0 %		
Chamber System Row Spacing	6.0 in		
Chamber System Side Fill	6.0 in		
Chamber System Fill Cover Depth	12.0 in		
Chamber System Fill Base Depth	12.0 in		
Chamber System Fill Side Slope	0.000 H:V		
Chamber System End Fill	6.0 in		
Chamber System Includes Header?	False		

Subsection: Outlet Input Data

Return Event: 100 years

Label: OCS

Storm Event: 100 Year

Scenario: 4 Tripp Street - Synthetic Curve, 100 yrs

Requested Pond Water Surface Elevations		
Minimum (Headwater)	579.25 ft	
Increment (Headwater)	0.50 ft	
Maximum (Headwater)	583.75 ft	

Outlet Connectivity

Return Event: 100 years

Storm Event: 100 Year

Subsection: Outlet Input Data

Return Event: 100 years

Label: OCS

Storm Event: 100 Year

Scenario: 4 Tripp Street - Synthetic Curve, 100 yrs

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1	E2
				(ft)	(ft)
Orifice-Circular	Orifice - 1	Forward	C0	582.20	583.75
Rectangular Weir	Weir - 1	Forward	C0	583.75	583.75
Culvert-Circular	C0	Forward	TW	581.50	583.75
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data

Return Event: 100 years Label: OCS Storm Event: 100 Year

Scenario: 4 Tripp Street - Synthetic Curve, 100 yrs

an and the same and the same same same	
Structure ID: C0 Structure Type: Culvert-Circular	
Number of Barrels	1
Diameter	12.0 in
Length	49.00 ft
Length (Computed Barrel)	49.00 ft
Slope (Computed)	0.010 ft/ft
Outlet Control Data	
Manning's n	0.012
Ke	0.500
Kb	0.027
Kr	0.000
Convergence Tolerance	0.00 ft
Inlet Control Data	
Equation Form	Form 1
K	0.0078
М	2.0000
6	0.0270

Equation Form	Form 1
K	0.0078
M	2.0000
С	0.0379
Υ	0.6900
T1 ratio (HW/D)	1.131
T2 ratio (HW/D)	1.291
Slope Correction Factor	-0.500

Use unsubmerged inlet control 0 equation below T1 elevation.

Use submerged inlet control 0 equation above T2 elevation

In transition zone between unsubmerged and submerged inlet control,

interpolate between flows at T1 & T2...

T1 Elevation	582.63 ft	T1 Flow	2.75 ft³/s
T2 Elevation	582.79 ft	T2 Flow	3.14 ft ³ /s

Subsection: Outlet Input Data

Label: OCS

Scenario: 4 Tripp Street - Synthetic Curve, 100 yrs

Structure ID: Weir - 1 Structure Type: Rectangular Weir	
Number of Openings	1
Elevation	583.75 ft
Weir Length	1.50 ft
Weir Coefficient	3.00 (ft^0.5)/s
Structure ID: Orifice - 1 Structure Type: Orifice-Circular	
Number of Openings	1
Elevation	582.20 ft
Orifice Diameter	12.0 in
Orifice Coefficient	0.600
Structure ID: TW Structure Type: TW Setup, DS Cha	annel
Tailwater Type	Free Outfall

Tailwater Type	Free Outfall
Convergence Tolerances	
Maximum Iterations	30
Tailwater Tolerance (Minimum)	0.01 ft
Tailwater Tolerance (Maximum)	0.50 ft
Headwater Tolerance (Minimum)	0.01 ft
Headwater Tolerance (Maximum)	0.50 ft
Flow Tolerance (Minimum)	0.001 ft ³ /s
Flow Tolerance (Maximum)	10.000 ft ³ /s

Return Event: 100 years Storm Event: 100 Year

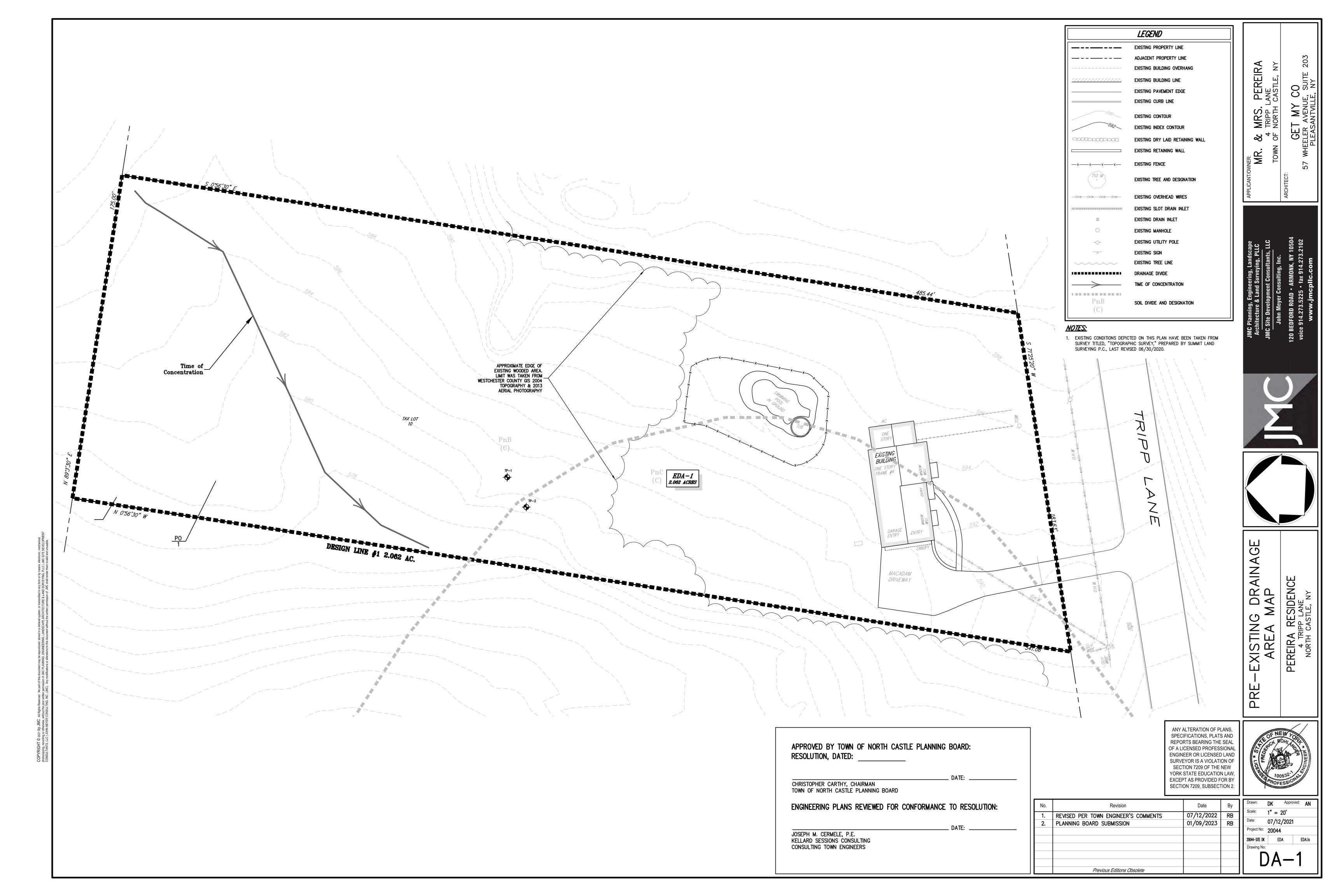
Subsection: Elevation-Volume-Flow Table (Pond)

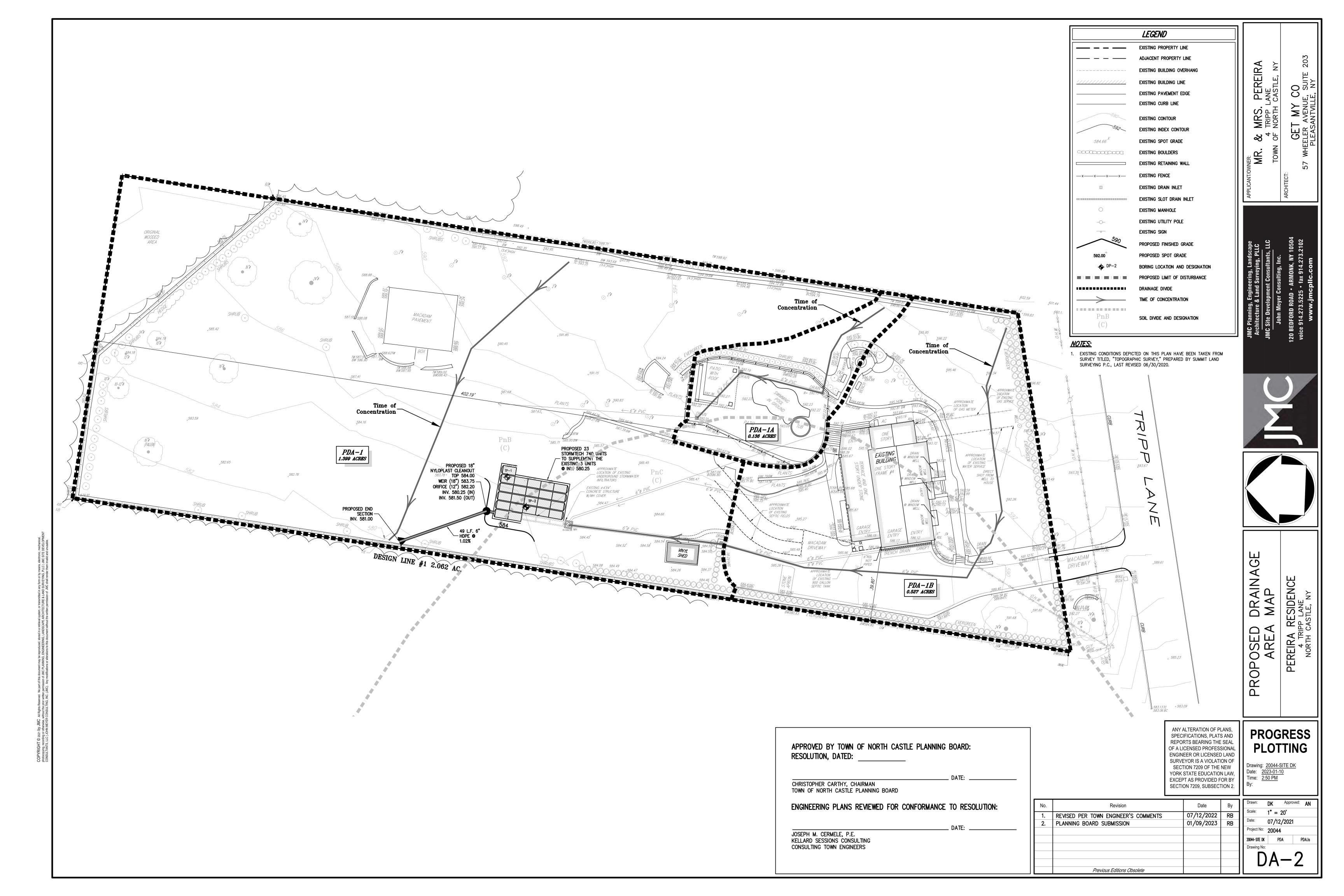
Label: PO-2

Scenario: 4 Tripp Street - Synthetic Curve, 100 yrs

See a second contract of the second contract	the grant and the second of th
Infiltration	
Infiltration Method (Computed)	Average Infiltration Rate
Infiltration Rate (Average)	28.0000 in/h
Initial Conditions	
Elevation (Water Surface, Initial)	579.25 ft
Volume (Initial)	0.000 ft ³
Flow (Initial Outlet)	0.00 ft ³ /s
Flow (Initial Infiltration)	0.00 ft ³ /s
Flow (Initial, Total)	0.00 ft ³ /s
Time Increment	0.050 hours

Elevation (ft)	Outflow (ft³/s)	Storage (ft³)	Area (ft²)	Infiltration (ft³/s)	Flow (Total) (ft³/s)	2S/t + O (ft³/s)
579.25	0.00	0.000	948.690	0.00	0.00	0.00
579.75	0.00	189.738	948.690	0.61	0.61	2.72
580.25	0.00	379.476	948.690	0.61	0.61	4.83
580.75	0.00	771.809	948.690	0.61	0.61	9.19
581.25	0.00	1,147.815	948.690	0.61	0.61	13.37
581.50	0.00	1,323.322	948.690	0.61	0.61	15.32
581.75	0.00	1,498.830	948.690	0.61	0.61	17.27
582.20	0.00	1,779.855	948.690	0.61	0.61	20.39
582.25	0.01	1,811.080	948.690	0.61	0.62	20.75
582.75	0.91	2,045.580	948.690	0.61	1.53	24.26
583.25	2.78	2,235.318	948.690	0.61	3.39	28.23
583.75	3.45	2,425.056	948.690	0.61	4.07	31.01


Return Event: 100 years


Storm Event: 100 Year

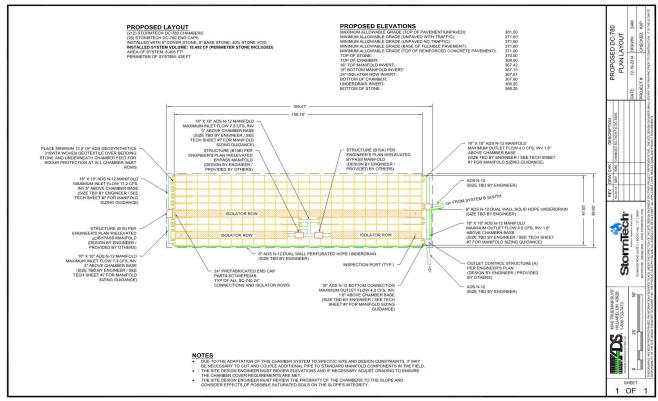
Index

Armonk (Time-Depth Curve, 100 years (4 Tripp Street - Synthetic Curve, 100 yrs))...2, 3 Μ Master Network Summary...1 0 OCS (Outlet Input Data, 100 years (4 Tripp Street - Synthetic Curve, 100 yrs))...12, 13, 14, 15 Ρ PDA-1 (Runoff CN-Area, 100 years (4 Tripp Street - Synthetic Curve, 100 yrs))...8 PDA-1 (Time of Concentration Calculations, 100 years (4 Tripp Street - Synthetic Curve, 100 yrs))...4, 5 PDA-1A (Runoff CN-Area, 100 years (4 Tripp Street - Synthetic Curve, 100 yrs))...9 PDA-1B (Runoff CN-Area, 100 years (4 Tripp Street - Synthetic Curve, 100 yrs))...10 PDA-1B (Time of Concentration Calculations, 100 years (4 Tripp Street - Synthetic Curve, 100 yrs))...6, 7 PO-2 (Elevation-Volume-Flow Table (Pond), 100 years (4 Tripp Street - Synthetic Curve, 100 yrs))...16 PO-2 (Storage Chamber System, 100 years (4 Tripp Street - Synthetic Curve, 100 yrs))...11, 12

APPENDIX C DRAWINGS

APPENDIX D

STORMTECH MODEL SC-740 DETENTION SYSTEM MAINTENANCE SHEETS


Table of Contents

1

1.0	Introduction	2
2.0	Product Information	3
3.0	Structural Capabilities	
4.0	Foundation for Chambers	
5.0	Cumulative Storage Volumes	10
6.0	Required Materials and Row Separation	12
7.0	Inletting the Chambers	13
8.0	Outlets for Chambers	
9.0	Other Considerations	17
10.0	System Sizing	18
	Detail Drawings	
	Inspection and Maintenance	
	General Notes	
14.0	StormTech Product Specifications	25
15.0	Chamber Specifications for Contract Documents	26

The StormTech Technical Services Department assists design professionals in specifying StormTech stormwater systems. This assistance includes the layout of chambers to meet the engineer's volume requirements and the connections to and from the chambers. The Technical Department can also assist converting and cost engineering projects currently specified with ponds, pipe, concrete and other manufactured stormwater detention/retention products. Please note that it is the responsibility of the design engineer to ensure that the chamber bed layout meets all design requirements and is in compliance with applicable laws and regulations governing this project.

This manual is exclusively intended to assist engineers in the design of subsurface stormwater systems using StormTech chambers.

^{*} For MC-3500 and MC-4500 designs, please refer to the MC-3500/MC-4500 Design Manual

1.0 Introduction

1.1 INTRODUCTION

StormTech stormwater management systems allow stormwater professionals to create more profitable, environmentally sound developments. Compared with other subsurface systems, StormTech systems offer lower overall installed cost, superior design flexibility and enhanced performance. Applications include commercial, residential, agricultural and highway drainage.

StormTech has invested over \$10 million and many years in the development of StormTech chambers. These innovative products exceed the rigorous requirements of the standards governing the design of thermoplastic structures.

1.2 THE GOLD STANDARD IN STORMWATER MANAGEMENT

The advanced designs of StormTech chambers were created by implementing an aggressive research, development, design and manufacturing protocol. StormTech chamber products establish the new gold standard in stormwater management through:

- Collaborations with experts in the field of buried plastic structures and polyolefin materials
- The development and utilization of new testing methods and proprietary test methods
- The use of thermoformed prototypes to verify engineering models, perform in-ground testing and install observation sites
- The investment in custom-designed, injection molding equipment
- The utilization of polypropylene and polyethylene as manufacturing materials
- The design of molded-in features not possible with traditional thermoformed chambers

Section 3.0 of this design manual, *Structural Capabilities*, provides a detailed description of the research, development and design process.

Many of StormTech's unique chamber features can benefit a site developer, stormwater system designer, and installer. Where applicable, StormTech Product Specifications are referenced throughout this design manual. If StormTech's unique product benefits are important to a stormwater system design, consider including the applicable StormTech Product Specifications on the site plans. This can prevent substitutions with inferior products. Refer to Section 14.0, StormTech Product Specifications.

1.3 PRODUCT QUALITY AND DESIGN TO INTERNATIONAL STANDARDS

StormTech chambers are designed to meet the full scope of design requirements of Section 12.12 of the AASHTO LRFD Bridge Design Specifications and produced to the requirements of the American Society of Testing Materials

(ASTM) International specifications F2418 (polypropylene chambers) and F2922 (polyethylene chambers).

StormTech chambers provide the full AASHTO safety factors for live loads and permanent earth loads. The two ASTM standards mentioned previously are linked to the AASHTO LRFD Bridge Design Specifications Section 12.12 design standard. Both ASTM standards require that the safety factors included in the AASHTO guidance are achieved as a prerequisite to meeting either ASTM F2418 or ASTM F2922. StormTech chambers are also designed in accordance with ASTM F2787, "Standard Practice for Structural Design of Thermoplastic Corrugated Wall Stormwater Collection Chambers" which provides specific guidance on how to design thermoplastic chambers in accordance with AASHTO Section 12.12. These standards provide both the assurance of product quality and safe structural design.

For non-proprietary specifications for public bids that ensure high product quality and safe design, consider including the specification in Section 15.0 Chamber Specifications for Contract Documents.

1.4 TECHNICAL SUPPORT FOR PLAN REVIEWS

StormTech's in-house technical support staff is available to review proposed plans that incorporate StormTech chamber systems. They are also available to assist with plan conversions from existing products to StormTech. Not all plan sheets are necessary for StormTech's review. Required sheets include plan view sheet(s) with design contours, cross sections of the stormwater system including catch basins and drainage details.

When specifying StormTech chambers it is recommended that the following items are included in project plans: StormTech chamber system General Notes, applicable StormTech chamber illustrations and StormTech chamber system Product Specifications. These items are available in various formats and can be obtained by contacting StormTech at **1-860-529-8188** or may be downloaded at **www.stormtech.com**.

StormTech's plan review is limited to the sole purpose of determining whether plans meet StormTech chamber systems' minimum requirements. It is the ultimate responsibility of the design engineer to assure that the stormwater system's design is in full compliance with all applicable laws and regulations. StormTech products must be designed and installed in accordance with StormTech's minimum requirements.

SEND PLANS TO:

StormTech, Plan Review, 70 Inwood Road, Suite 3, Rocky Hill, CT 06067 E-mail: info@stormtech.com. File size should not exceed 10 MB.

2.0 Product Information

2.1 PRODUCT APPLICATIONS

StormTech chamber systems may function as stormwater detention, retention, first-flush storage, or some combination of these. The StormTech chambers can be used for commercial, municipal, industrial, recreational, and residential applications especially for installations under parking lots and commercial roadways.

One of the key advantages of the StormTech chamber system is its design flexibility. Chambers may be configured into beds or trenches of various sizes or shapes. They can be centralized or decentralized, and fit on nearly all sites. Chamber lengths enhance the ability to develop on both existing and pre-developed projects. The systems can be designed easily and efficiently around utilities, natural or man-made structures and any other limiting boundaries.

2.2 CHAMBERS FOR STORMWATER DETENTION

Chamber systems have been used effectively for stormwater detention for over 15 years. A detention system temporarily holds water while it is released at a defined rate through an outlet. While some infiltration may occur in a detention system, it is often considered an environmental benefit and a storage safety factor. Over 70% of StormTech's installations are non-watertight detention systems. There are only a few uncommon situations where a detention system might need to limit infiltration: the subgrade soil's bearing capacity is significantly affected by saturation such as with expansive clays or karst soils, and; in sensitive aguifer areas where the depth to groundwater does not meet local guidelines. Adequate pretreatment could eliminate concerns for the latter case. A thermoplastic liner may be considered for both situations to limit infiltration.

2.3 STONE POROSITY ASSUMPTION

A StormTech chamber system requires the application of clean, crushed, angular stone below, between and above the chambers. This stone serves as a structural component while allowing conveyance and storage of stormwater. Storage volume examples throughout this Design Manual are calculated with an assumption that the stone has an industry standard porosity of 40%. Actual stone porosity may vary. Contact StormTech for information on calculating stormwater volumes with varying stone porosity assumptions.

2.4 CHAMBER SELECTION

Primary considerations when selecting between the SC-310[™], SC-740[™] and DC-780[™] chambers are the depth to restrictive layer, available area for subsurface storage, cover height and outfall restrictions.

The StormTech SC-310 chamber shown on page 4 is ideal for systems requiring low-rise and wide-span solutions. This low profile chamber allows the storage of large volumes, 1.3 ft³/ft² (0.40 m³/m²) [minimum], at minimum depths.

The SC-310 and SC-740 chambers and end plates.

StormTech systems can be integrated into retrofit and new construction projects.

Like the Stormtech SC-310, the StormTech SC-310-3 found on page 6 allows for a design option for sites with both limited cover and limited space. With only 3" of spacing between the chambers, the SC-310-3 still provides 1.3 ft³/ft² (0.40 m³/m²) [minimum] of storage.

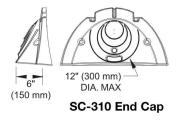
The StormTech SC-740 chamber shown on page 8 optimizes storage volumes in relatively small footprints. By providing 2.2 ft³/ft² (0.67 m³/m²) [minimum] of storage, the SC-740 chambers can minimize excavation, backfill and associated costs.

The DC-780 chamber shown on page 10 has been developed for those applications which exceed the maximum 8 ft (2.44 m) burial depth of the SC-740 and SC-310 chambers. The DC-780 is a modified version of the SC-740 allowing it to reach a maximum burial depth of 12 ft (3.66 m). The design of the DC-780 chamber, like other StormTech chambers, is designed and manufactured in accordance with the AASHTO LRFD Bridge Design Specifications as well as ASTM F 2418 and ASTM F 2787 ensuring structural adequacy for deeper systems.

The end corrugations of the DC-780 chamber have not been modified in order to allow connections to the SC-740 chamber. This will allow hybrid systems utilizing both chambers in one system design.

StormTech SC-310 Chamber

Designed to meet the most stringent industry performance standards for superior structural integrity while providing designers with a cost-effective method to save valuable land and protect water resources. The StormTech system is designed primarily to be used under parking lots thus maximizing land usage for commercial and municipal applications.

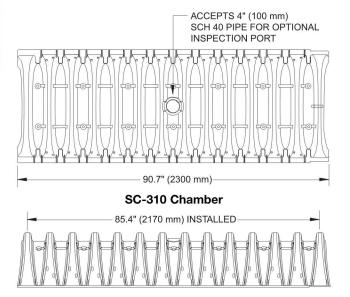


Shipping

41 chambers/pallet

108 end caps/pallet

18 pallets/truck



StormTech SC-310 Chamber (not to scale)

Nominal Chamber Specifications

Size (L x W x H)	85.4" x 34.0" x 16.0" (2170 x 864 x 406 mm)
Chamber Storage	14.7 ft³ (0.42 m³)
Min. Installed Storage*	31.0 ft³ (0.88 m³)
Weight	37.0 lbs (16.8 kg)

^{*}Assumes 6" (150 mm) stone above, below and between chambers and 40% stone porosity.

StormTech SC-310 Chamber

SC-310 Cumulative Storage Volumes Per Chamber

Assumes 40% Stone Porosity. Calculations are Based Upon a 6" (150 mm) Stone Base Under the Chambers.

Depth of Water	Cumulative	Total System
in System	Chamber Storage	Cumulative Storage
Inches (mm)	ft³ (m³)	ft³ (m³)
28 (711)	14.70 (0.416)	31.00 (0.878)
27 (686)	14.70 (0.416)	30.21 (0.855)
26 (680)	Stone 14.70 (0.416)	29.42 (0.833)
25 (610)	Cover 14.70 (0.416)	28.63 (0.811)
24 (609)	1 14.70 (0.416)	27.84 (0.788)
23 (584)	14.70 (0.416)	27.05 (0.766)
22 (559)	14.70 (0.416)	26.26 (0.748)
21 (533)	14.64 (0.415)	25.43 (0.720)
20 (508)	14.49 (0.410)	24.54 (0.695)
19 (483)	14.22 (0.403)	23.58 (0.668)
18 (457)	13.68 (0.387)	22.47 (0.636)
17 (432)	12.99 (0.368)	21.25 (0.602)
16 (406)	12.17 (0.345)	19.97 (0.566)
15 (381)	11.25 (0.319)	18.62 (0.528)
14 (356)	10.23 (0.290)	17.22 (0.488)
13 (330)	9.15 (0.260)	15.78 (0.447)
12 (305)	7.99 (0.227)	14.29 (0.425)
11 (279)	6.78 (0.192)	12.77 (0.362)
10 (254)	5.51 (0.156)	11.22 (0.318)
9 (229)	4.19 (0.119)	9.64 (0.278)
8 (203)	2.83 (0.081)	8.03 (0.227)
7 (178)	1.43 (0.041)	6.40 (0.181)
6 (152)	• 0	4.74 (0.134)
5 (127)	0	3.95 (0.112)
4 (102)	Ctone Foundation	3.16 (0.090)
3 (76)	Stone Foundation 0	2.37 (0.067)
2 (51)	0	1.58 (0.046)
1 (25)	▼ 0	0.79 (0.022)

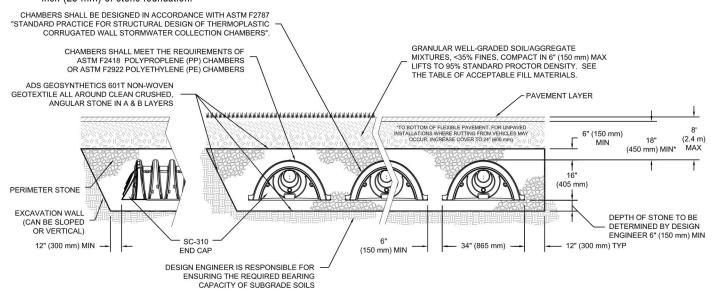
Note: Add 0.79 cu. ft. $(0.022 \ m^3)$ of storage for each additional inch (25 mm) of stone foundation.

Storage Volume Per Chamber ft³ (m³)

	Bare Chamber Storage	Chamber and Stone Stone Foundation Depth in. (mm)				
	ft³ (m³)	6 (150)	12 (300)	18 (450)		
StormTech SC-310	14.7 (0.4)	31.0 (0.9)	35.7 (1.0)	40.4 (1.1)		

Note: Assumes 6" (150 mm) of stone above chambers, 6" (150 mm) row spacing and 40% stone porosity.

Amount of Stone Per Chamber


	Stone Foundation Depth							
ENGLISH TONS (yds3)	6"	12"	18"					
StormTech SC-310	2.1 (1.5 yd³)	2.7 (1.9 yd³)	3.4 (2.4 yd³)					
METRIC KILOGRAMS (m³)	150 mm	300 mm	450 mm					
StormTech SC-310	1830 (1.1 m³)	2490 (1.5 m³)	2990 (1.8 m³)					

Note: Assumes 6" (150 mm) of stone above, and between chambers.

Volume of Excavation Per Chamber yd3 (m3)

	Ston	e Foundation [)epth				
	6" (150 mm) 12" (300 mm) 18" (450 r						
StormTech SC-310	2.9 (2.2)	3.4 (2.6)	3.8 (2.9)				

Note: Assumes 6" (150 mm) of row separation and 18" (450 mm) of cover. The volume of excavation will vary as the depth of the cover increases.

THE INSTALLED CHAMBER SYSTEM SHALL PROVIDE THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS SECTION 12.12 FOR EARTH AND LIVE LOADS, WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.

StormTech SC-310-3 Chamber

The proven strength and durability of the SC-310-3 Chamber allows for a design option for sites where limited cover, limited space, high water table and escalated aggregate cost are a factor. The SC-310-3 has a minimum cover requirement of 16" (400 mm) to bottom of pavement and reduces the spacing requirement between chambers by 50% to 3" (76 mm). This provides a reduced footprint overall and allows the designer to offer a traffic bearing application yet comply with water table separation regulations.

ACCEPTS 4" (100 mm)

SCH 40 PIPE FOR OPTIONAL INSPECTION PORT

StormTech SC-310-3 Chamber (not to scale)

Nominal Chamber Specifications

 Size (L x W x H)
 85.4" x 34.0" x 16.0" (2170 x 864 x 406 mm)

 Chamber Storage
 14.7 ft³ (0.42 m³)

 Min. Installed Storage*
 29.3 ft³ (0.83 m³)

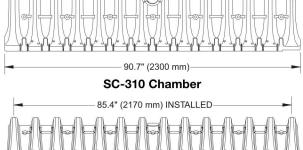
16.0" (400 mm)

Weight 37.0 lbs (16.8 kg)

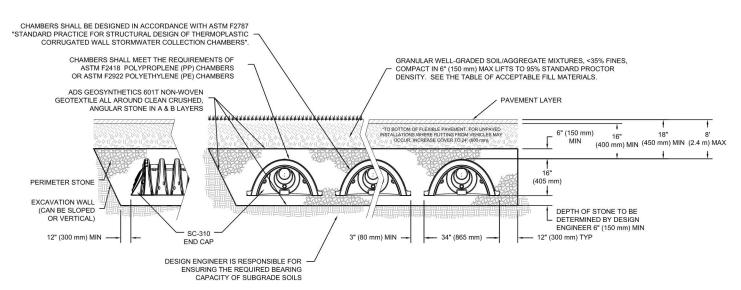
*Assumes 6" (150 mm) stone above

*Assumes 6" (150 mm) stone above and below chambers, 3" (76 mm) row spacing and 40% stone porosity.

Shipping


41 chambers/pallet

108 end caps/pallet


18 pallets/truck

12" (300 mm) DIA. MAX SC-310 End Cap

34.0" (864 mm)

Typical Cross Section Detail

THE INSTALLED CHAMBER SYSTEM SHALL PROVIDE THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS SECTION 12.12 FOR EARTH AND LIVE LOADS, WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.

StormTech SC-310-3 Chamber

SC-310-3 Cumulative Storage Volume Per Chamber

Assumes 40% Stone Porosity. Calculations are Based Upon a 6" (150 mm) Stone Base Under the Chambers.

Depth of Water in System Inches (mm)	Cumulative Chamber Storage ft³ (m³)	Total System Cumulative Storage ft³ (m³)
28 (711)	1 4.7 (0.416)	29.34 (0.831)
27 (686)	14.7 (0.416)	28.60 (0.810)
26 (660)	Stone 14.7 (0.416)	27.87 (0.789)
25 (635)	Cover 14.7 (0.416)	27.14 (0.769)
24 (610)	14.7 (0.416)	26.41 (0.748)
23 (584)	14.7 (0.416)	25.68 (0.727)
22 (559)	14.7 (0.416)	24.95 (0.707)
21 (533)	14.64 (0.415)	24.18 (0.685)
20 (508)	14.49 (0.410)	23.36 (0.661)
19 (483)	14.22 (0.403)	22.47 (0.636)
18 (457)	13.68 (0.387)	21.41 (0.606)
17 (432)	12.99 (0.368)	20.25 (0.573)
16 (406)	12.17 (0.345)	19.03 (0.539)
15 (381)	11.25 (0.319)	17.74 (0.502)
14 (356)	10.23 (0.290)	16.40 (0.464)
13 (330)	9.15 (0.260)	15.01 (0.425)
12 (305)	7.99 (0.226)	13.59 (0.385)
11 (279)	6.78 (0.192)	12.13 (0.343)
10 (254)	5.51 (0.156)	10.63 (0.301)
9 (229)	4.19 (0.119)	9.11 (0.258)
8 (203)	2.83 (0.080)	7.56 (0.214)
7 (178)	1.43 (0.040)	5.98 (0.169)
6 (152)	A 0	4.39 (0.124)
5 (127)	0	3.66 (0.104)
4 (102)	Stone Foundation 0	2.93 (0.083)
3 (76)	0	2.19 (0.062)
2 (51)	0	1.46 (0.041)
1 (25)	∀ 0	0.73 (0.021)

Note: Add 0.73 ft 3 (0.021 m 3) of storage for each additional inch (25 mm) of stone foundation.

Storage Volume per Chamber ft³ (m³)

	Bare Chamber Storage		r and Stone Foundation in. (mm)	
	ft³ (m³)	6 (150)	12 (300)	18 (450)
SC-310-3	14.7 (0.42)	29.3 (0.83)	33.7 (0.95)	38.1 (1.08)

Note: Assumes 6" (150 mm) of stone above chambers, 3" (76 mm) row spacing and 40% stone porosity.

Volume of Excavation Per Chamber yd3 (m3)

	Stone Foundation Depth					
	6" (150)	12" (300)	18" (450)			
SC-310-3	2.6 (2.0)	3.0 (2.3)	3.4 (2.6)			

Note: Assumes 3" (76 mm) of row separation, 6" (150 mm) of stone above the chambers and 16" (400 mm) of cover. The volume of excavation will vary as depth of cover increases.

Amount of Stone Per Chamber

	Stone Foundation Depth							
ENGLISH TONS (yd ³)	6"	12"	18"					
SC-310-3	1.9 (1.4)	2.5 (1.8)	3.1 (2.2)					
METRIC KILOGRAMS (m ³)	150 mm	300 mm	450 mm					
SC-310-3	1724 (1.0)	2268 (1.3)	2812 (1.7)					

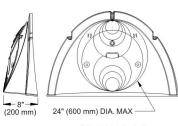
Note: Assumes 6" (150 mm) of stone above chambers and 3" (76 mm) row spacing.

	Minin	num R	equire	d Bear	ing Re	sistan	ce for	Servio	e Loa	ds ksf	(kPa)
Cover	3.0	2.9	2.8	2.7	2.6	2.5	2.4	2.3	2.2	2.1	2.0
ft (m)	(144)	(139)	(134)	(129)	(124)	(120)	(115)	(110)	(105)	(101)	(96)
1.5 (0.46)	6 (152)	9 (229)	9 (229)	9 (229)	9 (229)	9 (229)	12 (305)	12 (305)	12 (305)	15 (381)	15 (381)
2 (0.61)	6 152)	6 (152)	9 (229)	9 (229)	9 (229)	9 (229)	12 (305)	12 (305)	12 (305)	15 (381)	15 (381)
2.5 (0.76)	6 (152)	6 (152)	6 (152)	6 (152)	6 (152)	9 (229)	9 (229)	9 (229)	12 (305)	12 (305)	12 (305)
3 (0.91)	6 (152)	6 (152)	6 (152)	6 (152)	6 (152)	6 (152)	9 (229)	9 (229)	9 (229)	9 (229)	12 (305)
3.5 (1.07)	6 (152)	9 (229)	9 (229)	9 (229)	12 (305)						
4 (1.22)	6 152)	6 (152)	6 (152)	6 (152)	6 (152)	6 (152)	6 (152)	9 (229)	9 (229)	9 (229)	9 (229)
4.5 (1.37)	6 152)	6 (152)	6 (152)	6 (152)	6 (152)	6 (152)	6 (152)	6 (152)	9 (229)	9 (229)	9 (229)
5 (1.52)	6 (152)	9 (229)	9 (229)	9 (229)	9 (229)						
5.5 (1.68)	6 (152)	9 (229)	9 (229)	9 (229)	12 (305)						
6 (1.83)	6 (152)	6 (152)	6 (152)	6 (152)	6 (152)	6 (152)	9 (229)	9 (229)	9 (229)	9 (229)	12 (305)
6.5 (1.98)	6 (152)	6 (152)	6 (152)	6 (152)	6 (152)	6 (152)	9 (229)	9 (229)	9 (229)	12 (305)	12 (305)
7 (2.13)	6 (152)	6 (152)	6 (152)	6 (152)	6 (152)	9 (229)	9 (229)	9 (229)	9 (229)	12 (305)	12 (305)
7.5 (2.29)	6 (152)	6 (152)	6 (152)	6 (152)	9 (229)	9 (229)	9 (229)	9 (229)	12 (305)	12 (305)	12 (305)
8 (2.44)	6 (152)	6 (152)	6 (152)	9 (229)	9 (229)	9 (229)	9 (229)	12 (305)	12 (305)	12 (305)	15 (381)

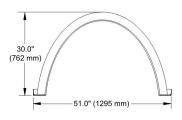
NOTE: The design engineer is solely responsible for assessing the bearing resistance (allowable bearing capacity) of the subgrade soils and determining the depth of foundation stone. Subgrade bearing resistance should be assessed with consideration for the range of soil moisture conditions expected under a stormwater system.

StormTech SC-740 Chamber

Designed to meet the most stringent industry performance standards for superior structural integrity while providing designers with a cost-effective method to save valuable land and protect water resources. The StormTech system is designed primarily to be used under parking lots thus maximizing land usage for commercial and municipal applications.



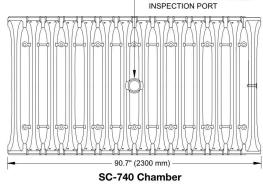
Shipping


30 chambers/pallet

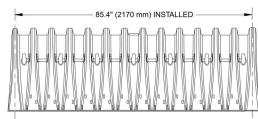
60 end caps/pallet

12 pallets/truck

SC-740 End Cap



StormTech SC-740 Chamber (not to scale)


Nominal Chamber Specifications

Size (L x W x H)	85.4" x 51.0" x 30.0" (2170 x 1295 x 762 mm)
Chamber Storage	45.9 ft³ (1.30 m³)
Min. Installed Storage*	74.9 ft³ (2.12 m³)
Weight	74.0 lbs (33.6 kg)

*Assumes 6" (150 mm) stone above, below and between chambers and 40% stone porosity.

ACCEPTS 4" (100 mm) SCH 40 PIPE FOR OPTIONAL

StormTech SC-740 Chamber

SC-740 Cumulative Storage Volumes Per Chamber

Assumes 40% Stone Porosity. Calculations are Based Upon a 6" (150 mm) Stone Base Under the Chambers.

Depth of Water	Cumulative	Total System
in System	Chamber Storage	Cumulative Storage
Inches (mm)	Ft³ (m³)	Ft³ (m³)
42 (1067)	▲ 45.90 (1.300)	74.90 (2.121)
41 (1041)	45.90 (1.300)	73.77 (2.089)
40 (1016)	Stone 45.90 (1.300)	72.64 (2.057)
39 (991)	Cover 45.90 (1.300)	71.52 (2.025)
38 (965)	45.90 (1.300)	70.39 (1.993)
37 (948)	4 5.90 (1.300)	69.26 (1.961)
36 (914)	45.90 (1.300)	68.14 (1.929)
35 (889)	45.85 (1.298)	66.98 (1.897)
34 (864)	45.69 (1.294)	65.75 (1.862)
33 (838)	45.41 (1.286)	64.46 (1.825)
32 (813)	44.81 (1.269)	62.97 (1.783)
31 (787)	44.01 (1.246)	61.36 (1.737)
30 (762)	43.06 (1.219)	59.66 (1.689)
29 (737)	41.98 (1.189)	57.89 (1.639)
28 (711)	40.80 (1.155)	56.05 (1.587)
27 (686)	39.54 (1.120)	54.17 (1.534)
26 (660)	38.18 (1.081)	52.23 (1.479)
25 (635)	36.74 (1.040)	50.23 (1.422)
24 (610)	35.22 (0.977)	48.19 (1.365)
23 (584)	33.64 (0.953)	46.11 (1.306)
22 (559)	31.99 (0.906)	44.00 (1.246)
21 (533)	30.29 (0.858)	41.85 (1.185)
20 (508)	28.54 (0.808)	39.67 (1.123)
19 (483)	26.74 (0.757)	37.47 (1.061)
18 (457)	24.89 (0.705)	35.23 (0.997)
17 (432)	23.00 (0.651)	32.96 (0.939)
16 (406)	21.06 (0.596)	30.68 (0.869)
15 (381)	19.09 (0.541)	28.36 (0.803)
14 (356)	17.08 (0.484)	26.03 (0.737)
13 (330)	15.04 (0.426)	23.68 (0.670)
12 (305)	12.97 (0.367)	21.31 (0.608)
11 (279)	10.87 (0.309)	18.92 (0.535)
10 (254)	8.74 (0.247)	16.51 (0.468)
9 (229)	6.58 (0.186)	14.09 (0.399)

SC-740 Cumulative Storage Volumes Per Chamber (cont.)

Depth of Water in System Inches (mm)	Cumulative Chamber Storage Ft³ (m³)	Total System Cumulative Storage Ft³ (m³)
8 (203)	4.41 (0.125)	11.66 (0.330)
7 (178)	2.21 (0.063)	9.21 (0.264)
6 (152)	A 0	6.76 (0.191)
5 (127)	0	5.63 (0.160)
4 (102)	Stone Foundation 0	4.51 (0.125)
3 (76)	0	3.38 (0.095)
2 (51)	0	2.25 (0.064)
1 (25)	∀ 0	1.13 (0.032)

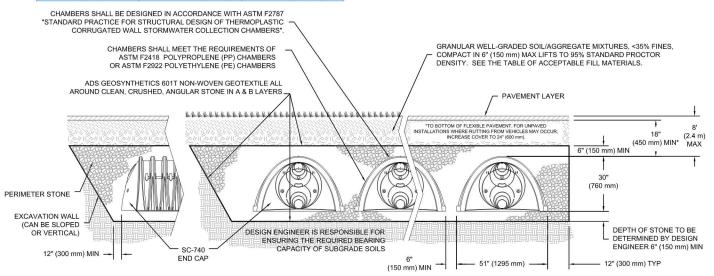
Note: Add 1.13 cu. ft. (0.032 m^3) of storage for each additional inch (25 mm) of stone foundation.

Storage Volume Per Chamber ft3 (m3)

	Bare Chamber Storage	Chamber and Stone Stone Foundation Depth in. (mm)		
	ft³ (m³)	6 (150)	12 (300)	18 (450)
StormTech SC-740	45.9 (1.3)	74.9 (2.1)	81.7 (2.3)	88.4 (2.5)

Note: Assumes 6" (150 mm) of stone above chambers, 6" (150 mm) row spacing and 40% porosity.

Amount of Stone Per Chamber


	Stone Foundation Depth		
ENGLISH TONS (yd3)	6"	12"	18"
StormTech SC-740	3.8 (2.8 yd³)	4.6 (3.3 yd³)	5.5 (3.9 yd³)
METRIC KILOGRAMS (m³)	150 mm	300 mm	450 mm
StormTech SC-740	3450 (2.1 m³)	4170 (2.5 m³)	4490 (3.0 m³)

Note: Assumes 6" (150 mm) of stone above, and between chambers.

Volume of Excavation Per Chamber yd3 (m3)

	Stone Foundation Depth		
	6" (150 mm) 12" (300 mm) 18" (450 mm)		
StormTech SC-740	5.5 (4.2)	6.2 (4.7)	6.8 (5.2)

Note: Assumes 6" (150 mm) of row separation and 18" (450 mm) of cover. Volume of excavation will vary as depth of cover increases.

THE INSTALLED CHAMBER SYSTEM SHALL PROVIDE THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS SECTION 12.12 FOR EARTH AND LIVE LOADS, WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.

OC. 780 Chamber

Designed to meet the most stringent industry performance standards for superior structural integrity while providing designers with a costeffective method to save valuable land and protect water resources. The StormTech system is designed primarily to be used under parking lots thus maximizing land usage for commercial and municipal applications.

• 12' Deep Cover applications.

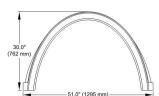
Designed in accordance with ASTM F 2787 and produced to meet the ASTM F 2418 product standard.

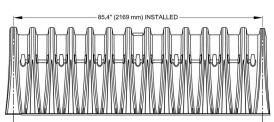
AASHTO safety factors provided for AASHTO Design Truck (H20) and deep cover conditions

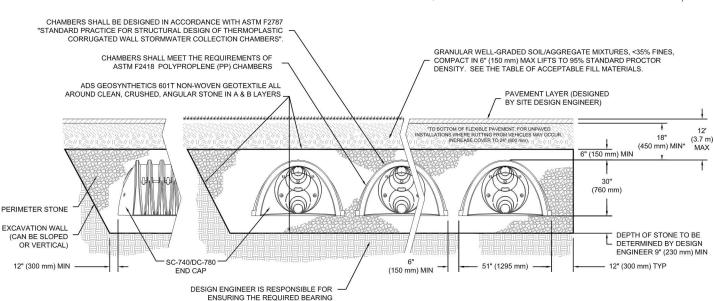
ACCEPTS 4" (100 mm) SCH 40 PIPE FOR OPTIONAL INSPECTION PORT

StormTech DC-780 Chamber (not to scale)

Nominal Chamber Specifications


Size (L x W x H) 85.4" x 51.0" x 30.0" (2169 x 1295 x 762 mm) Chamber Storage 46.2 ft3 (1.3 m3) Min. Installed Storage* 78.4 ft3 (2.2 m3)


Shipping


* Assumes 9" (230 mm) stone below, 6" (150 mm) stone above, 6" (150 mm) row spacing and 40% stone porosity.

24 chambers/pallet 60 end caps/pallet

12 pallets/truck

THE INSTALLED CHAMBER SYSTEM SHALL PROVIDE THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS SECTION 12.12 FOR EARTH AND LIVE LOADS, WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.

CAPACITY OF SUBGRADE SOILS

StormTech DC-780 Chamber

DC-780 Cumulative Storage Volumes Per Chamber

Assumes 40% Stone Porosity. Calculations are Based Upon a 9" (230 mm) Stone Base Under the Chambers.

Depth of Water	Cumulative	Total System
in System	Chamber Storage	Cumulativé Storage
Inches (mm)	ft³ (m³)	ft³ (m³)
45 (1143)	46.27 (1.310)	78.47 (2.222)
44 (1118)	7 46.27 (1.310)	77.34 (2.190)
43 (1092)	Stone 46.27 (1.310)	76.21 (2.158)
42 (1067)	Cover 46.27 (1.310)	75.09 (2.126)
41 (1041)	46.27 (1.310)	73.96 (2.094)
40 (1016)	4 6.27 (1.310)	72.83 (2.062)
39 (991)	46.27 (1.310)	71.71 (2.030)
38 (965)	46.21 (1.309)	70.54 (1.998)
37 (940)	46.04 (1.304)	69.32 (1.963)
36 (914)	45.76 (1.296)	68.02 (1.926)
35 (889)	45.15 (1.278)	66.53 (1.884)
34 (864)	44.34 (1.255)	64.91 (1.838)
33 (838)	43.38 (1.228)	63.21 (1.790)
32 (813)	42.29 (1.198)	61.43 (1.740)
31 (787)	41.11 (1.164)	59.59 (1.688)
30 (762)	39.83 (1.128)	57.70 (1.634)
29 (737)	38.47 (1.089)	55.76 (1.579)
28 (711)	37.01 (1.048)	53.76 (1.522)
27 (686)	35.49 (1.005)	51.72 (1.464)
26 (660)	33.90 (0.960)	49.63 (1.405)
25 (635)	32.24 (0.913)	47.52 (1.346)
24 (610)	30.54 (0.865)	45.36 (1.285)
23 (584)	28.77 (0.815)	43.18 (1.223)
22 (559)	26.96 (0.763)	40.97 (1.160)
21 (533)	25.10 (0.711)	38.72 (1.096)
20 (508)	23.19 (0.657)	36.45 (1.032)
19 (483)	21.25 (0.602)	34.16 (0.967)
18 (457)	19.26 (0.545)	31.84 (0.902)
17 (432)	17.24 (0.488)	29.50 (0.835)
16 (406)	15.19 (0.430)	27.14 (0.769)
15 (381)	13.10 (0.371)	24.76 (0.701)
14 (356)	10.98 (0.311)	22.36 (0.633)
13 (330)	8.83 (0.250)	19.95 (0.565)
12 (305)	6.66 (0.189)	17.52 (0.496)
11 (279)	4.46 (0.126)	15.07 (0.427)

DC-780 Cumulative Storage Volumes Per Chamber (cont.)

Depth of Water in System Inches (mm)	Cumulative Chamber Storage ft³ (m³)		Total System Cumulative Storage ft³ (m³)
10 (254)	2.24 (0.	.064)	12.61 (0.357)
9 (229)	A	0	10.14 (0.287)
8 (203)		0	9.01 (0.255)
7 (178)		0	7.89 (0.223)
6 (152)	Stone	0	6.76 (0.191)
5 (127)	Foundation	0	5.63 (0.160)
4 (102)		0	4.51 (0.128)
3 (76)		0	3.38 (0.096)
2 (51)		0	2.25 (0.064)
1 (25)	\	0	1.13 (0.032)

Note: Add 1.13 cu. ft. (0.032 m^3) of storage for each additional inch (25 mm) of stone foundation.

Storage Volume Per Chamber ft³ (m³)

	Bare Chamber Storage	Chamber and Stone Volume Stone Foundation Depth inches (millimeters)		n Depth
	ft³ (m³)	9 (230)	12 (300)	18 (450)
StormTech DC-780	46.2 (1.3)	78.4 (2.2)	81.8 (2.3)	88.6 (2.5)

Note: Assumes 40% porosity for the stone, the bare chamber volume, 6" (150 mm) stone above, and 6" (150 mm) row spacing.

Amount of Stone Per Chamber

	Stone Foundation Depth		
ENGLISH TONS (YD3)	9"	12"	18"
StormTech DC-780	4.2 (3.0 yd³)	4.7 (3.3 yd³)	5.6 (3.9 yd³)
METRIC KILOGRAMS (M3)	230 mm	300 mm	450 mm
StormTech DC-780	3810 (2.3 m ³)	4264 (2.5 m ³)	5080 (3.0 m ³)

Note: Assumes 6" (150 mm) of stone above, and between chambers.

Volume of Excavation Per Chamber yd3 (m3)

	Stone Foundation Depth		
	9" (230 mm) 12" (300 mm) 18" (450 mm)		
StormTech DC-780	5.9 (4.5)	6.3 (4.8)	6.9 (5.3)

Note: Assumes 6" (150 mm) of separation between chamber rows and 18" (450 mm) of cover. The volume of excavation will vary as the depth of the cover increases.

nm) i

2.0 Product Information

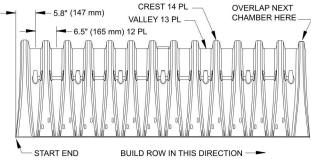
2.5 STORMTECH CHAMBERS

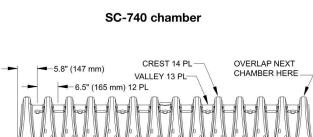
StormTech chamber systems have unique features to improve site optimization and reduce product waste. The SC-740, SC-310 and DC-780 chambers can be cut at the job site in approximately 6.5" (165 mm) increments to shorten a chamber's length. Designing and constructing chamber rows around site obstacles is easily accomplished by including specific cutting instructions or a well placed "cut to fit" note on the design plans. The last chamber of a row can be cut in any of its corrugation's valleys. An end cap placed into the trimmed corrugation's crest completes the row. The trimmed-off piece of a StormTech chamber may then be used to start the next row. See **Figure 4**.

To assist the contractor, StormTech chambers are molded with simple assembly instructions and arrows that indicate the direction in which to build rows. Rows are formed by overlapping the next chamber's "Start End" corrugation with the previously laid chamber's end corrugation. Two people can safely and efficiently form rows of chambers without complicated connectors, special tools or heavy equipment.

Product Specifications: 2.2, 2.4, 2.5, 2.9 and 3.2

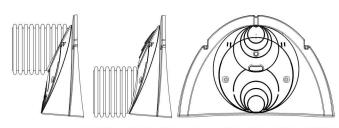
2.6 STORMTECH END CAPS


The StormTech end cap has features which make the chamber system simple to design, easy to build and more versatile than other products. StormTech end caps can be easily secured within any corrugation's crest. A molded-in handle makes attaching the end cap a one-person operation. Tools or fasteners are not required.


StormTech end caps are required at each end of a chamber row to prevent stone intrusion (two per row). The SC-740 and DC-780 end caps will accept up to a 24" (600 mm)

HDPE inlet pipe. The SC-310 end cap will accept up to a 12" (300 mm) HDPE inlet pipe. See **Figure 5**. *Product Specifications: 3.1, 3.2, 3.3 and 3.4*

Figure 4 - Distance Between Corrugations (not to scale)



SC-310 chamber

BUILD ROW IN THIS DIRECTION -

START END

Figure 5 - Chamber End Caps (not to scale)

SC-740/DC-780 CHAMBER FABRICATED END CAP (TOP AND BOTTOM FEED)
PIPES SIZES RANGE FROM 6" (150 mm) TO 24" (600 mm)
(INVERTS VARY WITH PIPE SIZE)

SC-740 / DC-780 end cap

SC-310 CHAMBER FABRICATED END CAP (TOP AND BOTTOM FEED) PIPES SIZES RANGE FROM 6" (150 mm) TO 12" (300 mm) (INVERTS VARY WITH PIPE SIZE)

SC-310 end cap

3.0 Structural Capabilities

3.1 STRUCTURAL DESIGN APPROACH

When installed per StormTech's minimum requirements, StormTech products are designed to exceed American Association of State Highway and Transportation Officials (AASHTO) LRFD recommended design factors for Earth loads and Vehicular live loads. AASHTO Vehicular live loads (previously HS-20) consist of two heavy axle configurations, that of a single 32 (142 kN) kip axle and that of tandem 25 (111 kN) kip axles. Factors for impact and multiple presences of vehicles ensure a conservative design where structural adequacy is assumed for a wide range of street legal vehicle weights and axle configurations.

Computer models of the chambers under shallow and deep conditions were developed. Utilizing design forces from computer models, chamber sections were evaluated using AASHTO procedures that consider thrust and moment, and check for local buckling capacity. The procedures also considered the time-dependent strength and stiffness properties of polypropylene and polyethylene. These procedures were developed in a research study conducted by the National Cooperative Highway Research Program (NCHRP) for AASHTO, and published as NCHRP Report 438 Recommended LRFD Specifications for Plastic Pipe and Culverts. Product Specifications: 2.12.

StormTech does not recommend installing StormTech products underneath buildings or parking garages. When specifying the StormTech products in close proximity to buildings, it is important to ensure that the StormTech products are not receiving any loads from these structures that may jeopardize the long term performance of the chambers.

3.2 FULL SCALE TESTING

After developing the StormTech chamber designs, the chambers were subjected to rigorous full-scale testing. The test programs verified the predicted safety factors of the designs by subjecting the chambers to more severe load conditions than anticipated during service life. Capacity under live loads and deep fill was investigated by conducting tests with a range of cover depths. Monitoring of long term deep fill installations has been done to validate the long term performance of the StormTech products.

3.3 INDEPENDENT EXPERT ANALYSIS

StormTech worked closely with the consulting firm Simpson Gumpertz & Heger Inc. (SGH) to develop and evaluate the SC-740, SC-310 and DC-780 chamber designs. SGH has world-renowned expertise in the design of buried drainage structures. The firm was the principal investigator for the NCHRP research program that developed the structural analysis and design methods adopted by AASHTO for thermoplastic culverts. SGH conducted design calculations and computer simulations of chamber performance under various installation and live load conditions. They worked with StormTech to design the full-scale test programs to verify the structural capacity of the chambers. SGH also observed all full-scale tests and inspected the chambers after completion of the tests. SGH continues to be StormTech's structural consultant.

3.0 Structural Capabilities

3.4 INJECTION MOLDING

To comply with both the structural and design requirements of AASHTO's LRFD specifications and ASTM F 2787 as well as the product requirements of ASTM F 2418 or ASTM F2922, StormTech uses proprietary injection molding equipment to manufacture the chambers and end caps.

In addition to meeting structural goals, injection molding allows StormTech to design added features and advantages into StormTech's parts including:

- Precise control of wall thickness throughout parts
- Precise fit of joints and end caps
- Molded-in inspection port fitting
- Molded-in handles on end caps
- Molded-in pipe guides with blade starter slots
- Repeatability for Quality Control (See Section 3.6)

Product Specifications: 2.1, 3.1 and 3.3

3.5 POLYPROPYLENE AND POLYETHYLENE RESIN

StormTech chambers are injection molded from polypropylene and polyethylene. Polypropylene and polyethylene chambers are inherently resistant to chemicals typically found in stormwater run-off. StormTech chambers maintain a greater portion of their structural stiffness through higher installation and service temperatures

StormTech polypropylene and polyethylene are virgin materials specially designed to achieve a high 75-year creep modulus that is necessary to provide a sound long-term structural design. Since the modulus remains high well beyond the 75-year value, StormTech chambers can exhibit a service life in excess of 75 years.

3.6 QUALITY CONTROL

StormTech chambers are manufactured under tight quality control programs. Materials are routinely tested in an environmentally controlled lab that is verified every six months via the external ASTM Proficiency Testing Program. The chamber material properties are measured and controlled with procedures following ISO 9001:2000 requirements.

Statistical Process Control (SPC) techniques are applied during manufacturing. Established upper and lower control limits are maintained on key manufacturing parameters to maintain consistent product.

Product Specifications: 2.13 and 3.6

4.0 Foundation for Chambers

4.1 FOUNDATION REQUIREMENTS

StormTech chamber systems and embedment stone may be installed in various native soil types. The subgrade bearing capacity and chamber cover height determine the required depth of clean, crushed, angular stone for the chamber foundation. The chamber foundation is the clean, crushed, angular stone placed between the subgrade soils and the feet of the chamber.

As cover height increases (top of chamber to top of finished grade) the chambers foundation requirements increase. Foundation strength is the product of the subgrade soils bearing capacity and the depth of clean, crushed, angular stone below the chamber foot. **Table 1** for the SC-740 and SC-310 and **Table 2** for the DC-780 specify the required minimum foundation depth for varying cover heights and subgrade bearing capacities.

4.2 WEAKER SOILS

For sub-grade soils with allowable bearing capacity less than 2000 pounds per square foot [(2.0 ksf) (96 kPa)], a geotechnical engineer should evaluate the specific conditions. These soils are often highly variable, may contain organic materials and could be more sensitive to moisture. A geotechnical engineer's recommendations

may include increasing the stone foundation, improving the bearing capacity of the sub-grade soils through compaction, replacement, or other remedial measures including the use of geogrids. The use of a thermoplastic liner may also be considered for systems installed in subgrade soils that are highly affected by moisture. The project engineer is responsible for ensuring overall site settlement is within acceptable limits. A geotechnical engineer should always review installation of StormTech chambers on organic soils.

4.3 CHAMBER SPACING OPTION

StormTech always requires a minimum of 6" (150 mm) clear spacing between the feet of chambers rows for the SC-310, SC-740 and DC-780 chambers. However, increasing the spacing between chamber rows may allow the application of StormTech chambers with either less foundation stone or with weaker subgrade soils. This may be a good option where a vertical restriction on site prevents the use of a deeper foundation. Contact StormTech's Technical Service Department for more information on this option. In all cases, StormTech recommends consulting a geotechnical engineer for subgrade soils with a bearing capacity less than 2.0 ksf (96 kPa).

Table 1 – SC-310 and SC-740 Minimum Required Foundation Depth in inches (millimeters)

Cover	Minin	num Ro	equired	Bearin	a Resi	stance	for Ser	vice Lo	oads ks	f (kPa)												
Ht. ft.	4.1	4.0	3.9	3.8	3.7	3.6	3.5	3.4	3.3	3.2	3.1	3.0	2.9	2.8	2.7	2.6	2.5	2.4	2.3	2.2	2.1	2.0
(m)	(196)	(192)	(187)	(182)	(177)	(172)	(168)	(163)	(158)	(153)	(148)	(144)	(139)	(134)	(129)	(124)	(120)	(115)	(110)	(105)	(101)	(96)
1.5	6 (152)	6 (152)	6 (152)	6 (152)	6 (152)	6 (152)	6	6 (152)	6	(150)	(150)	6	(220)	9 (229)	9	(220)	9 (229)	12 (305)	12	(205)	15	15
(0.46)	6	6	6	6	6	6	(152) 6	6	(152)	(152) 6	(152)	(152)	(229)	9	(229)	(229)	12	12	(305)	(305)	(381)	(381)
(0.61)	(152)	(152)	(152)	(152)	(152)	(152)	(152)	(152)	(152)	(152)	(152)	(229)	(229)	(229)	(229)	(229)	(305)	(305)	(305)	(381)	(381)	(381)
2.5	6	6	6	6	6	6	6	6	6	6	9	9	9	9	9	12	12	12	15	15	15	18
(0.76)	(152)	(152)	(152)	(152)	(152)	(152)	(152)	(152)	(152)	(152)	(229)	(229)	(229)	(229)	(229)	(305)	(305)	(305)	(381)	(381)	(381)	(457)
(0.91)	6 (152)	6 (152)	9 (229)	9 (229)	9 (229)	(229)	(229)	12 (305)	(305)	(305)	15 (381)	15 (381)	15 (381)	18 (457)	18 (457)							
3.5	6	6	6	6	6	6	6	6	9	9	9	9	9	12	12	12	12	15	15	18	18	21
(1.07)	(152)	(152)	(152)	(152)	(152)	(152)	(152)	(152)	(229)	(229)	(229)	(229)	(229)	(305)	(305)	(305)	(305)	(381)	(381)	(457)	(457)	(533)
4	6	6	6	6	6	6	6	6	9	9	9	9	9	12	12	12	12	15	15	18	18	21
(1.22)	(152)	(152)	(152)	(152)	(152)	(152)	(152)	(152)	(229)	(229)	(229)	(229)	(229)	(305)	(305)	(305)	(305)	(381)	(381)	(457)	(457)	(533)
4.5 (1.37)	6 (152)	9 (229)	9 (229)	9 (229)	9 (229)	(229)	12 (305)	12 (305)	12 (305)	(305)	15 (381)	15 (381)	18 (457)	18 (457)	21 (533)							
5	6	6	6	6	6	6	6	6	9	9	9	9	9	12	12	12	15	15	15	18	18	21
(1.52)	(152)	(152)	(152)	(152)	(152)	(152)	(152)	(152)	(229)	(229)	(229)	(229)	(229)	(305)	(305)	(305)	(381)	(381)	(381)	(457)	(457)	(533)
5.5 (1.68)	6 (152)	9 (229)	9 (229)	9 (229)	9 (229)	9 (229)	12 (305)	12 (305)	12 (305)	12 (305)	15 (381)	15 (381)	15 (381)	18 (457)	18 (457)	21 (533)						
6	6	6	6	6	6	6	9	9	9	9	9	12	12	12	12	15	15	15	18	18	21	21
(1.83)	(152)	(152)	(152)	(152)	(152)	(152)	(229)	(229)	(229)	(229)	(229)	(305)	(305)	(305)	(305)	(381)	(381)	(381)	(457)	(457)	(533)	(533)
6.5	6	6	6	6	6	9	9	9	9	9	9	12	12	12	15	15	15	18	18	18	21	24
(1.98)	(152)	(152)	(152)	(152)	(152)	(229)	(229)	(229)	(229)	(229)	(229)	(305)	(305)	(305)	(381)	(381)	(381)	(457)	(457)	(457)	(533)	(610)
(2.13)	6 (152)	6 (152)	6 (152)	6 (152)	9 (229)	9 (229)	9 (229)	9 (229)	9 (229)	9 (229)	12 (305)	12 (305)	12 (305)	12 (305)	15 (381)	15 (381)	15 (381)	18 (457)	18 (457)	21 (533)	21 (533)	24 (610)
7.5	6	6	6	9	9	9	9	9	12	12	12	12	12	15	15	15	18	18	21	21	24	27
(2.29)	(152)	(152)	(152)	(229)	(229)	(229)	(229)	(229)	(305)	(305)	(305)	(305)	(305)	(381)	(381)	(381)	(457)	(457)	(533)	(533)	(610)	(686)
8 (2.44)	6 (152)	9 (229)	9 (229)	9 (229)	9 (229)	9 (229)	9 (229)	12 (305)	12 (305)	12 (305)	12 (305)	12 (305)	15 (381)	15 (381)	15 (381)	18 (457)	18 (457)	21 (533)	21 (533)	24 (610)	24 (610)	27 (686)

NOTE: The design engineer is solely responsible for assessing the bearing resistance (allowable bearing capacity) of the subgrade soils and determining the depth of foundation stone. Subgrade bearing resistance should be assessed with consideration for the range of soil moisture conditions expected under a stormwater system.

4.0 Foundation for Chambers/5.0 Cumulative Storage Volumes

Table 2 – DC-780 Minimum Required Foundation Depth in inches (millimeters)

Cover	Minin	num Re	equired	Bearin	g Resi	stance	for Se	vice L	oads ks	f (kPa)												
Ht. ft.	4.1	4.0	3.9	3.8	3.7	3.6	3.5	3.4	3.3	3.2	3.1	3.0	2.9	2.8	2.7	2.6	2.5	2.4	2.3	2.2	2.1	2.0
(m)	(196)	(192)	(187)	(182)	(177)	(172)	(168)	(163)	(158)	(153)	(148)	(144)	(139)	(134)	(129)	(124)	(120)	(115)	(110)	(105)	(101)	(96)
8.5	9	9	9	9	9	9	12	12	12	12	12	15	15	15	18	18	18	21	24	24	27	30
(2.59)	(229)	(229)	(229)	(229)	(229)	(229)	(305)	(305)	(305)	(305)	(305)	(381)	(381)	(381)	(457)	(457)	(457)	(533)	(610)	(610)	(686)	(762)
9.0	9	9	9	9	9	12	12	12	12	12	15	15	15	18	18	18	21	21	24	24	27	30
(2.74)	(229)	(229)	(229)	(229)	(229)	(305)	(305)	(305)	(305)	(305)	(381)	(381)	(381)	(457)	(457)	(457)	(533)	(533)	(610)	(610)	(686)	(762)
9.5	9	9	9	9	12	12	12	12	12	15	15	15	18	18	18	21	21	24	24	27	30	33
(2.90)	(229)	(229)	(229)	(229)	(305)	(305)	(305)	(305)	(305)	(381)	(381)	(381)	(457)	(457)	(457)	(533)	(533)	(610)	(610)	(686)	(762)	(838)
10.0	9	9	12	12	12	12	12	15	15	15	15	18	18	18	21	21	24	24	27	30	33	36
(3.05)	(229)	(229)	(305)	(305)	(305)	(305)	(305)	(381)	(381)	(381)	(381)	(457)	(457)	(457)	(533)	(533)	(610)	(610)	(686)	(762)	(838)	(915)
10.5	9	12	12	12	12	12	15	15	15	15	18	18	18	21	21	24	24	27	30	30	33	36
(3.20)	(229)	(305)	(305)	(305)	(305)	(305)	(381)	(381)	(381)	(381)	(457)	(457)	(457)	(533)	(533)	(610)	(610)	(686)	(762)	(762)	(838)	(915)
11.0	12	12	12	12	12	15	15	15	15	18	18	18	21	21	24	24	27	27	30	33	36	39
(3.35)	(305)	(305)	(305)	(305)	(305)	(381)	(381)	(381)	(381)	(457)	(457)	(457)	(533)	(533)	(610)	(610)	(686)	(686)	(762)	(838)	(915)	(991)
11.5	12	12	12	12	15	15	15	15	18	18	18	21	21	24	24	27	27	30	33	36	39	42
(3.50)	(305)	(305)	(305)	(305)	(381)	(381)	(381)	(381)	(457)	(457)	(457)	(533)	(533)	(610)	(610)	(686)	(686)	(762)	(838)	(915)	(991)	(1067)
12.0	12	12	12	15	15	15	15	18	18	18	21	21	21	24	24	27	30	30	33	36	39	42
(3.66)	(305)	(305)	(305)	(381)	(381)	(381)	(381)	(457)	(457)	(457)	(533)	(533)	(533)	(610)	(610)	(686)	(762)	(762)	(838)	(915)	(991)	(1067)

NOTE: The design engineer is solely responsible for assessing the bearing resistance (allowable bearing capacity) of the subgrade soils and determining the depth of foundation stone. Subgrade bearing resistance should be assessed with consideration for the range of soil moisture conditions expected under a stormwater system.

Tables 3, 4 and **5** provide cumulative storage volumes for the SC-310, SC-740 and DC-780 chamber systems. This information may be used to calculate a detention/retention system's stage storage volume. A spreadsheet is available at **www.stormtech.com** in which the number of chambers can be input for quick cumulative storage calculations. *Product Specifications: 1.1, 2.2, 2.3, 2.4, and 2.6*

Table 3 - SC-310 Cumulative Storage Volumes Per Chamber Assumes 40% Stone Porosity. Calculations are Based Upon a 6" (150 mm) Stone Base Under the Chambers.

Depth of Water in System Inches (mm)	Cumulative Chamber Storage ft³ (m³)	Total System Cumulative Storage ft³ (m³)
28 (711)	1 4.70 (0.416)	31.00 (0.878)
27 (686)	1 14.70 (0.416)	30.21 (0.855)
26 (680)	Stone 14.70 (0.416)	29.42 (0.833)
25 (610)	Cover 14.70 (0.416)	28.63 (0.811)
24 (609)	14.70 (0.416)	27.84 (0.788)
23 (584)	1 4.70 (0.416)	27.05 (0.766)
22 (559)	14.70 (0.416)	26.26 (0.748)
21 (533)	14.64 (0.415)	25.43 (0.720)
20 (508)	14.49 (0.410)	24.54 (0.695)
19 (483)	14.22 (0.403)	23.58 (0.668)
18 (457)	13.68 (0.387)	22.47 (0.636)
17 (432)	12.99 (0.368)	21.25 (0.602)

Table 3 - SC-310 Cumulative Storage Volumes (cont.)

Depth of Water in System Inches (mm)	Cumulati Chamber Sto ft³ (m³)	orage	Total System Cumulative Storage ft³ (m³)
16 (406)	12.17 ((0.345)	19.97 (0.566)
15 (381)	11.25 ((0.319)	18.62 (0.528)
14 (356)	10.23 ((0.290)	17.22 (0.488)
13 (330)	9.15 ((0.260)	15.78 (0.447)
12 (305)	7.99 ((0.227)	14.29 (0.425)
11 (279)	6.78 ((0.192)	12.77 (0.362)
10 (254)	5.51 ((0.156)	11.22 (0.318)
9 (229)	4.19 ((0.119)	9.64 (0.278)
8 (203)	2.83 ((0.081)	8.03 (0.227)
7 (178)	1.43 ((0.041)	6.40 (0.181)
6 (152)	A	0	4.74 (0.134)
5 (127)		0	3.95 (0.112)
4 (102)	Stone	0	3.16 (0.090)
3 (76)	Foundation	0	2.37 (0.067)
2 (51)		0	1.58 (0.046)
1 (25)	*	0	0.79 (0.022)

Note: Add $0.79~{\rm ft}^3~(0.022~{\rm m}^3)$ of storage for each additional inch (25 mm) of stone foundation.

5.0 Cumulative Storage Volumes

TABLE 4 – SC-740 Cumulative Storage Volumes Per Chamber Assumes 40% Stone Porosity. Calculations are Based Upon a 6" (150 mm) Stone Base Under the Chambers.

Depth of Water Cumulative Total System in System **Chamber Storage Cumulative Storage** Inches (mm) Ft³ (m³) Ft³ (m³) 42 (1067) 45.90 (1.300) 74.90 (2.121) 41 (1041) 45.90 (1.300) 73.77 (2.089) 40 (1016) Stone 45.90 (1.300) 72.64 (2.057) 39 (991) Cover 45.90 (1.300) 71.52 (2.025) 38 (965) 45.90 (1.300) 70.39 (1.993) 37 (948) 45.90 (1.300) 69.26 (1.961) 36 (914) 45.90 (1.300) 68.14 (1.929) 35 (889) 45.85 (1.298) 66.98 (1.897) 34 (864) 45.69 (1.294) 65.75 (1.862) 33 (838) 45.41 (1.286) 64.46 (1.825) 32 (813) 44.81 (1.269) 62.97 (1.783) 31 (787) 44.01 (1.246) 61.36 (1.737) 30 (762) 43.06 (1.219) 59.66 (1.689) 29 (737) 41.98 (1.189) 57.89 (1.639) 28 (711) 40.80 (1.155) 56.05 (1.587) 27 (686) 39.54 (1.120) 54.17 (1.534) 26 (660) 38.18 (1.081) 52.23 (1.479) 36.74 (1.040) 50.23 (1.422) 25 (635) 24 (610) 35.22 (0.977) 48.19 (1.365) 23 (584) 33.64 (0.953) 46.11 (1.306) 44.00 (1.246) 22 (559) 31.99 (0.906) 21 (533) 30.29 (0.858) 41.85 (1.185) 20 (508) 28.54 (0.808) 39.67 (1.123) 19 (483) 26.74 (0.757) 37.47 (1.061) 18 (457) 24.89 (0.705) 35.23 (0.997) 17 (432) 23.00 (0.651) 32.96 (0.939) 16 (406) 21.06 (0.596) 30.68 (0.869) 15 (381) 19.09 (0.541) 28.36 (0.803) 14 (356) 17.08 (0.484) 26.03 (0.737) 13 (330) 15.04 (0.426) 23.68 (0.670) 12 (305) 12.97 (0.367) 21.31 (0.608) 11 (279) 10.87 (0.309) 18.92 (0.535) 10 (254) 8.74 (0.247) 16.51 (0.468) 9 (229) 6.58 (0.186) 14.09 (0.399) 8 (203) 4.41 (0.125) 11.66 (0.330) 7 (178) 2.21 (0.063) 9.21 (0.264) 6 (152) 0 6.76 (0.191) 5.63 (0.160) 0 5 (127) Stone 4 (102) 0 4.51 (0.125) 0 3 (76) Foundation 3.38 (0.095) 2(51)0 2.25 (0.064) 1 (25) 0 1.13 (0.032)

Note: Add 1.13 ft 3 (0.032 m 3) of storage for each additional inch (25 mm) of stone foundation.

Table 5 - DC-780 Cumulative Storage Volumes Per Chamber Assumes 40% Stone Porosity. Calculations are Based Upon a 9" (230 mm) Stone Base Under the Chambers.

20 10 00 00 00 00 00 00 00 00 00 00 00 00	9	
Depth of Water	Cumulative	Total System
in System	Chamber Storage	Cumulative Storage
Inches (mm)	Ft³ (m³)	Ft³ (m³)
45 (1143)	▲ 46.27 (1.310)	78.47 (2.222)
44 (1118)	46.27 (1.310)	77.34 (2.190)
43 (1092)	Stone 46.27 (1.310)	76.21 (2.158)
42 (1067)	Cover 46.27 (1.310)	75.09 (2.126)
41 (1041)	46.27 (1.310)	73.96 (2.094)
40 (1016)	46.27 (1.310)	72.83 (2.062)
39 (991)	46.27 (1.310)	71.71 (2.030)
38 (965)	46.21 (1.309)	70.54 (1.998)
37 (940)	46.04 (1.304)	69.32 (1.963)
36 (914)	45.76 (1.296)	68.02 (1.926)
35 (889)	45.15 (1.278)	66.53 (1.884)
34 (864)	44.34 (1.255)	64.91 (1.838)
33 (838)	43.38 (1.228)	63.21 (1.790)
32 (813)	42.29 (1.198)	61.43 (1.740)
31 (787)	41.11 (1.164)	59.59 (1.688)
30 (762)	39.83 (1.128)	57.70 (1.634)
29 (737)	38.47 (1.089)	55.76 (1.579)
28 (711)	37.01 (1.048)	53.76 (1.522)
27 (686)	35.49 (1.005)	51.72 (1.464)
26 (660)	33.90 (0.960)	49.63 (1.405)
25 (635)	32.24 (0.913)	47.52 (1.346)
24 (610)	30.54 (0.865)	45.36 (1.285)
23 (584)	28.77 (0.815)	43.18 (1.223)
22 (559)	26.96 (0.763)	40.97 (1.160)
21 (533)	25.10 (0.711)	38.72 (1.096)
20 (508)	23.19 (0.657)	36.45 (1.032)
19 (483)	21.25 (0.602)	34.16 (0.967)
18 (457)	19.26 (0.545)	31.84 (0.902)
17 (432)	17.24 (0.488)	29.50 (0.835)
16 (406)	15.19 (0.430)	27.14 (0.769)
15 (381)	13.10 (0.371)	24.76 (0.701)
14 (356)	10.98 (0.311)	22.36 (0.633)
13 (330)	8.83 (0.250)	19.95 (0.565)
12 (305)	6.66 (0.189)	17.52 (0.496)
11 (279)	4.46 (0.126)	15.07 (0.427)
10 (254)	2.24 (0.064)	12.61 (0.357)
9 (229)	▲ 0	10.14 (0.287)
8 (203)	1 0	9.01 (0.255)
7 (178)	Stone 0	7.89 (0.223)
6 (152)	Foundation 0	6.76 (0.191)
5 (127)		5.63 (0.160)
4 (102)	0	4.51 (0.128)
3 (76)	0	3.38 (0.096)
2 (51)	0	2.25 (0.064)
1 (25)	0 032 m³) of storage fo	1.13 (0.032)

Note: Add 1.13 cu. ft. (0.032 m^3) of storage for each additional inch (25 mm) of stone foundation.

6.0 Required Materials/Row Separation

6.1 CHAMBER ROW SEPARATION

StormTech SC-740, SC-310 and DC-780 chambers must be specified with a minimum 6" (150 mm) space between the feet of adjacent parallel chamber rows. Increasing the space between rows is acceptable. This will increase the storage volume due to additional stone voids.

6.2 STONE SURROUNDING CHAMBERS

Refer to **Table 6** for acceptable stone materials. StormTech requires clean, crushed, angular stone below, between and above chambers as shown in **Figure 6**. Acceptable gradations are listed in **Table 6**. Subrounded and rounded stone are not acceptable.

6.3 GEOTEXTILE SEPARATION REQUIREMENT

A non-woven geotextile that meets AASHTO M288 Class 2 Separation requirements must be applied as a separation layer to prevent soil intrusion into the clean, crushed,

angular stone as shown in **Figure 6**. The geotextile is required between the clean, crushed, angular stone and the subgrade soils, the excavation's sidewalls and the fill materials. The geotextile should completely envelope the clean, crushed, angular stone. Overlap adjacent geotextile rolls per AASHTO M288 separation guidelines. Contact StormTech for a list of acceptable geotextiles.

6.4 FILL ABOVE CHAMBERS

Refer to **Table 6** and **Figure 6** for acceptable fill material above the 6" (150 mm) of clean, crushed, angular stone. Minimum and maximum fill requirements for the SC-740, SC-310 and DC-780 chambers are shown in **Figure 6** below. StormTech requires a minimum of 24" (600 mm) of fill in non-paved installations where rutting from vehicles may occur. **Table 6** provides details on soil class and compaction requirements for suitable fill materials.

Table 6 - Acceptable Fill Materials

MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / DENSITY REQUIREMENT
FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.
INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 18" (450 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145¹ A-1, A-2-4, A-3 OR AASHTO M43¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMPACTIONS AFTER 12" (300 mm) OF MATERIAL OVER THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN 6" (150 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS. ROLLER GROSS VEHICLE WEIGHT NOT TO EXCEED 12,000 lbs (53 kN), DYNAMIC FORCE NOT TO EXCEED 20,000 lbs (89 kN).
B EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE, NOMINAL SIZE DISTRIBUTION BETWEEN 3/4-2 INCH (20-50 mm)	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	NO COMPACTION REQUIRED.
FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE, NOMINAL SIZE DISTRIBUTION BETWEEN 3/4-2 INCH (20-50 mm)	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. 23

PLEASE NOTE:

- 1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".
- 2. STORMITECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 6" (150 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.

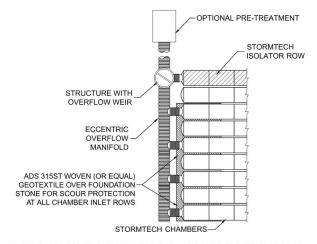
 3. WHERE INFILITRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING
- 3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.

Figure 6 - Fill Material Locations

CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". Once laver 'C' is placed any soil/ GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% material can be placed in layer 'D CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418 PROCTOR DENSITY. SEE THE TABLE OF ACCEPTABLE FILL up to the finished POLYPROPLENE (PP) CHAMBERS OR ASTM F2922 POLYETHYLENE (PE) CHAMBERS grade. Most pave-ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE ALL ment subbase (DESIGNED BY ENGINEER) AROUND CLEAN, CRUSHED, ANGULAR STONE IN A & B LAYERS soils can be used to replace the SC-310 & SC-740 - 8' (2.4 m) MAX materials require-(450 mm) MIN m) MIN DC-780 - 12' (3.6 m) MAX ments of layer 6" (150 r 'C' or 'D' at the design engineer's SC-740 & DC-780 - 30" (760 mm) SC-310 - 16" (406 mm) PERIMETER STONE EXCAVATION WALL DEPTH OF STONE TO BE (CAN BE SLOPED DETERMINED BY DESIGN ENGINEER SC-310 & SC-740 - 6" (150 mm) MIN DC-780 - 9" (230 mm) MIN OR VERTICAL) 12" (300 mm) MIN -12" (300 mm) TYP DESIGN ENGINEER IS RESPONSIBLE FOR SC-740 & DC-780 - 51" (1295 mm) SC-310 - 34" (865 mm) ENSURING THE REQUIRED BEA CAPACITY OF SUBGRADE SOILS

7.0 Inletting the Chambers

The design flexibility of a StormTech chamber system includes many inletting possibilities. Contact StormTech's Technical Service Department for guidance on designing an inlet system to meet specific site goals.


7.1 TREATMENT TRAIN

A properly designed inlet system can ensure good water quality, easy inspection and maintenance, and a long system service life. StormTech recommends a treatment train approach for inletting an underground stormwater management system under a typical commercial parking area. *Treatment train* is an industry term for a multi-tiered water quality network. As shown in **Figure 7**, a StormTech recommended inlet system can inexpensively have tiers of treatment upstream of the StormTech chambers:

Tier 1 – Pre-treatment (BMP)
Tier 2 - StormTech Isolator® Row

Tier 3 - Enhanced Treatment (BMP)

Figure 7 - Typical StormTech Treatment Train Inlet System

7.2 PRE-TREATMENT (BMP) – TREATMENT TIER 1

In some areas pre-treatment of the stormwater is required prior to entry into a stormwater system. By treating the stormwater prior to entry into the system, the service life of the system can be extended, pollutants such as hydrocarbons may be captured, and local regulations met. Pre-treatment options are often described as a Best Management Practice or simply a BMP.

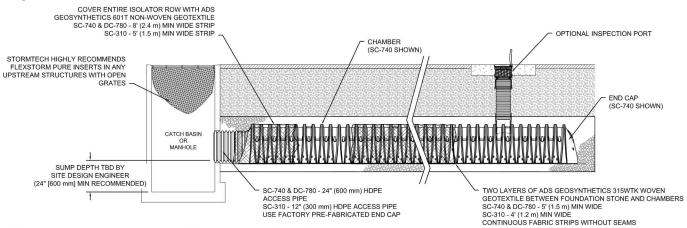
Pre-treatment devices differ greatly in complexity, design and effectiveness. Depending on a site's characteristics and treatment goals, the simple, least expensive pre-treatment solutions can sometimes be just as effective as the complex systems. Options include a simple deep sumped manhole with a 90° bend on its outlet, baffle boxes, swirl concentrators, and devices that combine these processes. Some of the most effective pre-treatment options combine engineered site grading with

vegetation such as bio-swales or grassy strips.

The type of pretreatment device specified as the first level of treatment up-stream of a StormTech chamber system can vary greatly throughout the country and from site-to-site. It is the responsibility of the design engineer to understand the water quality requirements and design a stormwater treatment system that will satisfy local regulators and follow applicable laws. A design engineer should apply their understanding of local weather conditions, site topography, local maintenance requirements, expected service life, etc...to select an appropriate stormwater pre-treatment system.

7.3 STORMTECH ISOLATOR ROW – TREATMENT TIER 2

StormTech has a patented technique to inexpensively enhance Total Suspended Solids (TSS) removal and provide easy access for inspection and maintenance. The StormTech Isolator Row is a row of standard StormTech chambers surrounded with appropriate filter fabrics and connected to a manhole for easy access. This application basically creates a filter/detention basin that allows water to egress through the surrounding filter fabric while sediment is trapped within. It may be best to think of the Isolator Row as a first-flush treatment device. First-Flush is a term typically used to describe the first ½" to 1" (13-25 mm) of rainfall or runoff on a site. The majority of stormwater pollutants are carried in the sediments of the first-flush, therefore the Isolator Row is an effective component of a treatment train.


The StormTech Isolator Row should be designed with a manhole with an overflow weir at its upstream end. The diversion manhole is multi-purposed. It can provide access to the Isolator Row for both inspection and maintenance and acts as a diversion structure. The manhole is connected to the Isolator Row with a short length of 12" (300 mm) pipe for the SC-310 chamber and 24" (600 mm) pipe for the SC-740 and DC-780 chambers. These pipes are connected to the Isolator Row with a 12" (300 mm) fabricated end cap for the SC-310 chamber and a 24" (600 mm) fabricated end cap for the SC-740 and DC-780 chambers. The overflow weir typically has its crest set between the top of the chamber and its midpoint. This allows stormwater in excess of the Isolator Row's storage/conveyance capacity to bypass into the chamber system through the downstream manifold system.

Specifying and installing proper geotextiles is essential for efficient operation and to prevent damage to the system during the JetVac maintenance process. In a typical configuration, two strips of woven geotextile that meet AASHTO M288 Class 1 requirements are required between the chambers and the stone foundation. This strong filter fabric traps sediments and protects the stone base during maintenance. A strip of non-woven

7.0 Inletting the Chambers

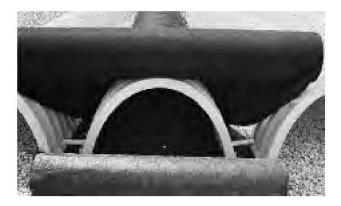


Figure 8 – StormTech Isolator Row Detail

Note: Non-woven geotextile over DC-780 Isolator Row chambers is not required.

AASHTO M288 Class 2 geotextile is draped over the Isolator chamber row. This 6-8 oz. (217-278 g/m²) non-woven filter fabric prevents sediments from migrating out of the chamber perforations while allowing modest amounts of water to flow out of the Isolator Row. **Figure 8** is a detail of the Isolator Row that shows proper application of the geotextiles. Contact StormTech for a table of acceptable geotextiles.

Inspection is easily accomplished through the upstream manhole or optional inspection ports. Maintenance of an Isolator Row is fast and easy using the JetVac process through the upstream manhole. Section 12.0 explains the inspection and maintenance process in more detail.

Isolator Rows can be sized to accommodate either a water quality volume or a water quality flow rate requirement. The use of filter fabric around the Isolator Row chambers allows stormwater to egress out of the row during and between storm events. The rate of egression for design is dependent upon the chamber model and sediment accumulation on the geotextile. Contact StormTech's Technical Services Department for more information on Isolator Row sizing.

7.4 ENHANCED TREATMENT (BMP) – TREATMENT TIER 3

As regulations have become more stringent, requiring higher levels of containment removal, water quality systems may be required to treat higher flow rates, greater volumes or to provide a higher level of filtration or other more sophisticated treatment process. StormTech systems can easily be configured with enhanced treatment techniques located either upstream or down stream of the retention or detention chamber system. Located upstream of an infiltration bed, between the pretreatment device and the Isolator Row, enhanced treatment provides a high level of contaminant removal which protects groundwater or better preserves the infiltration surface. Located downstream of detention, enhanced treatment provides a higher level of contaminant removal prior to discharge to a receiving body.

Enhanced treatment BMPs are normally applied where specific regulations and specific water quality product approvals are in place. StormTech works closely with providers of enhanced treatment technologies to meet local requirements.

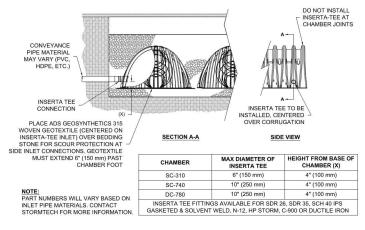
7.5 TREATMENT TRAIN CONCLUSION

The treatment train is a highly effective water-quality approach that may not add significant cost to a StormTech system being installed under commercial parking areas. The StormTech Isolator Row adds a significant level of treatment, easy inspection and maintenance, while maintaining storage volume credit for the cost of a modest amount of geotextile. Finally where higher levels of treatment are required, StormTech can integrate other technologies into the treatment train to provide the most cost effective treatment approach. This treatment train concept provides three levels of treatment, inspection and maintenance upstream and downsstream of the StormTech detention/retention bed.

7.0 Inletting the Chambers

7.6 OTHER INLET OPTIONS

While the three-tiered treatment train approach is the recommended method of inletting StormTech chambers for typical under-commercial parking applications, there are other effective inlet methods that may be considered. For instance, Isolator Rows, while adding an inexpensive level of confidence, are not always necessary. A header system with fewer inlets can be designed to further minimize the cost of a StormTech system. There may be applications where stormwater pre-treatment may not be necessary at all and the system can be inlet directly from the source. Contact StormTech's Technical Service Department to discuss inlet options.


7.7 LATERAL FLOW RATES

The embedment stone surrounding the StormTech chambers allows the rapid conveyance of stormwater between chamber rows. Stormwater will rise and fall evenly within a bed of chambers. A single StormTech SC-740 chamber is able to release or accept stormwater at a rate of at least 0.5 cfs (14.2 l/s) through the surrounding stone.

7.8 INLETTING PERPENDICULAR TO A ROW OF CHAMBERS WITH INSERTA TEE

There is an easy, inexpensive method to perpendicularly inlet a row of chambers. Simply connect the inlet directly to the chamber with an Inserta Tee. **Figure 9** shows a typical detail along with the standard sizes offered for each chamber model.

Figure 9 - Inserta Tee Detail

7.9 MAXIMUM INLET PIPE VELOCITIES TO PREVENT SCOURING OF THE STONE FOUNDATION

The primary function of the inlet manifold is to convey and distribute flows to a sufficient number of rows in the chamber bed such that there is ample conveyance capacity to pass the peak flows without creating an unacceptable backwater condition in upstream piping or scour the foundation stone under the chambers.

Manifolds are connected to the end caps either at the top or bottom of the end cap. High inlet flow rates from either connection location produce a shear scour potential of the foundation stone. Inlet flows from top inlets also produce impingement scour potential. Scour potential is reduced when standing water is present over the foundation stone. However, for safe design across the wide range of applications, StormTech assumes minimal standing water at the time the design flow occurs.

To minimize scour potential, StormTech recommends the installation of woven scour protection fabric at each inlet row. This enables a protected transition zone from the concentrated flow coming out of the inlet pipe to a uniform flow across the entire width of the chamber for both top and bottom connections. Allowable flow rates for design are dependent upon: the elevation of inlet pipe, foundation stone size and scour protection. An appropriate scour protection geotextile is installed from the end cap to at least 10.5' (3.2 m) for the SC-310, SC-740 and DC 780 chambers for both top and bottom feeding inlet pipes.

See StormTech's Tech Sheet #7 for guidance on manifold sizing. ADS's Technical Services department can also assist with sizing inlet manifolds for the StormTech chamber systems.

Table 7A – Standard distances from base of chamber to invert of inlet and outlet manifolds on StormTech end caps.

	SC-310 ENDCAPS								
	PIPE DIA.	INV. (IN)	INV. (FT)	INV. (MM)					
0	6" (150 mm)	5.8"	0.48	146					
TOP	8" (200 mm)	3.5"	0.29	88					
	10" (250 mm)	1.4"	0.12	37					
Σ	6" (150 mm)	0.5"	0.04	12					
힏	8" (200 mm)	0.6"	0.05	15					
BOTTOM	10" (250 mm)	0.7"	0.06	18					
В	12" (300 mm)	0.9"	0.08	24					

	SC-74	0 / DC-780 EI	NDCAPS	
	PIPE DIA.	INV. (IN)	INV. (FT)	INV. (MM)
	6" (150 mm)	18.5"	1.54	469
	8" (200 mm)	16.5"	1.38	421
TOP	10" (250 mm)	14.5"	1.21	369
\vdash	12" (300 mm)	12.5"	1.04	317
	15" (375 mm)	9"	0.75	229
	18" (450 mm)	5"	0.42	128
	6" (150 mm)	0.5"	0.04	12
28 - X	8" (200 mm)	0.6"	0.05	15
M	10" (250 mm)	0.7"	0.06	18
BOTTOM	12" (300 mm)	1.2"	0.10	30
BO	15" (375 mm)	1.3"	0.11	34
	18" (450 mm)	1.6"	0.13	40
	24" (600 mm)	0.1"	0.01	3

^{*}See StormTech's Tech Sheet #7 for manifold sizing guidance*

8.0 OUTLETS FOR STORMTECH CHAMBER SYSTEMS

The majority of StormTech installations are detention systems and have some type of outlet structure. An outlet manifold is generally designed to ensure that peak flows can be conveyed to the outlet structure.

To drain the system completely, an underdrain system is located at or below the bottom of the foundation stone. Some beds may be designed with a pitched base to ensure complete drainage of the system. A grade of ½% is usually satisfactory.

An outlet pipe may be located at a higher invert within a bed. This allows a designed volume of water to infiltrate while excess volumes are outlet as necessary. This is an excellent method of recharging groundwater, replicating a site's pre-construction hydraulics.

Depending on the bed layout and inverts, outlet pipes should be placed in the embedment stone along the bed's perimeter as shown in **Figures 10** and **11**. Solid outlet pipes should also be used to penetrate the StormTech end caps at the designed outlet invert as shown in **Figure 12**. An Isolator Row should not be directly penetrated with an outlet pipe. For systems requiring higher outlet flow rates, a combination of connections may be utilized as shown in **Figure 13**.

In detention and retention applications the discharge of water from the stormwater management system is determined based on the hydrology of the area and the hydraulic design of the system. It is the design engineer's responsibility to design an outlet system that meets their hydraulic objectives while following local laws and regulations.

Table 7B – Maximum outlet flow rate capacities from StormTech manifolds.

	OUTLET FLOW	
PIPE DIA.	FLOW (CFS)	FLOW (L/S)
6" (150 mm)	0.4	11.3
8" (200 mm)	0.7	19.8
10" (250 mm)	1.0	28.3
12" (300 mm)	2.0	56.6
15" (375 mm)	2.7	76.5
18" (450 mm)	4.0	113.3
24" (600 mm)	7.0	198.2
30" (750 mm)	11.0	311.5
36" (900 mm)	16.0	453.1
42" (1050 mm)	22.0	623.0
48" (1200 mm)	28.0	792.9

Figure 10 - Underdrain Parallel

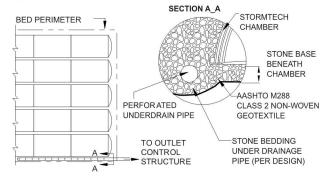


Figure 11 - Underdrain Perpendicular

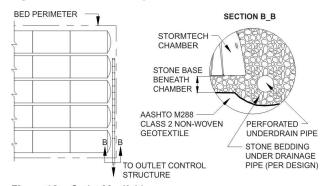


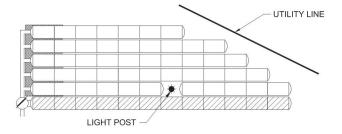
Figure 12 - Outlet Manifold

Figure 13 - Combination Outlet SECTION A A OUTLET STORMTECH CHAMBER NUMBER AND SIZE OF UNDER- - DRAINS PER ENGINEER DESIGN CONTROL STRUCTURE BED PERIMETER ADS 601 FOUNDATION NON-WOVEN STONE BENEATH CHAMBER **GEOTEXTILE** (OR EQUAL) SECTION B B STORMTECH CHAMBER PERFORATED UNDERDRAIN PIPE FOUNDATION STONE | BENEATH ! CHAMBER AASHTO M288 CLASS 2 NON-WOVEN STONE BEDDING OUTLET CONTROL STRUCTURE PER ENIGNEER'S DESIGN

9.1 EROSION CONTROL

Erosion and sediment control measures must be integrated into the plan to protect the stormwater system both during and after construction. These practices may have a direct impact on the system's infiltration performance and longevity. Vegetation, temporary sediment barriers (silt fences, hay bales, fabric-wrapped catch basin grates), and strategic stormwater runoff management may be used to control erosion and sedimentation. StormTech recommends the use of pipe plugs on the inlet pipe until the system is in service.

9.2 SITE IMPROVEMENT TECHNIQUES


When site conditions are less than optimal, StormTech recognizes many methods for improving a site for construction. Some techniques include the removal and replacement of poor materials, the use of engineered subgrade materials, aggregates, chemical treatment, and mechanical treatments including the use of geosynthetics. StormTech recommends referring to AASHTO M 288 guidelines for the appropriate use of geotextiles.

StormTech also recognizes geogrid as a potential component of an engineered solution to improve site conditions or as a construction tool for the experienced contractor. StormTech chamber systems are compatible with the use of geosynthetics. The use of geosynthetics or any other site improvement method does not eliminate or modify any of StormTech's requirements. It is the ultimate responsibility of the design engineer to ensure that site conditions are suitable for a StormTech chamber system.

9.3 CONFORMING TO SITE CONSTRAINTS

StormTech chambers have the unique ability to conform to site constraints such as utility lines, light posts, large trees, etc. Rows of chambers can be ended short or interrupted by placing an end cap at the desired location, leaving the required number of chambers out of the row to get by the obstruction, then starting the row of chambers again with another end cap. See **Figure 14** for an example.

Figure 14 - Ability to Conform to Site Constraints

9.4 LINERS

StormTech chambers offer the distinct advantage and versatility that allow them to be designed as an open bottom detention or retention system. In fact, the vast majority of StormTech installations and designs are open bottom detention systems. Using an open bottom system enables treatment of the storm water through the underlying soils and provides a volume safety factor based on the infiltrative capacity of the underlying soils.

In some applications, however, open bottom detention systems may not be allowed. StormTech's Tech Sheet #2 provides guidance for the design and installation of thermoplastic liners for detention systems using StormTech chambers. The major points of the memo are:

- Infiltration of stormwater is generally a desirable stormwater management practice, often required by regulations. Lined systems should only be specified where unique site conditions preclude significant infiltration.
- Thermoplastic liners provide cost effective and viable means to contain stormwater in StormTech subsurface systems where infiltration is undesirable.
- PVC and LLDPE are the most cost effective, installed membrane materials.
- Enhanced puncture resistance from angular aggregate on the water side and from protrusions on the soil side can be achieved by placing a non-woven geotextile reinforcement on each side of the geomembrane. A sand underlayment in lieu of the geotextile reinforcement on the soil side may be considered when cost effective.
- StormTech does not design, fabricate, sell or install thermoplastic liners. StormTech recommends consulting with liner professionals for final design and installation advice.

Figure 15 - Chamber bed placed around light post.

10.0 System Sizing

For quick calculations, refer to the Site Calculator on StormTech's website at www.stormtech.com.

10.1 SYSTEM SIZING

The following steps provide the calculations necessary to size a system. If you need assistance determining the number of chambers per row or customizing the bed configuration to fit a specific site, call StormTech's Technical Services Department at **1-888-892-2694.**

1) Determine the amount of storage volume (V_S) required.

It is the design engineer's sole responsibility to determine the storage volume required by local codes.

TABLE 8 - Storage Volume Per Chamber ft³ (m³)

	Bare Chamber Storage	Chamber and Stone Foundation Depth in. (mm)					
	ft³ (m³)	6 (150)	12 (300)	18 (450)			
StormTech SC-740	45.9 (1.3)	74.9 (2.1)	81.7 (2.3)	88.4 (2.5)			
StormTech SC-310	14.7 (0.4)	31.0 (0.9)	35.7 (1.0)	40.4 (1.1)			
	ft³ (m³)	9 (230)	12 (300)	18 (450)			
StormTech DC-780	46.2 (1.3)	78.4 (2.2)	81.8 (2.3)	88.6 (2.5)			

Note: Assumes 40% porosity for the stone plus the chamber volume.

2) Determine the number of chambers (C) required.

To calculate the number of chambers needed for adequate storage, divide the storage volume (Vs) by the volume of the selected chamber, as follows:

C = Vs / Volume per Chamber

3) Determine the required bed size (S).

To find the size of the bed, multiply the number of chambers needed (C) by either:

StormTech SC-740 / DC-780

bed area per chamber = 33.8 ft² (3.1 m³)

StormTech SC-310

bed area per chamber = $23.7 \text{ ft}^2 (2.2 \text{ m}^3)$

S = (C x bed area per chamber) + [1 foot (0.3 m) x bed perimeter in feet (meters)]

NOTE: It is necessary to add one foot (0.3 m) around the perimeter of the bed for end caps and working space.

Determine the amount of clean, crushed, angular stone (Vst) required.

TABLE 9 - Amount of Stone Per Chamber

	Ston	e Foundation [Depth
ENGLISH tons (yd³)	6"	12"	18"
StormTech SC-740	3.8 (2.8)	4.6 (3.3)	5.5 (3.9)
StormTech SC-310	2.1 (1.5)	2.7 (1.9)	3.4 (2.4)
METRIC kg (m³)	150 mm	300 mm	450 mm
StormTech SC-740	3450 (2.1)	4170 (2.5)	4490 (3.0)
StormTech SC-310	1830 (1.1)	2490 (1.5)	2990 (1.8)
ENGLISH tons (yd³)	9"	12"	18"
StormTech DC-780	4.2 (3.0)	4.7 (3.3)	5.6 (3.9)
METRIC kg (m³)	230 mm	300 mm	450 mm
StormTech DC-780	3810 (2.3)	4264 (2.5)	5080 (3.0)

Note: Assumes 6" (150 mm) of stone above, and between chambers.

To calculate the total amount of clean, crushed, angular stone required, multiply the number of chambers (C) by the selected weight of stone from **Table 9.**

NOTE: Clean, crushed, angular stone is also required around the perimeter of the system.

5) Determine the volume of excavation (Ex) required.

6) Determine the area of filter fabric (F) required.

TABLE 10 – Volume of Excavation Per Chamber yd³ (m³)

	Ston	e Foundation [Depth
	6" (150 mm)	12" (300 mm)	18" (450 mm)
StormTech SC-740	5.5 (4.2)	6.2 (4.7)	6.8 (5.2)
StormTech SC-310	2.9 (2.2)	3.4 (2.6)	3.8 (2.9)
	9" (230 mm)	12" (300 mm)	18" (457 mm)
StormTech DC-780	5.9 (4.5)	6.3 (4.8)	6.9 (5.3)

Note: Assumes 6" (150 mm) of separation between chamber rows and 18" (450 mm) of cover. The volume of excavation will vary as the depth of the cover increases.

Each additional foot of cover will add a volume of excavation of 1.3 yds $^{\rm a}$ (1.0 m $^{\rm a}$) per SC-740 / DC-780 and 0.9 yds $^{\rm a}$ (0.7 m $^{\rm a}$) per SC-310 chamber.

The bottom and sides of the bed and the top of the embedment stone must be covered with ADS 601 (or equal) a non-woven geotextile (filter fabric). The area of the sidewalls must be calculated and a 2 foot (0.6 m) overlap must be included where two pieces of filter fabric are placed side-by-side or end-to-end. Geotextiles typically come in 15 foot (4.6 m) wide rolls.

7) Determine the number of end caps (E_C) required.

Each row of chambers requires two end caps.

 E_C = number of rows x 2

11.0 Detail Drawings

Figure 16 - Inspection Port Detail

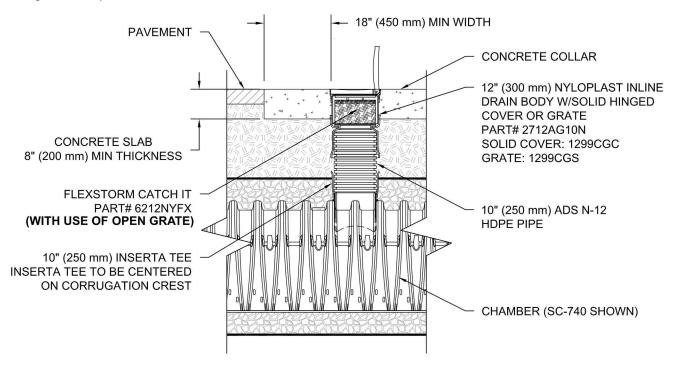
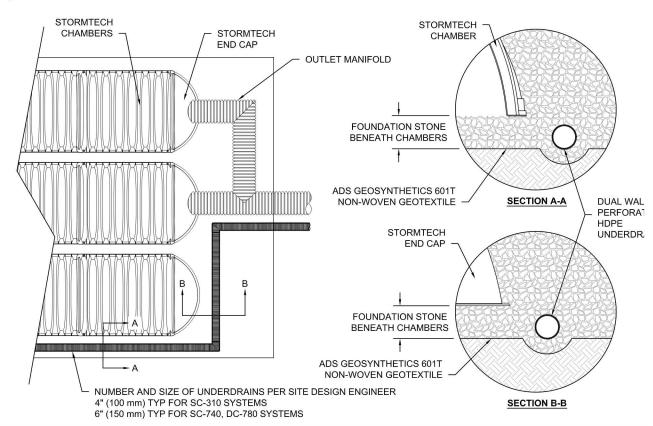



Figure 17 - Under Drain Detail

12.0 Inspection and Maintenance

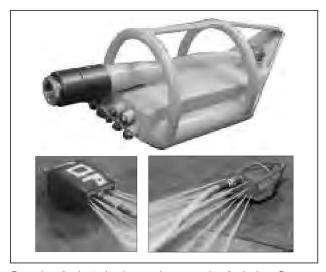
12.1 ISOLATOR ROW INSPECTION

Regular inspection and maintenance are essential to assure a properly functioning stormwater system. Inspection is easily accomplished through the manhole or optional inspection ports of an Isolator Row. Please follow local and OSHA rules for a confined space entry.

Inspection ports can allow inspection to be accomplished completely from the surface without the need for a confined space entry. Inspection ports provide visual access to the system with the use of a flashlight. A stadia rod may be inserted to determine the depth of sediment. If upon visual inspection it is found that sediment has accumulated to an average depth exceeding 3" (76 mm), cleanout is required.

A StormTech Isolator Row should initially be inspected immediately after completion of the site's construction. While every effort should be made to prevent sediment from entering the system during construction, it is during this time that excess amounts of sediments are most likely to enter any stormwater system. Inspection and maintenance, if necessary, should be performed prior to passing responsibility over to the site's owner. Once in normal service, a StormTech Isolator Row should be inspected bi-annually until an understanding of the sites characteristics is developed. The site's maintenance manager can then revise the inspection schedule based on experience or local requirements.

12.2 ISOLATOR ROW MAINTENANCE


JetVac maintenance is recommended if sediment has been collected to an average depth of 3" (76 mm) inside the Isolator Row. More frequent maintenance may be required to maintain minimum flow rates through the Isolator Row. The JetVac process utilizes a high pressure water nozzle to propel itself down the Isolator Row while scouring and suspending sediments. As the nozzle is retrieved, a wave of suspended sediments is flushed back into the manhole for vacuuming. Most sewer and pipe maintenance companies have vacuum/ JetVac combination vehicles. Fixed nozzles designed for culverts or large diameter pipe cleaning are preferable. Rear facing jets with an effective spread of at least 45" (1143 mm) are best. The JetVac process shall only be performed on StormTech Rows that have AASHTO class 1 woven geotextile over the foundation stone (ADS 315ST or equal).

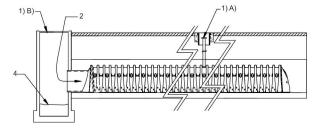
Looking down the Isolator Row.

A typical JetVac truck. (This is not a StormTech product.)

Examples of culvert cleaning nozzles appropriate for Isolator Row maintenance. (These are not StormTech products.)

12.0 Inspection & Maintenance

STORMTECH ISOLATOR™ ROW - STEP-BY-STEP MAINTENANCE PROCEDURES


Step 1) Inspect Isolator Row for sediment

- A) Inspection ports (if present)
 - i. Remove lid from floor box frame
 - ii. Remove cap from inspection riser
 - iii. Using a flashlight and stadia rod, measure depth of sediment
 - iv. If sediment is at, or above, 3" (76 mm) depth proceed to Step 2. If not proceed to Step 3.
- B) All Isolator Rows
 - i. Remove cover from manhole at upstream end of Isolator Row
 - ii. Using a flashlight, inspect down Isolator Row through outlet pipe
 - 1. Follow OSHA regulations for confined space entry if entering manhole
 - 2. Mirrors on poles or cameras may be used to avoid a confined space entry
 - iii. If sediment is at or above the lower row of sidewall holes [approximately 3" (76 mm)] proceed to Step 2. If not proceed to Step 3.

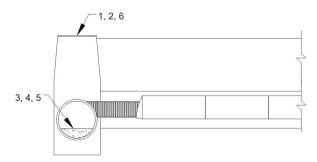
Step 2) Clean out Isolator Row using the JetVac process

- A) A fixed floor cleaning nozzle with rear facing nozzle spread of 45" (1143 mm) or more is preferable
- B) Apply multiple passes of JetVac until backflush water is clean
- C) Vacuum manhole sump as required during jetting
- Step 3) Replace all caps, lids and covers
- **Step 4)** Inspect and clean catch basins and manholes upstream of the StormTech system following local guidelines.

Figure 20 - StormTech Isolator Row (not to scale)

12.3 ECCENTRIC PIPE HEADER INSPECTION

Theses guidelines do not supercede a pipe manufacturer's recommended I&M procedures. Consult with the manufacturer of the pipe header system for specific I&M procedures. Inspection of the header system should be carried out quarterly. On sites which generate higher levels of sediment more frequent inspections may be necessary. Headers may be accessed through risers, access ports or manholes. Measurement of sediment may be taken with a stadia rod or similar device. Cleanout of sediment should occur when the sediment volume has reduced the storage area by 25% or the depth of sediment has reached approximately 25% of the diameter of the structure.


12.4 ECCENTRIC PIPE MANIFOLD MAINTENANCE

Cleanout of accumulated material should be accomplished by vacuum pumping the material from the header. Cleanout should be accomplished during dry weather. Care should be taken to avoid flushing sediments out through the outlet pipes and into the chamber rows.

Eccentric Header Step-by-Step Maintenance Procedures

- 1. Locate manholes connected to the manifold system
- 2. Remove grates or covers
- 3. Using a stadia rod, measure the depth of sediment
- 4. If sediment is at a depth of about 25% pipe volume or 25% pipe diameter proceed to step 5. If not proceed to step 6.
- 5. Vacuum pump the sediment. Do not flush sediment out inlet pipes.
- 6. Replace grates and covers
- 7. Record depth and date and schedule next inspection

Figure 21 – Eccentric Manifold Maintenance

Please contact StormTech's Technical Services Department at 888-892-2894 for a spreadsheet to estimate cleaning intervals.

13.0 General Notes

- StormTech ("StormTech") requires installing contractors to use and understand StormTech's latest
 Installation Instructions prior to beginning system installation.
- 2. Our Technical Services Department offers installation consultations to installing contractors. Contact our Technical Service Representatives at least 30 days prior to system installation to arrange a preinstallation consultation. Our representatives can then answer questions or address comments on the StormTech chamber system and inform the Installing contractor of the minimum installation requirements before beginning the system's construction. Call 860-529-8188 to speak to a Technical Service Representative or visit www.stormtech.com to receive a copy of our Installation Instructions.
- 3. StormTech's requirements for systems with pavement design (asphalt, concrete pavers, etc.): Minimum cover for the SC-740, DC-780 and SC-310 chambers is 18" (457 mm) not including pavement; Maximum cover for the SC-740 and SC-310 chambers is 96" (2.4 m) including pavement design; Maximum cover for the DC-780 chamber is 12' (3.6 m) including pavement design. For installations that do not include pavement, where rutting from vehicles may occur, minimum required cover is 24" (610 mm), maximum cover is as stated above.
- The contractor must report any discrepancies with the bearing capacity of the chamber foundation materials to the design engineer.

- AASHTO M288 Class 2 non-woven geotextile (filter fabric) must be used as indicated in the project plans.
- Stone placement between chamber rows and around perimeter must follow instructions as indicated in the most current version of StormTech's Installation Instructions.
- Backfilling over the chambers must follow requirements as indicated in the most current version of StormTech's Installation Instructions.
- The contractor must refer to StormTech's Installation Instructions for a Table of Acceptable Vehicle Loads at various depths of cover. This information is also available at StormTech's website:
 - www.stormtech.com. The contractor is responsible for preventing vehicles that exceed StormTech's requirements from traveling across or parking over the stormwater system. Temporary fencing, warning tape and appropriately located signs are commonly used to prevent unauthorized vehicles from entering sensitive construction areas.
- The contractor must apply erosion and sediment control measures to protect the stormwater system during all phases of site construction per local codes and design engineer's specifications.
- 10. STORMTECH PRODUCT WARRANTY IS LIMITED. Contact StormTech for warranty information.

14.0 StormTech Product Specifications

1.0 GENERAL

1.1 StormTech chambers are designed to control stormwater runoff. As a subsurface retention system, StormTech chambers retain and allow effective infiltration of water into the soil. As a subsurface detention system, StormTech chambers detain and allow for the metered flow of water to an outfall.

2.0 CHAMBER PARAMETERS

- 2.1 The Chamber shall be injection molded of an impact modified polypropylene or polyethylene copolymer to maintain adequate stiffness through higher temperatures experienced during installation and service.
- 2.2 The nominal chamber dimensions of the StormTech SC-740 and DC-780 shall be 30.0" (762 mm) tall, 51.0" (1295 mm) wide and 90.7" (2304 mm) long. The nominal chamber dimensions of the StormTech SC-310 shall be 16.0" (406 mm) tall, 34.0" (864 mm) wide and 90.7" (2304 mm) long. The installed length of a joined chamber shall be 85.4" (2169 mm).
- 2.3 The chamber shall have a continuously curved section profile.
- 2.4 The chamber shall be open-bottomed.
- 2.5 The chamber shall incorporate an overlapping corrugation joint system to allow chamber rows of almost any length to be created. The overlapping corrugation joint system shall be effective while allowing a chamber to be trimmed to shorten its overall length.
- 2.6 The nominal storage volume of all StormTech chambers includes the volume of the clean, crushed, angular stone with an assumed 40% porosity. The nominal storage volume of a joined StormTech SC-740 chamber shall be 74.9 ft³ (2.1 m³) per chamber when installed per StormTech's typical details. This equates to a storage volume per unit area of bed of 2.2 ft³/ft² (0.67 m³/m²). The nominal storage volume of a joined StormTech DC-780 chamber shall be 78.4 ft³ (2.2 m³) per chamber when installed per StormTech's typical details. This equates to a storage volume per unit area of bed of 2.3 ft³/ft² (0.70 m³/m²). The nominal storage volume of a joined StormTech SC-310 chamber shall be 31.0 ft³ (0.88 m³) per chamber when installed per StormTech's typical details. This equates to a storage volume per unit area of bed of 1.3 ft3/ft2 (0.40 m³/m²).

- 2.7 The SC-740 and SC-310 chambers shall have fortyeight orifices penetrating the sidewalls to allow for lateral conveyance of water.
- 2.8 The chamber shall have two orifices near its top to allow for equalization of air pressure between its interior and exterior.
- 2.9 The chamber shall have both of its ends open to allow for unimpeded hydraulic flows and visual inspections down a row's entire length.
- 2.10 The chamber shall have 14 corrugations.
- 2.11 The chamber shall have a circular, indented, flat surface on the top of the chamber for an optional 4" (100 mm) diameter (maximum) inspection port.
- 2.12 The chamber shall be analyzed and designed using AASHTO methods for thermoplastic culverts contained in the LRFD Bridge Design Specifications, 2nd Edition, including Interim Specifications through 2001. Design live load shall be the AASHTO design truck. Design shall consider earth and live loads as appropriate for the minimum to maximum specified depth of fill.
- 2.13 The chamber shall be manufactured in an ISO 9001:2000 certified facility.

3.0 END CAP PARAMETERS

- 3.1 The end cap shall be designed to fit into any corrugation of a chamber, which allows: capping a chamber that has its length trimmed; segmenting rows into storage basins of various lengths.
- 3.2 The end cap shall have saw guides to allow easy cutting for various diameters of pipe that may be used to inlet the system.
- 3.3 The end cap shall have excess structural adequacies to allow cutting an orifice of any size at any invert elevation.
- 3.4 The primary face of an end cap shall be curved outward to resist horizontal loads generated near the edges of beds.
- 3.5 The end cap shall be manufactured in an ISO 9001:2000 certified facility.

15.0 Chamber Specifications for Contract Documents

STORMWATER CHAMBER SPECIFICATIONS:

- Chambers shall be StormTech SC-740, SC-310 or approved equal.
- Chambers shall conform to the requirements of ASTM F 2922, "Standard Specification for Polyethylene (PE) Corrugated Wall Stormwater Collection Chambers."
- 3. Chamber rows shall provide continuous, unobstructed internal space with no internal support panels.
- 4. The structural design of the chambers, the structural backfill and the installation requirements shall ensure that the load factors specified in the AASHTO LRFD Bridge Design Specifications, Section 12.12 are met for: 1) long-duration dead loads and 2) short-duration live loads, based on the AASHTO Design Truck with consideration for impact and multiple vehicle presences.
- Chambers shall conform to the requirements of ASTM F2787, "Standard Practice for Structural Design of Thermoplastic Corrugated Wall Stormwater Collection Chambers."

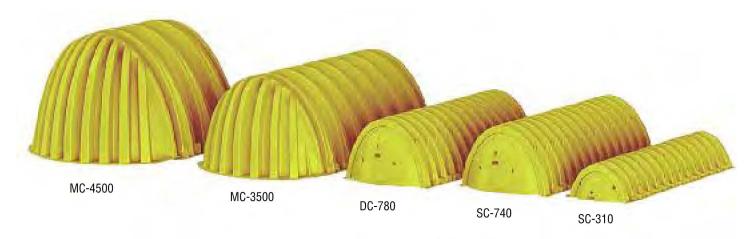
- 6. Only chambers that are approved by the engineer will be allowed. The contractor shall submit (3 sets) of the following to the engineer for approval before delivering chambers to the project site:
 - A structural evaluation by a registered structural engineer that demonstrates that the load factors specified in the AASHTO LRFD Bridge Design Specifications, Section 12.12 are met. The 50-year creep modulus data specified in ASTM F2922 must be used as part of the AASHTO structural evaluation to verify long-term performance.
- Chambers shall be produced at an ISO 9001 certified manufacturing facility.
- All design specifications for chambers shall be in accordance with the manufacturer's latest design manual.
- 9. The installation of chambers shall be in accordance with the manufacturer's latest installation instructions.

STORMWATER CHAMBER SPECIFICATIONS:

- 1. Chambers shall be StormTech DC-780 or approved equal.
- 2. Chambers shall conform to the requirements of ASTM F 2418, "Standard Specification for Polypropylene (PP) Corrugated Wall Stormwater Collection Chambers."
- 3. Chamber rows shall provide continuous, unobstructed internal space with no internal support panels.
- 4. The structural design of the chambers, the structural backfill and the installation requirements shall ensure that the load factors specified in the AASHTO LRFD Bridge Design Specifications, Section 12.12 are met for: 1) long-duration dead loads and 2) short-duration live loads, based on the AASHTO Design Truck with consideration for impact and multiple vehicle presences.
- Chambers shall conform to the requirements of ASTM F2787, "Standard Practice for Structural Design of Thermoplastic Corrugated Wall Stormwater Collection Chambers."

- 6. Only chambers that are approved by the engineer will be allowed. The contractor shall submit (3 sets) of the following to the engineer for approval before delivering chambers to the project site:
 - A structural evaluation by a registered structural engineer that demonstrates that the load factors specified in the AASHTO LRFD Bridge Design Specifications, Section 12.12 are met. The 50-year creep modulus data specified in ASTM F2418 must be used as part of the AASHTO structural evaluation to verify long-term performance.
- Chambers shall be produced at an ISO 9001 certified manufacturing facility.
- All design specifications for chambers shall be in accordance with the manufacturer's latest design manual.
- 9. The installation of chambers shall be in accordance with the manufacturer's latest installation instructions.

A Family of Products and Services for the Stormwater Industry:



- MC-3500 and MC-4500 Chambers and End Caps
- SC-310 and SC-740 Chambers and End Caps
- DC-780 Chambers and End Caps
- · Fabricated End Caps
- · Fabricated Manifold Fittings
- Patented Isolator Row for Maintenance and Water Quality
- · Chamber Separation Spacers

- In-House System Layout Assistance
- On-Site Educational Seminars
- Worldwide Technical Sales Group
- Centralized Product Applications Department
- Research and Development Team
- Technical Literature, O&M Manuals and Detailed CAD drawings all downloadable via our Web Site

StormTech provides state of the art products and services that meet or exceed industry performance standards and expectations. We offer designers, regulators, owners and contractors the highest quality products and services for stormwater management that "Saves Valuable Land and Protects Water Resources."

Please contact one of our inside project application professionals or Engineered Product Managers (EPMs) to discuss your particular application. A wide variety of technical support material is available in print, electronic media or from our website at www.stormtech.com. For any questions, please call StormTech at 888-892-2694.

A division of

70 Inwood Road, Suite 3 | Rocky Hill | Connecticut | 06067 860.529.8188 | 888.892.2694 | fax 866.328.8401 | fax 860.529.8040 | www.stormtech.com

www.stormtech.com

ADS "Terms and Conditions of Sale" are available on the ADS website, www.ads-pipe.com.

Advanced Drainage Systems, the ADS logo, and the green stripe are registered trademarks of Advanced Drainage Systems.

StormTech® and the Isolator® Row are registered trademarks of StormTech, Inc.

Green Building Council Member logo is a registered trademark of the U.S. Green Building Council.

APPENDIX E

SOILS PERCOLATION TESTING & WEB SOIL SURVEY INFORMATION

S:\PERC TEST MATERIALS\PERC TEST STORM.xlsx

	DATA SHEET					on chile	JOB NO	2000
Owner		peneiry		Address	-	IPP CAME	- IN	, oZ Block
Located a		/Indicate	pooroet oroes	ct)	POUTE 27		-	
Municipal	ity TOWN	OF NOT	77 CAS	TLE	Watershed	MUND	LONG	(SLAM)
SOIL INF	ILTRATION T	EST DATA						
Presoak [Date:	_ 7	27/22		Run Date:	7/27/27	٤	
						IN IEU TE AT	1011	
Hole #		CLOC	KTIME			INFILTRAT	Water	Soil
Hole Number	Run No.	Start	Stop	Elapse Time Min.	Depth From Grd(wws)	To surface water (WUNES)	Level Drop In	Rate In/Hr Drop
1	1	826	856	30	42	18	10	20
	2	856	926	30	42	18	9	18
	3	926	956	30	42	18	8	16
	4							
2	1	812	842	30	42	18	20	40
	2	842	912	30	42	18	20	40
	3	912	942	30	42	18	20	40
	4		400 to the con-					
3	1							
	2							
	3							
	4							
4	1							
	2							
	3							
	4							
					Dana tant da		Sint	0116

¹⁾ Tests to be repeated at same depth until approximately equal soil rates are obtained at each infiltration test hole. All data to be submitted for review.

²⁾ Depth measurements to be made from top of hole. DO NOT REPORT INCREMENTS OF LESS THAN ONE INCH.

		TION OF SOILS ENCOUNTERED	IN TEST HOLES
DEPTH	HOLE NO1 HOLE		3 HOLE NO. 4
G.L.	1		
6"	TOP SOIL	TUP SOIL	
1	L	4	
12"	1	1	
18"		FILL	
(24")	File	4	
30"	The second second		
(36")			
42"			
	1	Sun LOAM	
48"	SILTY LOAM	with few	
54"	WITH FEW	CUBBLA	
60"	CUBBUET	Y	
66"	1		
72"			
		11/1	
78"			
84"	- NO GW		
WAO OD	NO POLI		
INDICATI	OUNDWATER ENCOUNTERED E LEVEL AT WHICH GROUND	WATER IS ENCOUNTERED	NA
	E LEVEL AT WHICH WATER R STS MADE BY	ISES AFTER BEING ENCOUNTER SMC, PUL DA	RED MIN ATE OF DEEP TESTS 7/27/22
			1015
Soil Rate	Used: (6 IN) AR MIN	DESIGN 1" Drop: -	
			SENEW PO
Name	RIUX BOHLA	Signature	BOHLANT
Address	JMC, PLLC	SEAL	15/5 SA SE E
	120 Bedford Road Armonk, NY 10504		Wolveer R. P. S.
E 1858		T OTO DAI olem	
F:\PERC	TEST TEMPLATES\PERC TES	I STURM.XISX	100532 NAP
			JOFES

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing Yes

State New York

Location

Longitude 73.687 degrees West **Latitude** 41.135 degrees North

Elevation 0 feet

Date/Time Mon, 12 Jul 2021 07:14:58 -0400

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.34	0.52	0.64	0.84	1.05	1.31	1yr	0.91	1.23	1.50	1.85	2.28	2.81	3.18	1yr	2.49	3.06	3.55	4.26	4.91	1yr
2yr	0.40	0.62	0.77	1.02	1.28	1.60	2yr	1.10	1.49	1.84	2.27	2.79	3.43	3.86	2yr	3.03	3.71	4.26	5.05	5.72	2yr
5yr	0.47	0.73	0.92	1.23	1.58	1.99	5yr	1.36	1.83	2.30	2.85	3.51	4.31	4.88	5yr	3.81	4.69	5.44	6.33	7.10	5yr
10yr	0.53	0.83	1.05	1.42	1.85	2.36	10yr	1.60	2.15	2.73	3.40	4.18	5.12	5.84	10yr	4.53	5.61	6.55	7.52	8.36	10yr
25yr	0.61	0.97	1.24	1.72	2.29	2.95	25yr	1.97	2.66	3.43	4.28	5.28	6.44	7.40	25yr	5.70	7.12	8.38	9.43	10.38	25yr
50yr	0.69	1.11	1.43	2.00	2.69	3.50	50yr	2.32	3.12	4.08	5.10	6.28	7.67	8.86	50yr	6.78	8.52	10.09	11.21	12.24	50yr
100yr	0.79	1.27	1.64	2.33	3.17	4.15	100yr	2.74	3.67	4.86	6.08	7.50	9.13	10.61	100yr	8.08	10.21	12.17	13.32	14.43	100yr
200yr	0.89	1.46	1.89	2.71	3.74	4.93	200yr	3.23	4.32	5.78	7.26	8.94	10.89	12.72	200yr	9.64	12.23	14.68	15.83	17.02	200yr
500yr	1.07	1.76	2.29	3.33	4.66	6.19	500yr	4.02	5.35	7.28	9.16	11.30	13.75	16.17	500yr	12.17	15.55	18.81	19.89	21.18	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.26	0.40	0.48	0.65	0.80	0.96	1yr	0.69	0.94	1.29	1.60	2.00	2.58	2.74	1yr	2.28	2.64	3.20	3.72	4.24	1yr
2yr	0.39	0.61	0.75	1.01	1.24	1.49	2yr	1.07	1.45	1.70	2.17	2.74	3.32	3.74	2yr	2.94	3.60	4.13	4.89	5.56	2yr
5yr	0.43	0.66	0.82	1.13	1.44	1.74	5yr	1.24	1.70	1.97	2.57	3.21	3.96	4.51	5yr	3.51	4.34	5.01	5.82	6.58	5yr
10yr	0.47	0.72	0.89	1.24	1.60	1.96	10yr	1.38	1.92	2.22	2.93	3.64	4.53	5.20	10yr	4.01	5.00	5.79	6.57	7.47	10yr
25yr	0.50	0.77	0.95	1.36	1.79	2.28	25yr	1.55	2.23	2.57	3.46	4.29	5.39	6.28	25yr	4.77	6.04	7.01	7.69	8.81	25yr
50yr	0.53	0.80	1.00	1.44	1.93	2.55	50yr	1.67	2.49	2.89	3.94	4.87	6.15	7.25	50yr	5.44	6.97	8.09	8.59	9.98	50yr
100yr	0.56	0.84	1.06	1.53	2.09	2.83	100yr	1.81	2.77	3.25	4.50	5.48	7.02	8.38	100yr	6.21	8.06	9.34	9.63	11.31	100yr
200yr	0.59	0.89	1.13	1.63	2.27	3.16	200yr	1.96	3.09	3.66	5.14	6.23	7.99	9.68	200yr	7.07	9.31	10.80	10.70	12.82	200yr
500yr	0.63	0.94	1.20	1.75	2.49	3.66	500yr	2.15	3.58	4.29	6.19	7.39	9.51	11.71	500yr	8.41	11.26	13.06	12.27	15.11	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.37	0.57	0.70	0.94	1.16	1.40	1yr	1.00	1.37	1.59	2.08	2.61	3.04	3.45	1yr	2.69	3.32	3.83	4.61	5.31	1yr
2yr	0.43	0.66	0.82	1.10	1.36	1.58	2yr	1.18	1.55	1.81	2.31	2.89	3.55	3.99	2yr	3.14	3.84	4.42	5.30	5.93	2yr
5yr	0.51	0.79	0.98	1.35	1.72	2.02	5yr	1.48	1.97	2.32	2.97	3.71	4.66	5.27	5yr	4.12	5.07	5.88	6.84	7.64	5yr
10yr	0.61	0.94	1.16	1.62	2.09	2.43	10yr	1.81	2.37	2.82	3.59	4.51	5.74	6.51	10yr	5.08	6.26	7.30	8.40	9.29	10yr
25yr	0.77	1.18	1.46	2.09	2.75	3.13	25yr	2.37	3.06	3.65	4.63	5.80	7.56	8.62	25yr	6.69	8.29	9.75	11.05	12.02	25yr
50yr	0.92	1.40	1.74	2.51	3.37	3.80	50yr	2.91	3.72	4.45	5.61	7.04	9.33	10.66	50yr	8.26	10.25	12.14	13.60	14.61	50yr
100yr	1.11	1.68	2.10	3.03	4.16	4.63	100yr	3.59	4.52	5.42	6.81	8.69	11.53	13.20	100yr	10.21	12.69	15.14	16.77	17.78	100yr
200yr	1.33	2.01	2.55	3.68	5.14	5.62	200yr	4.43	5.50	6.61	8.24	10.57	14.26	16.34	200yr	12.62	15.71	18.88	20.67	21.65	200yr
500yr	1.73	2.57	3.31	4.81	6.84	7.27	500yr	5.90	7.11	8.59	10.63	13.72	18.89	21.69	500yr	16.72	20.85	25.30	27.36	28.07	500yr

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) C 1:12,000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil Water Features line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed В Transportation B/D Rails Please rely on the bar scale on each map sheet for map measurements. Interstate Highways Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines **Background** distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more A/D accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: Westchester County, New York Survey Area Data: Version 16, Jun 11, 2020 C/D Soil map units are labeled (as space allows) for map scales D 1:50,000 or larger. Not rated or not available Date(s) aerial images were photographed: Dec 31, 2009—Oct 16, 2017 **Soil Rating Points** The orthophoto or other base map on which the soil lines were Α compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. В B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Се	Catden muck, 0 to 2 percent slopes	B/D	31.4	19.5%
CrC	Charlton-Chatfield complex, 0 to 15 percent slopes, very rocky	В	18.4	11.5%
CsD	Chatfield-Charlton complex, 15 to 35 percent slopes, very rocky	В	0.5	0.3%
CtC	Chatfield-Hollis-Rock outcrop complex, 0 to 15 percent slopes	В	6.1	3.8%
LcB	Leicester loam, 3 to 8 percent slopes, stony	A/D	4.1	2.6%
NcA	Natchaug muck, 0 to 2 percent slopes	B/D	5.4	3.3%
PnB	Paxton fine sandy loam, 3 to 8 percent slopes	С	47.6	29.6%
PnC	Paxton fine sandy loam, 8 to 15 percent slopes	С	6.6	4.1%
RdB	Ridgebury complex, 3 to 8 percent slopes	D	5.3	3.3%
Ub	Udorthents, smoothed	В	28.8	17.9%
W	Water		0.2	0.1%
WdB	Woodbridge loam, 3 to 8 percent slopes	C/D	6.4	4.0%
Totals for Area of Inter	rest		160.8	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

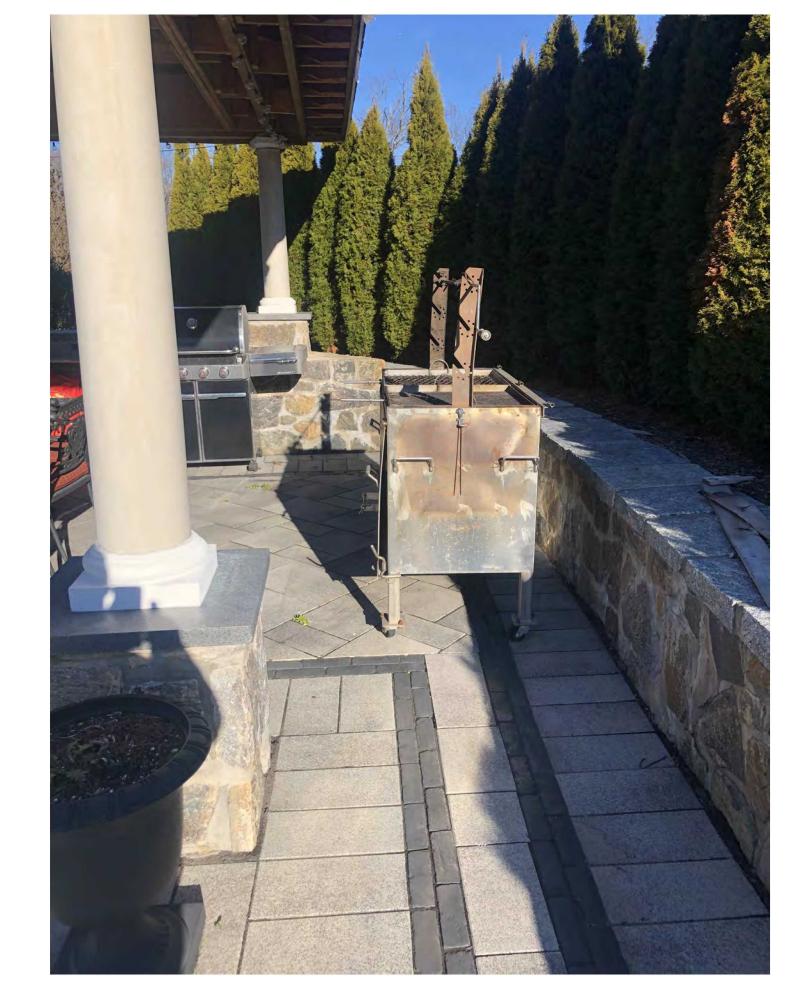
Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

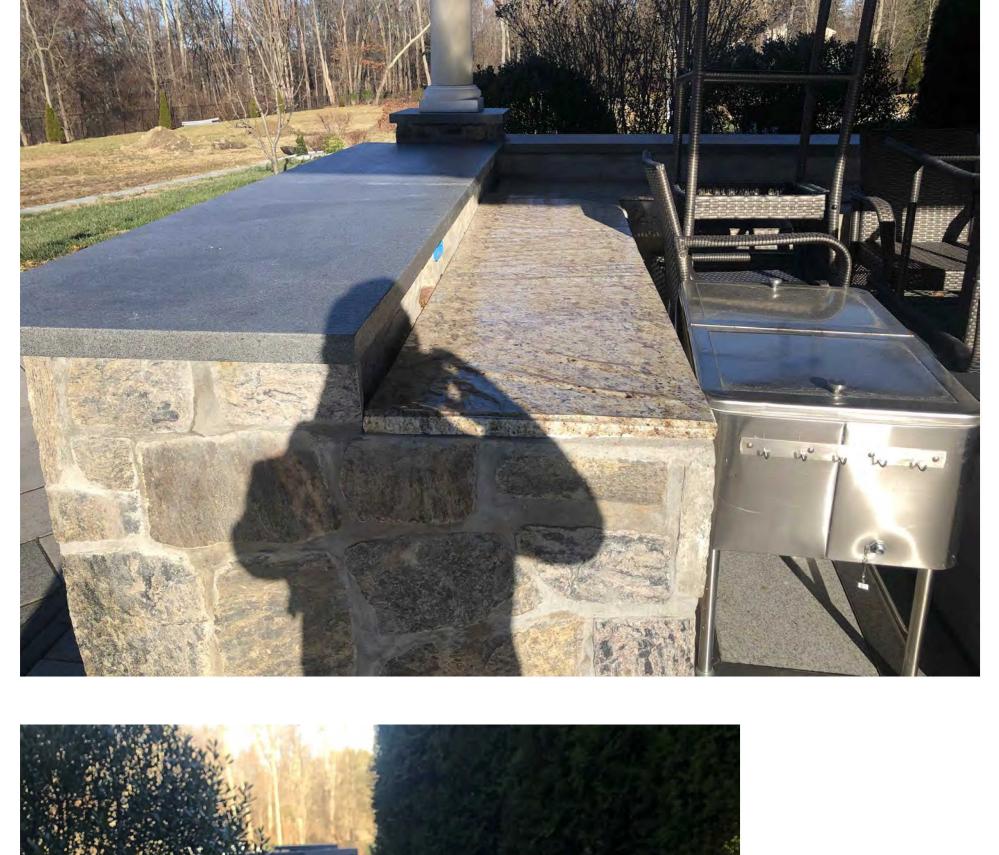
If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

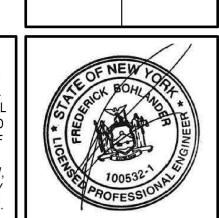
Rating Options


Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher





PHOTOS PATIO

ANY ALTERATION OF PLANS, SPECIFICATIONS, PLATS AND REPORTS BEARING THE SEAL OF A LICENSED PROFESSIONAL ENGINEER OR LICENSED LAND SURVEYOR IS A VIOLATION OF SECTION 7209 OF THE NEW YORK STATE EDUCATION LAW, EXCEPT AS PROVIDED FOR BY SECTION 7209, SUBSECTION 2.

Ву	Drawn:	DK	Approved:	A
RB	Scale:	N.T.S.		
	Date:	01/09/	/2023	
	Project No:	20044		
	20044-SITE DK	PAT	10	s
	Drawing No:			
		D_	_1	

0.	Revision	Date	Ву	Drawr
•	PLANNING BOARD SUBMISSION	01/09/2023	RB	Scale:
				Projec
				20044 -3 Drawi
				yan 363 barasa
	0 / 5 ///			

THE

& MRS. PEREIRA 4 TRIPP LANE 1 OF NORTH CASTLE, NY

Site Design Consultants

Civil Engineers • Land Planners

April 18, 2022

Robert Melillo, Building Inspector Town of North Castle 17 Bedford Road Armonk, NY 10504

Re: Pereira – 4 Trip Lane, Armonk

Dear Mr. Melillo:

We have been retained by the Pereira Family regarding retaining walls which have been constructed on their property without filing for the required permits to your department, specifically, the stone and mortar walls along the east and west property lines. The walls along the east property line are only partially being considered as part of the existing walls to remain. An additional length of dry stacked stone wall along the east property line is to be removed and reconstructed as per the enclosed plan.

As stated, the existing walls to remain were constructed by the homeowner without filing the proper construction plans and permits. Hence, the construction of the walls were not supervised or inspected by a town official or licensed design professional. We, therefore, cannot attest to the construction. However, we did inspect the walls in their current state. We specifically were looking for any signs of movement such as collapse, settlement, bowing out, or leaning of the wall. We found none of these conditions. The wall appears to be sound and stable. We, therefore, believe the walls at this point in time appear to be structurally sound.

The dry stacked portion of the east wall is to be disassembled and rebuilt. This portion is about 190 lf. We have prepared a design and plan with the necessary detail to reconstruct this wall as a continuation of the stone and mortar wall. The wall has a maximum height of 5 feet. The plan and supporting calculations are enclosed for your review as follows:

- Two copies of the Plan titled "Retaining Wall Plan prepared for Ana Pereira" dated 4/7/22, Sheet 1 of 1; and
- Two copies of the Structural Wall Calculations.

If you have any question or comments, please contact us. Thank you

J. Cermele, P.E., Consulting TE

A. Nestor, P.E.

Proposed Retaining Wall Design Prepared for Pereira Residence 4 Tripp Lane Armonk, NY

Prepared By Site Design Consultants

251 F Underhill Avenue Yorktown Heights, NY 10598 April 18, 2022

Exposed Wall Height 5'

Design Parameters		
Top width, B	2.00	ft
Bottom width, C1	2.00	ft
Bottom width, C2	1.00	ft
Total Bottom width, C	3.00	ft
Footing depth, D	1.00	ft
Footing width, E1	0.75	ft
Footing width, E2	3.00	ft
Footing width, E3	0.50	ft
Total Footing width, E	4.25	ft
Exposed wall height, H	5.00	ft
Burried height, J	2.00	ft
Wall height (design), H'	8.00	ft
Gamma (H'/3)	2.67	ft
Unit weight of wall	170	pcf
Footing Material	Gravel	
Unit weight of footing	125	pcf
Back Angle, β	27	degrees
Unit weight of soil	110	pcf
Friction angle of soil, φ	32	degrees
Surcharge load	0	psf

Pressure Calculations

Ka = 0.472681

Pa = 1663.836 Pah = 1482.489 Pav = 755.366

Pa surcharge = 0.000 Pah surcharge = 0.000

Pav surcharge = 0.000

1	0	В		β
H'	н	14.76		
	J	\$		
· •		C1	C2 C E2	→ →
	E1	*	E2	E3

Resisting	Moment			
		Weight	Arm	Moment
Wall	Part 1	2380.00	1.75	4165.00
	Part 2	595.00	3.08	1834.58
Footing		531.25	2.13	1128.91
Pav		755.37	4.25	3210.30
Sum		4261.62		10338.79

-	Prepar		Design C	onsultants	
25	1 F Unde		Yorktown I 18, 2022	Heights, NY 10598	3
Overturning Moment			Λ	Managet	
Pah Pah surcharge Total overturning Mom e	. m 4	1482.49 0.00	Arm 2.67 4.00	Moment 3953.30 0.00	
	ent		3953.30		
FS overturning M _{resisting} /M _{ov}	verturning =	2.615229	> 1.50	ок	
D 14 5 1					
Resisting Forces	tan (φ) =	0.62			
F _{resisting} = Sum We	iaht * f =	2662.953			
FS Sliding	.9.1.	2002.000			
F _{resisting} / Pah =		1.796272	> 1.50	ок	
Tooloung			1.00		
					_
$\frac{\overline{x}}{x} = \sum_{toe} M_{toe} / \sum_{toe} W$					7
ccentricity $\overline{x} = \Sigma M_{toe}/\Sigma W$	_ _ _ _ =	1.50	CW mor	nent is +	Bowles pg 455
			CW mor	nent is +	Bowles pg 455
	e =	B/2- x			
			CW mon	nent is + OK	Bowles pg 455
	e = e =	B/2- x			
x = ΣM _{toe} /ΣW Allowable Bearing Force	e = e =	B/2- x			
x = ΣM _{toe} /ΣW Allowable Bearing Force	e = e =	B/2- x 0.63	<=L/6		
X = ΣM _{toe} /ΣW Allowable Bearing Force	e = e = es q allow =	B/2- x 0.63	<=L/6		
X = ΣM _{toe} /ΣW Allowable Bearing Force	e = e = es q allow = q actual =	B/2- x 0.63 6000 P/A*(1+	<=L/6 psf 6e/L)		
X = ΣM _{toe} /ΣW Allowable Bearing Force	e = e = es q allow = q actual =	B/2- x 0.63 6000 P/A*(1+	<=L/6 psf 6e/L) MIN		

Proposed Retaining Wall Design Prepared for Pereira Residence 4 Tripp Lane Armonk, NY

Prepared By Site Design Consultants

251 F Underhill Avenue Yorktown Heights, NY 10598 April 18, 2022

Exposed Wall Height 5'

Design Parameters		
Top width, B	2.00	ft
Bottom width, C1	2.00	ft
Bottom width, C2	1.00	ft
Total Bottom width, C	3.00	ft
Footing depth, D	1.00	ft
Footing width, E1	0.75	ft
Footing width, E2	3.00	ft
Footing width, E3	0.50	ft
Total Footing width, E	4.25	ft
Exposed wall height, H	5.00	ft
Burried height, J	2.00	ft
Wall height (design), H'	8.00	ft
Gamma (H'/3)	2.67	ft
Unit weight of wall	170	pcf
Footing Material	Gravel	
Unit weight of footing	125	pcf
Back Angle, β	27	degrees
Unit weight of soil	110	pcf
Friction angle of soil, φ	32	degrees
Surcharge load	0	psf

Pressure Calculations

Ka = 0.472681

Pa = 1663.836 Pah = 1482.489

Pav = 755.366

Pa surcharge = 0.000 Pah surcharge = 0.000

Pav surcharge = 0.000

Resisting Moment

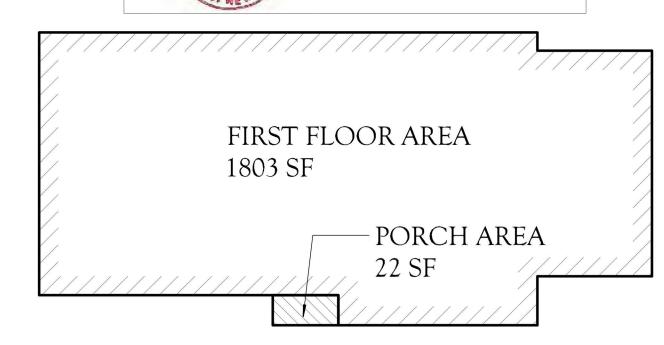
		Weight	Arm	Moment
Wall	Part 1	2380.00	1.75	4165.00
	Part 2	595.00	3.08	1834.58
Footing		531.25	2.13	1128.91
Pav		755.37	4.25	3210.30
Sum		4261.62		10338.79

H' H		THE R. LEWIS CO., LANSING, MICH.		
	н	是到		
	J			
	E1	4		▶ € 3
		J	J C1	C1 C2

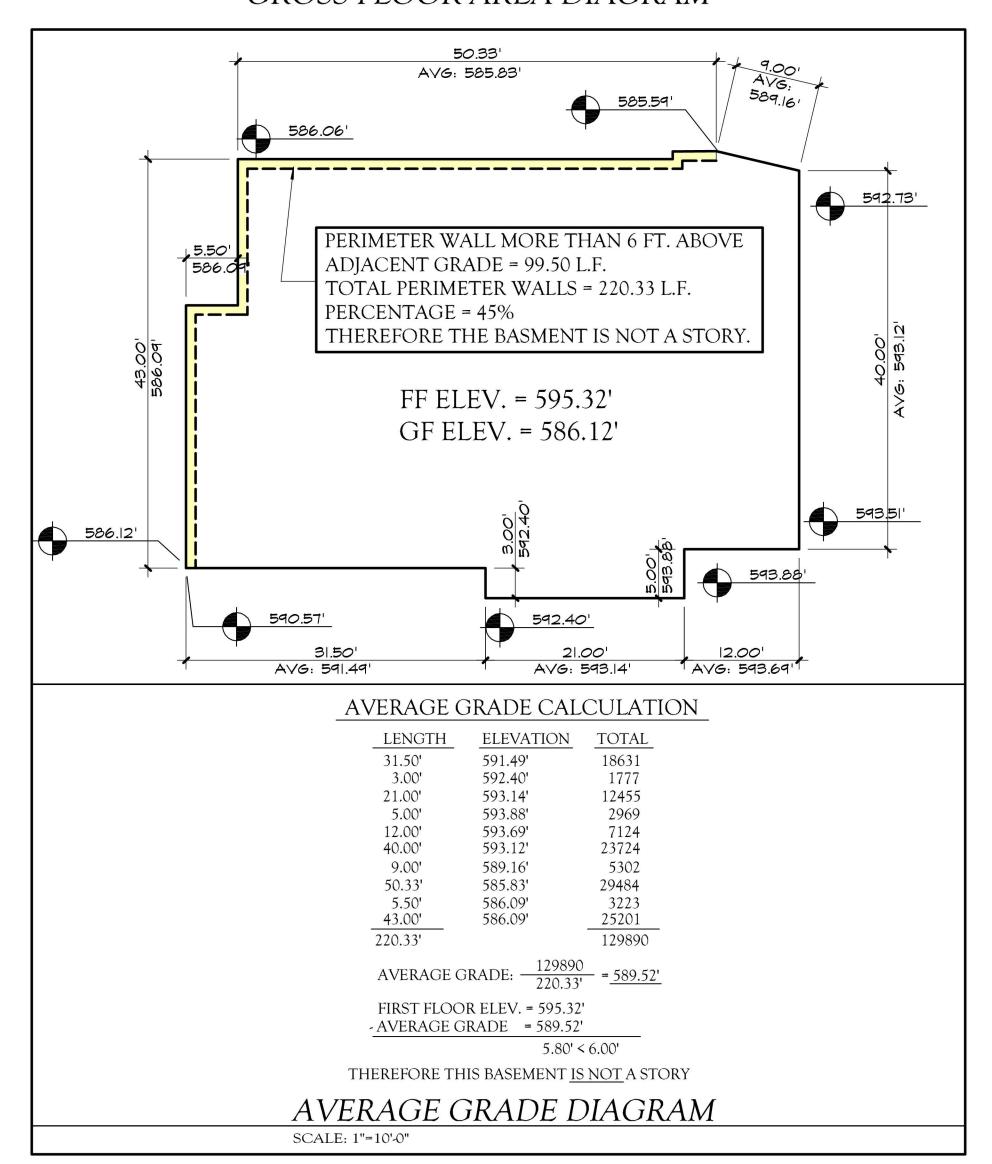
	4 Tripp La		red for Pereira nk, NY	
	erhill Avenue		Consultants Heights, NY 10598	
Overturning Moment				
Pah Pah surcharge Total overturning Moment	1482.49 0.00	Arm 2.67 4.00 3953.30	Moment 3953.30 0.00	
FS overturning				
$M_{resisting}/M_{overturning}$ =	2.615229	> 1.50	ок	
Resisting Forces $f = tan (\phi) = F_{resisting} = Sum Weight * f = f$				
S Sliding				
F _{resisting} / Pah =	1.796272	> 1.50	ОК	
ccentricity				
$\bar{x} = \Sigma M_{toe} / \Sigma W$				
$\overline{x} =$	1.50	CW mor	nent is +	Bowles pg 455
x = e =		CW mor	nent is +	Bowles pg 455
	2.	CW mor	nent is +	Bowles pg 455
e = e =	B/2- x			
e =	B/2- x 0.63			
e = e = Allowable Bearing Forces	B/2- x 0.63 6000	<=L/6		
e = e = Allowable Bearing Forces q allow = q actual =	B/2- x 0.63 6000	<=L/6		
e = e = Allowable Bearing Forces q allow = q actual =	B/2- x 0.63 6000 P/A*(1+	<=L/6 psf 6e/L)		
e = e = Allowable Bearing Forces q allow = q actual =	B/2- x 0.63 6000 P/A*(1+	<=L/6 psf 6e/L) MIN		

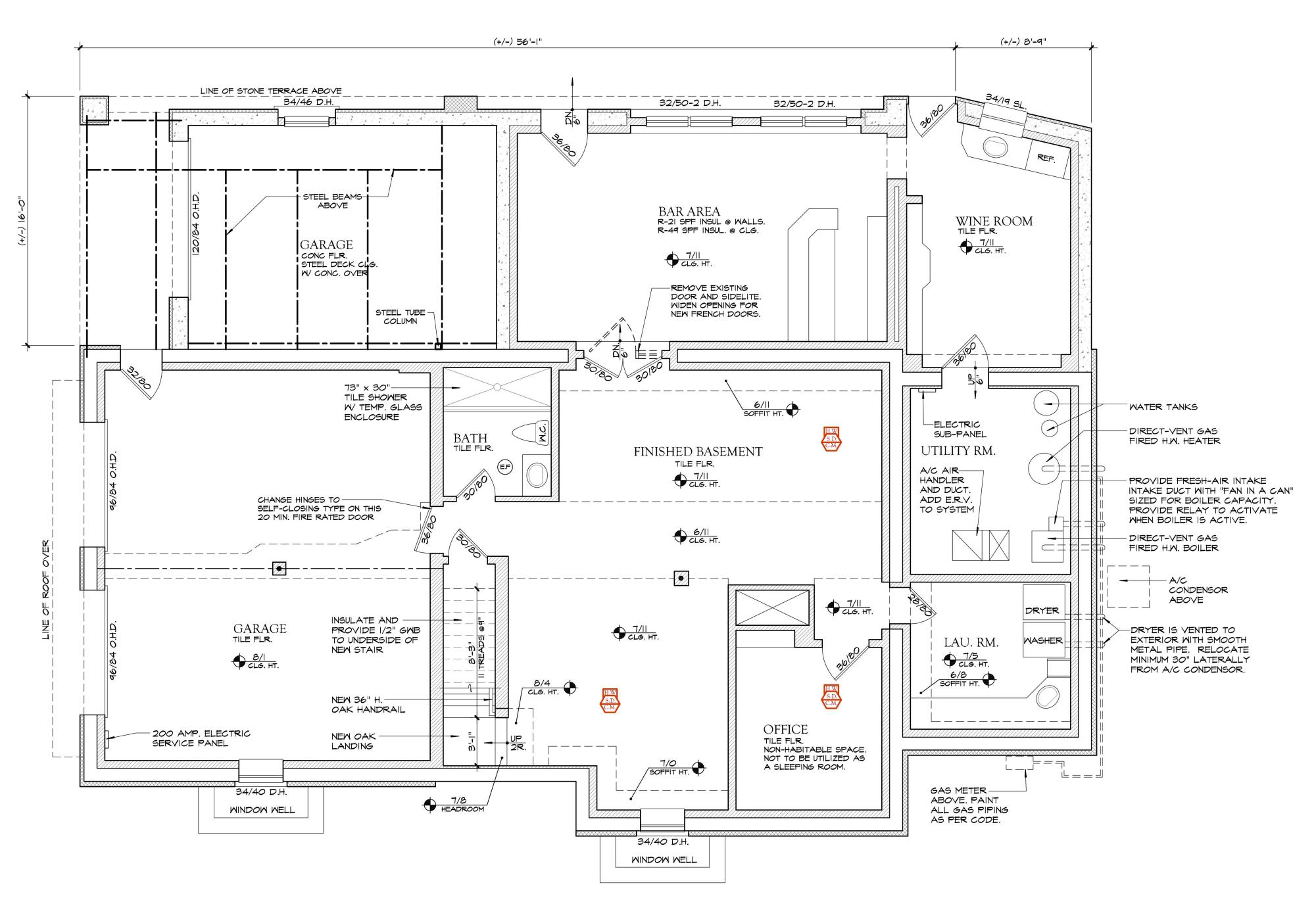
.

TOWN OF NORTH CASTLE


WESTCHESTER COUNTY 17 Bedford Road Armonk, New York 10504-1898

PLANNING DEPARTMENT Adam R. Kaufman, AICP Director of Planning


Telephone: (914) 273-3542 Fax: (914) 273-3554 www.northcastleny.com


FLOOR AREA CALCULATIONS WORKSHEET

Applica	tion Name or Identifying Title:	Pereira residence	Date:	16-20
Tax Ma	p Designation or Proposed Lot No.:	108.02-1-10		
Floor A				
1.	Total Lot Area (Net Lot Area for Lo	ots Created After 12/13/06):	8	39820
2.	Maximum permitted floor area (pe	r Section 213-22.2B):	1	10230
3.	Amount of floor area contained wit	hin first floor: _ proposed =	_	1803
4.	Amount of floor area contained with $\underline{0}$ existing $+\underline{0}$	hin second floor: _ proposed =		
5.	Amount of floor area contained with $\underline{0}$ existing $+\underline{0}$	hin garage: _ proposed = NOT A STORY	_	0
6.		hin porches capable of being enclosed: _ proposed =		22
7.	Amount of floor area contained with existing +	hin basement (if applicable – see definition): _ proposed = NOT A STORY	:	0
8.	Amount of floor area contained wit 0 existing $+$ 0	hin attic (if applicable – see definition): _ proposed =		0
9.	Amount of floor area contained wit 0 existing $+$ 0	hin all accessory buildings: _ proposed =		0
10.	Proposed floor area: Total of Lines	3 - 9 =	_1	825: OK
and the		our proposal complies with the Town's max l Project Review Committee for review. If Livn's regulations.		
Signatu	re PAU ing	g Worksheet	9-16-20 Date	

GROSS FLOOR AREA DIAGRAM

AS-BUILT BASEMENT FLOOR PLAN

SCALE: 1/4"= 1':0"

DOCUMENT COPYRICHT®
Drawings and specifications are protected by copyright laws and shall remain the property of Get My CO Corp.

Any use or reproduction, in whole or in part, of these documents without written authorization by contract is strictly prohibited.

www.GETMYCO.com

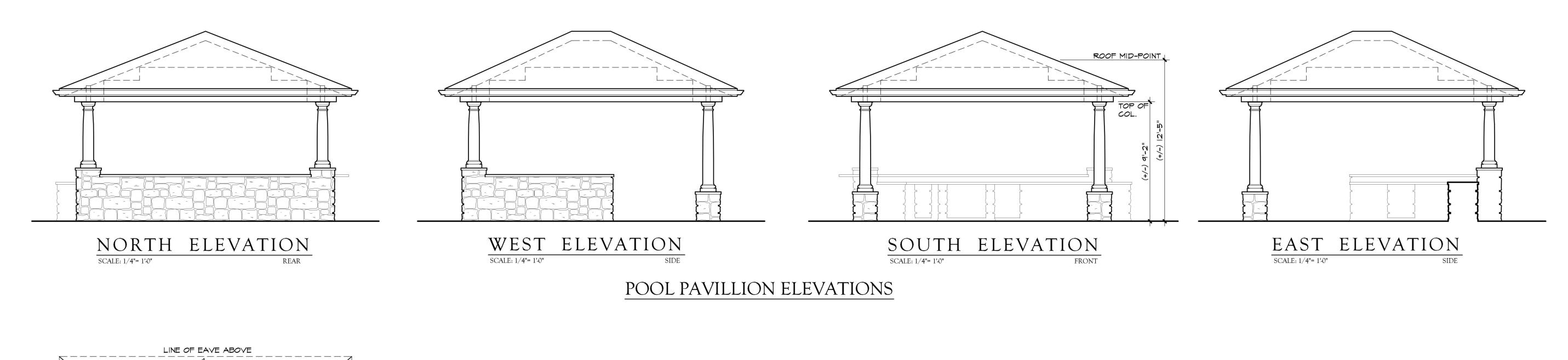
ccupancy Pros asantville, New York 10570 copro.getmyco@gmail.com

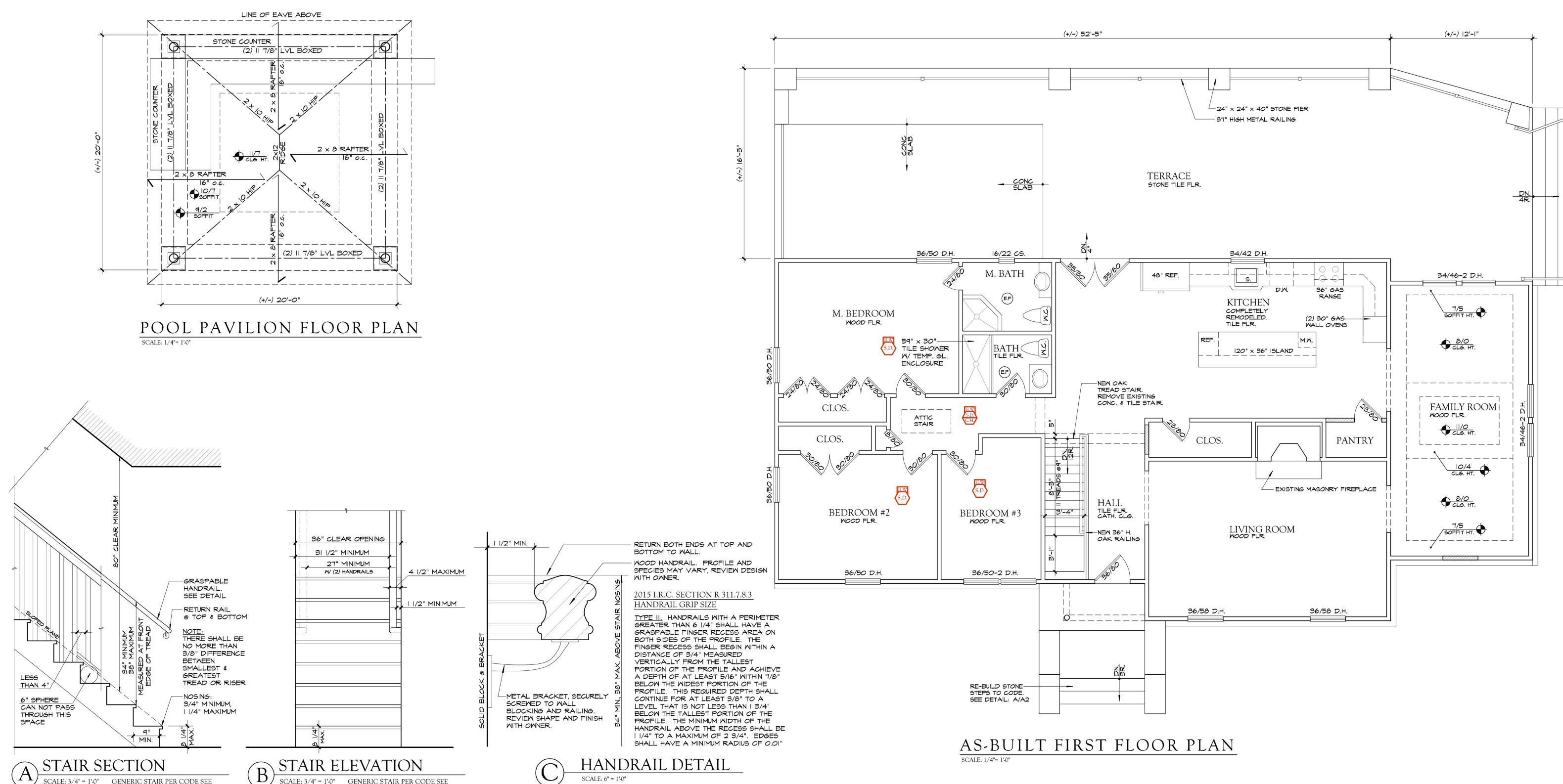
The Certificate of Occupancy Pros

Abeeler Avenue, Suite 203, Pleasantville, New York

Legalizations to the
Pereira Residence

OF NEW YORK


Revisions


Date: 09/16/20

Do Not
Scale Prints

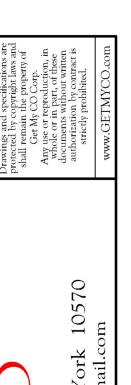
Sheet No.

Pereira

HANDRAIL DETAIL

SCALE: 1/4"= 1'-0"

LESS THAN 4"


SPACE

6" SPHERE
CAN NOT PASS
THROUGH THIS

GENERIC STAIR PER CODE SEE PLANS FOR SPECIFIC DIMENSIONS SCALE: 3/4" = 1'-0"

GENERIC STAIR PER CODE SEE

PLANS FOR SPECIFIC DIMENSIONS

to the idei

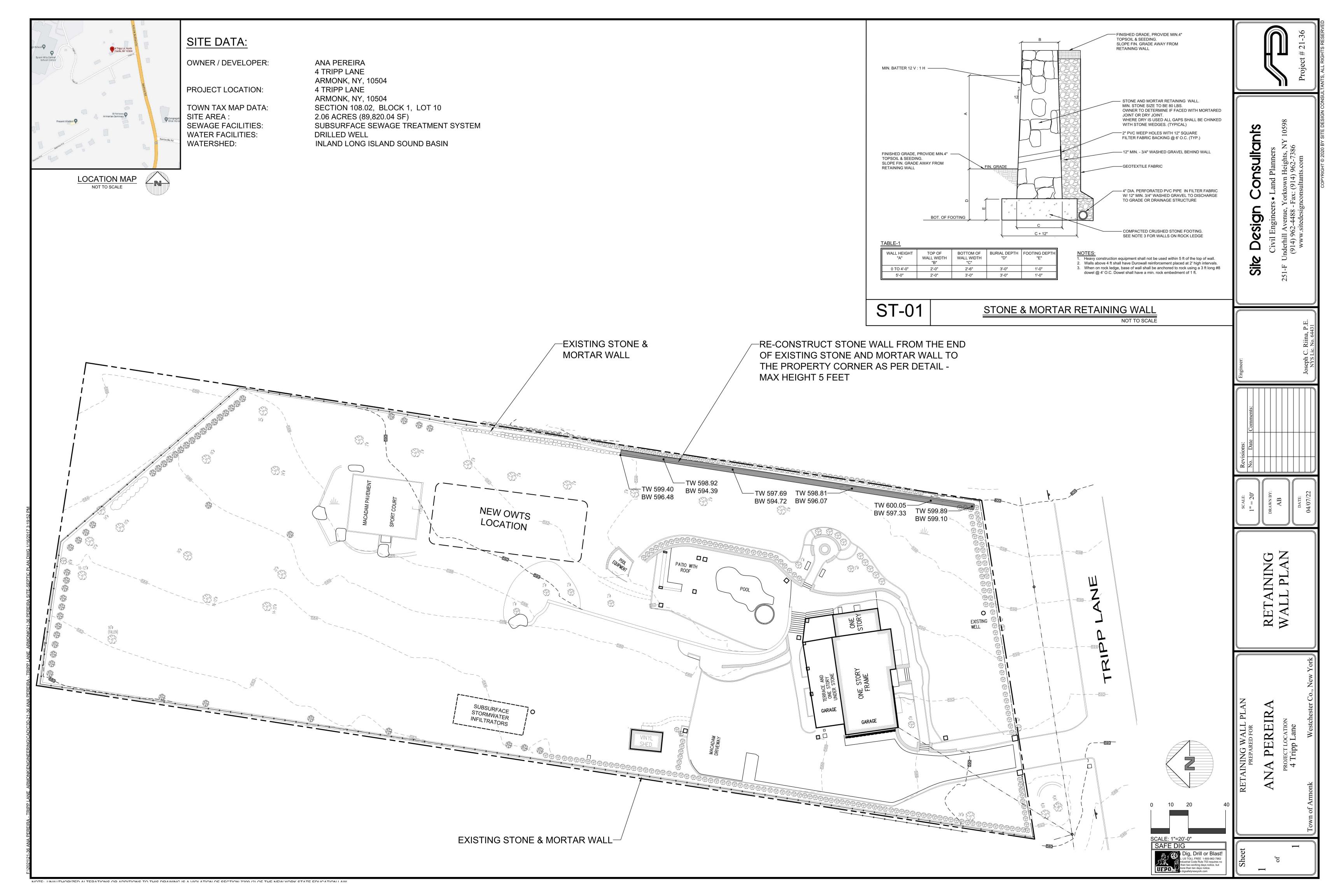
Revisions Date: 09/16/20

Do Not Scale Prints Sheet No.

Pereira

REAR VIEW FROM DRIVEWAY

NORTH ELEVATION


SCALE: 1/4"= 1'-0"

REAR

Date: 09/16/20 Do Not Scale Prints

Sheet No.

Pereira

Technical Report

prepared for:

Hydro Environmental Solutions

One Deans Bridge Road Somers NY, 10589 Attention: Bill Canavan

Report Date: 08/25/2022

Client Project ID: 4 Tripp Lane, Armonk, NY 10504

York Project (SDG) No.: 22H0961

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 08/25/2022

Client Project ID: 4 Tripp Lane, Armonk, NY 10504

York Project (SDG) No.: 22H0961

Hydro Environmental Solutions

One Deans Bridge Road Somers NY, 10589 Attention: Bill Canavan

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on August 16, 2022 and listed below. The project was identified as your project: 4 Tripp Lane, Armonk, NY 10504.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
22Н0961-01	S-1	Soil	08/04/2022	08/16/2022
22Н0961-02	S-2	Soil	08/04/2022	08/16/2022
22Н0961-03	S-3	Soil	08/04/2022	08/16/2022
22Н0961-04	S-4	Soil	08/04/2022	08/16/2022
22Н0961-05	S-5	Soil	08/04/2022	08/16/2022
22Н0961-06	S-6	Soil	08/04/2022	08/16/2022
22Н0961-07	Comp-1, C-1	Soil	08/04/2022	08/16/2022
22Н0961-08	Comp-2, C-2	Soil	08/04/2022	08/16/2022
22Н0961-09	Comp-3, C-3	Soil	08/04/2022	08/16/2022

General Notes for York Project (SDG) No.: 22H0961

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Cassie L. Mosher Laboratory Manager

Och I most

Date: 08/25/2022

Client Sample ID: S-1 York Sample ID: 22H0961-01

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 22H0961 4 Tripp Lane, Armonk, NY 10504 Soil August 4, 2022 3:00 pm 08/16/2022

Log-in Notes:

VOA-CONT

Volatile Organics, 8260 Comprehensive

Sample Prepared by Method: EPA 5035A

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		te/Time .nalyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	08/18/2022 06:36	8/2022 16:22 12058,NJDEP,I	BMC PADEP
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18 CTDOH,NELAC-NY10854,NELAC-NY	3/2022 16:22 12058,NJDEP,I	BMC PADEP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18 CTDOH,NELAC-NY10854,NELAC-NY	3/2022 16:22 12058,NJDEP,I	BMC PADEP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18 CTDOH,NELAC-NY10854,NELAC-NY	3/2022 16:22 12058,NJDEP	BMC
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18 CTDOH,NELAC-NY10854,NELAC-NY	8/2022 16:22 12058,NJDEP,I	BMC PADEP
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18 CTDOH,NELAC-NY10854,NELAC-NY	3/2022 16:22 12058,NJDEP,J	BMC PADEP
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18 CTDOH,NELAC-NY10854,NELAC-NY	8/2022 16:22 12058,NJDEP,I	BMC PADEP
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18 NELAC-NY10854,NELAC-NY12058,NJ	8/2022 16:22 DEP,PADEP	BMC
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:		3/2022 16:22	ВМС
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:		8/2022 16:22	ВМС
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18 CTDOH,NELAC-NY10854,NELAC-NY	3/2022 16:22 12058,NJDEP,J	BMC PADEP
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:		8/2022 16:22	BMC
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18 CTDOH,NELAC-NY10854,NELAC-NY	8/2022 16:22 12058,NJDEP,I	BMC PADEP
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:		3/2022 16:22	BMC
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:		8/2022 16:22	BMC
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:		3/2022 16:22	BMC
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:		8/2022 16:22	BMC
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18 CTDOH,NELAC-NY10854,NELAC-NY	3/2022 16:22 12058,NJDEP,J	BMC PADEP
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:		3/2022 16:22	BMC
123-91-1	1,4-Dioxane	ND		ug/kg dry	55	110	1	EPA 8260C Certifications:		8/2022 16:22	BMC
78-93-3	2-Butanone	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:		3/2022 16:22	BMC PADEP
591-78-6	2-Hexanone	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:		8/2022 16:22	BMC

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE **RICHMOND HILL, NY 11418** www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166 ClientServices@ Page 4 of 73

Sample Notes: VOA-CONT

Client Sample ID: S-1 **York Sample ID:** 22H0961-01

York Project (SDG) No. 22H0961

Client Project ID 4 Tripp Lane, Armonk, NY 10504 Matrix Soil

Collection Date/Time August 4, 2022 3:00 pm Date Received 08/16/2022

Volatile Organics, 8260 Comprehensive

Log-in Notes:

VOA-CONT

Sample Notes: VOA-CONT

Sample Prepare	ed by Method: EPA 5035A											
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 16:22 AC-NY12058,NJDEP	BMC PADEP
67-64-1	Acetone	ND		ug/kg dry	5.5	11	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 16:22 AC-NY12058,NJDEP	BMC P,PADEP
107-02-8	Acrolein	ND		ug/kg dry	5.5	11	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 16:22 AC-NY12058,NJDEP	BMC P,PADEP
107-13-1	Acrylonitrile	ND		ug/kg dry	2.8	5.5	Ï	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 16:22 AC-NY12058,NJDEP	BMC P,PADEP
71-43-2	Benzene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 16:22 AC-NY12058,NJDEP	BMC P,PADEP
74-97-5	Bromochloromethane	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	NELAC-NY	08/18/2022 06:36 10854,NELAC-NY1	08/18/2022 16:22 2058,NJDEP,PADEP	BMC
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 16:22 AC-NY12058,NJDEP	BMC PADEP
75-25-2	Bromoform	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 16:22 AC-NY12058,NJDEP	BMC P,PADEP
74-83-9	Bromomethane	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 16:22 AC-NY12058,NJDEP	BMC P,PADEP
75-15-0	Carbon disulfide	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 16:22 AC-NY12058,NJDEP	BMC P,PADEP
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 16:22 AC-NY12058,NJDEP	BMC P,PADEP
108-90-7	Chlorobenzene	ND		ug/kg dry	2.8	5.5	Ī	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 16:22 AC-NY12058,NJDEP	BMC PADEP
75-00-3	Chloroethane	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 16:22 AC-NY12058,NJDEP	BMC P,PADEP
67-66-3	Chloroform	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 16:22 AC-NY12058,NJDEP	BMC P,PADEP
74-87-3	Chloromethane	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 16:22 AC-NY12058,NJDEP	BMC P,PADEP
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 16:22 AC-NY12058,NJDEP	BMC P,PADEP
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 16:22 AC-NY12058,NJDEP	BMC P,PADEP
110-82-7	Cyclohexane	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	NELAC-NY	08/18/2022 06:36 10854,NELAC-NY1	08/18/2022 16:22 2058,NJDEP,PADEP	ВМС
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	NELAC-NY	08/18/2022 06:36 10854,NELAC-NY1	08/18/2022 16:22 2058,NJDEP,PADEP	BMC
74-95-3	Dibromomethane	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	NELAC-NY	08/18/2022 06:36 10854,NELAC-NY1	08/18/2022 16:22 2058,NJDEP,PADEP	BMC
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	NELAC-NY	08/18/2022 06:36 10854,NELAC-NY1	08/18/2022 16:22 2058,NJDEP,PADEP	BMC
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 16:22 AC-NY12058,NJDEP	BMC PADEP
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	NELAC-NY	08/18/2022 06:36 10854,NELAC-NY1	08/18/2022 16:22 2058,NJDEP,PADEP	ВМС

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

FAX (203) 357-0166

www.YORKLAB.com (203) 325-1371

Page 5 of 73

Log-in Notes:

Client Sample ID: S-1

York Sample ID: 22H0961-01

York Project (SDG) No. 22H0961

Client Project ID
4 Tripp Lane, Armonk, NY 10504

<u>Matrix</u> Soil

VOA-CONT

Collection Date/Time
August 4, 2022 3:00 pm

Sample Notes: VOA-CONT

Date Received 08/16/2022

Volatile Organics, 8260 Comprehensive

Sample Prepare	ed by Method: EPA 5035A									manual page transmission	VECTO AN ADMINIS	
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference l	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	CTDOH,N	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:22 AC-NY12058,NJDEF	BMC P,PADEP
79-20-9	Methyl acetate	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	NELAC-N	08/18/2022 06:36 Y10854,NELAC-NY1	08/18/2022 16:22 2058,NJDEP,PADEP	BMC
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.8	5.5	1	EPA 8260C Certifications:	CTDOH,N	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:22 AC-NY12058,NJDEF	BMC P,PADEP
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.8	5.5	1	EPA 8260C		08/18/2022 06:36 Y10854,NELAC-NY1	08/18/2022 16:22	ВМС
75-09-2	Methylene chloride	ND		ug/kg dry	5.5	11	1	EPA 8260C		08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:22	BMC
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C		08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:22	BMC
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C		08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:22	BMC
95-47-6	o-Xylene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C		08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:22	BMC
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.5	11	1	EPA 8260C		08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:22	BMC
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C		08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:22	BMC
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C		08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:22	BMC
100-42-5	Styrene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C		08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:22	BMC
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/kg dry	2.8	5.5	1	EPA 8260C		08/18/2022 06:36 Y10854,NELAC-NY1	08/18/2022 16:22	BMC
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C		08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:22	ВМС
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C		08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:22	BMC
108-88-3	Toluene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C		08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:22	BMC
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C		08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:22	BMC
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.8	5.5	1	EPA 8260C		08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:22	BMC
79-01-6	Trichloroethylene	ND		ug/kg dry	2.8	5.5	Ī	EPA 8260C		08/18/2022 06:36	08/18/2022 16:22	BMC
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.8	5.5	Ĩ	EPA 8260C		08/18/2022 06:36	08/18/2022 16:22	BMC
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.8	5.5	1	EPA 8260C		08/18/2022 06:36	08/18/2022 16:22	BMC
1330-20-7	Xylenes, Total	ND		ug/kg dry	8.3	17	1	EPA 8260C		08/18/2022 06:36	08/18/2022 16:22	BMC
	Surrogate Recoveries	Result		Anco	ptance Rang	Δ.		Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJDEP	,
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	119 %		Acce	77-125	•						

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 6 of 73

S-1 **Client Sample ID: York Sample ID:** 22H0961-01

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 22H0961 4 Tripp Lane, Armonk, NY 10504 August 4, 2022 3:00 pm Soil 08/16/2022

VOA-CONT

Sample Notes: VOA-CONT

Volatile Organics, 8260 Comprehensive

Log-in Notes:

Sample Prepared by Method: EPA 5035A

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
2037-26-5	Surrogate: SURR: Toluene-d8	96.2 %			85-120			•		

76-130

460-00-4 Surrogate: SURR: 95.4 %

p-Bromofluorobenzene

VOA-CONT **Log-in Notes: Total Solids Sample Notes:**

Sample Prepared by Method: % Solids Prep

CAS	S No.	Parameter	Result	Flag	Units	Reported LOQ	to Dilutio i	1 Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids		90.4		%	0.100	1	SM 2540G		08/22/2022 11:00	08/22/2022 14:38	YR
								Certifications:	CTDOH			

Sample Information

Client Sample ID: S-2 **York Sample ID:** 22H0961-02

York Project (SDG) No. Client Project ID Collection Date/Time Date Received Matrix 22H0961 4 Tripp Lane, Armonk, NY 10504 August 4, 2022 3:00 pm Soil 08/16/2022

Volatile Organics, 8260 Comprehensive

VOA-CONT **Sample Notes:** VOA-CONT **Log-in Notes:**

Sample Prepared by Method: EPA 5035A

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NELA	08/18/2022 16:50 AC-NY12058,NJDEP,	BMC PADEP
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NEL/	08/18/2022 16:50 AC-NY12058,NJDEP,	BMC PADEP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NELA	08/18/2022 16:50 AC-NY12058,NJDEP,	BMC PADEP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NEL/	08/18/2022 16:50 AC-NY12058,NJDEP	BMC
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEP,	BMC PADEP
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NELA	08/18/2022 16:50 AC-NY12058,NJDEP,	BMC PADEP
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEP,	BMC PADEP
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	NELAC-NY	08/18/2022 06:36 /10854,NELAC-NY12	08/18/2022 16:50 058,NJDEP,PADEP	BMC
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	NELAC-NY	08/18/2022 06:36 /10854,NELAC-NY12	08/18/2022 16:50 058,NJDEP	BMC
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	NELAC-NY	08/18/2022 06:36 /10854,NELAC-NY12	08/18/2022 16:50 058,NJDEP,PADEP	BMC

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE **RICHMOND HILL, NY 11418**

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 7 of 73

Client Sample ID: S-2

York Sample ID: 22H0961-02

York Project (SDG) No. 22H0961

Client Project ID
4 Tripp Lane, Armonk, NY 10504

<u>Matrix</u> Soil Collection Date/Time
August 4, 2022 3:00 pm

Date Received 08/16/2022

Volatile Organics, 8260 Comprehensive

Log-in Notes:

VOA-CONT

Sample Notes: VOA-CONT

volutile Of gaines,	0200	Comp	or chichest v
Sample Prepared by Method	EPA 5	035A	

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Method Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELA	08/18/2022 16:50 C-NY12058,NJDEP,	BMC PADEP
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELA	08/18/2022 16:50 C-NY12058,NJDEP,	BMC PADEP
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELA	08/18/2022 16:50 C-NY12058,NJDEP,	BMC PADEP
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELA	08/18/2022 16:50 C-NY12058,NJDEP,	BMC PADEP
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELA	08/18/2022 16:50 C-NY12058,NJDEP,	BMC PADEP
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELA	08/18/2022 16:50 C-NY12058,NJDEP,	BMC PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.8	5.7	Ī	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELA	08/18/2022 16:50 C-NY12058,NJDEP,	BMC PADEP
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.8	5.7	Ī	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELA	08/18/2022 16:50 C-NY12058,NJDEP,	BMC PADEP
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELA	08/18/2022 16:50 C-NY12058,NJDEP,	BMC PADEP
123-91-1	1,4-Dioxane	ND		ug/kg dry	57	110	1	EPA 8260C Certifications:	08/18/2022 06:36 NELAC-NY10854,NELAC-NY120	08/18/2022 16:50 058,NJDEP,PADEP	BMC
78-93-3	2-Butanone	ND		ug/kg dry	2.8	5.7	Ī	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELA	08/18/2022 16:50 C-NY12058,NJDEP,	BMC PADEP
591-78-6	2-Hexanone	ND		ug/kg dry	2.8	5.7	Ĭ	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELA	08/18/2022 16:50 C-NY12058,NJDEP,	BMC PADEP
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELA	08/18/2022 16:50 C-NY12058,NJDEP,	BMC PADEP
67-64-1	Acetone	ND		ug/kg dry	5.7	11	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELA	08/18/2022 16:50 C-NY12058,NJDEP,	BMC PADEP
107-02-8	Acrolein	ND		ug/kg dry	5.7	11	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELA	08/18/2022 16:50 C-NY12058,NJDEP,	BMC PADEP
107-13-1	Acrylonitrile	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELA	08/18/2022 16:50 C-NY12058,NJDEP,	BMC PADEP
71-43-2	Benzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELA	08/18/2022 16:50 C-NY12058,NJDEP,	BMC PADEP
74-97-5	Bromochloromethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 NELAC-NY10854,NELAC-NY120	08/18/2022 16:50 058,NJDEP,PADEP	BMC
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.8	5.7	Ī	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELA	08/18/2022 16:50 C-NY12058,NJDEP,	BMC PADEP
75-25-2	Bromoform	ND		ug/kg dry	2.8	5.7	Ī	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELA	08/18/2022 16:50 C-NY12058,NJDEP,	BMC PADEP
74-83-9	Bromomethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELA	08/18/2022 16:50 C-NY12058,NJDEP,	BMC PADEP
75-15-0	Carbon disulfide	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELA	08/18/2022 16:50 C-NY12058,NJDEP,	BMC PADEP
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELA	08/18/2022 16:50 C-NY12058,NJDEP,	BMC PADEP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 8 of 73

Log-in Notes:

Client Sample ID: S-2

York Sample ID: 22H0961-02

York Project (SDG) No. 22H0961

Client Project ID
4 Tripp Lane, Armonk, NY 10504

Matrix Soil Au

VOA-CONT

Collection Date/Time
August 4, 2022 3:00 pm

Sample Notes: VOA-CONT

Date Received 08/16/2022

Volatile Organics, 8260 Comprehensive

Sample Prepar	red by Method: EPA 5035A											
CAS N		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEF	BMC P,PADEP
75-00-3	Chloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEF	BMC P,PADEP
67-66-3	Chloroform	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,N	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEP	BMC PADEP
74-87-3	Chloromethane	ND		ug/kg dry	2.8	5.7	Ī	EPA 8260C Certifications:	CTDOH,N	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEF	BMC P,PADEP
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEF	BMC P,PADEP
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEF	BMC P,PADEP
110-82-7	Cyclohexane	ND		ug/kg dry	2.8	5.7	Ī	EPA 8260C Certifications:	NELAC-N	08/18/2022 06:36 Y10854,NELAC-NY1	08/18/2022 16:50 2058,NJDEP,PADEP	BMC
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.8	5.7	Ĩ	EPA 8260C Certifications:	NELAC-N	08/18/2022 06:36 Y10854,NELAC-NY1	08/18/2022 16:50 2058,NJDEP,PADEP	BMC
74-95-3	Dibromomethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	NELAC-N	08/18/2022 06:36 Y10854,NELAC-NY1	08/18/2022 16:50 2058,NJDEP,PADEP	BMC
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	NELAC-N	08/18/2022 06:36 Y10854,NELAC-NY1	08/18/2022 16:50 2058,NJDEP,PADEP	BMC
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,N	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEF	BMC P,PADEP
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.8	5.7	Ī	EPA 8260C Certifications:	NELAC-N	08/18/2022 06:36 Y10854,NELAC-NY1	08/18/2022 16:50 2058,NJDEP,PADEP	BMC
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEF	BMC P,PADEP
79-20-9	Methyl acetate	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	NELAC-N	08/18/2022 06:36 Y10854,NELAC-NY1	08/18/2022 16:50 2058,NJDEP,PADEP	BMC
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.8	5.7	Ī	EPA 8260C Certifications:	CTDOH,N	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEP	BMC P,PADEP
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	NELAC-N	08/18/2022 06:36 Y10854,NELAC-NY1	08/18/2022 16:50 2058,NJDEP,PADEP	BMC
75-09-2	Methylene chloride	ND		ug/kg dry	5.7	11	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEP	BMC PADEP
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEP	BMC P,PADEP
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEF	BMC P,PADEP
95-47-6	o-Xylene	ND		ug/kg dry	2.8	5.7	Ī	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,PADEF	BMC
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.7	11	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,PADEF	BMC
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEP	BMC P,PADEP

120 RESEARCH DRIVE www.YORKLAB.com

sec-Butylbenzene

135-98-8

STRATFORD, CT 06615

ND

(203) 325-1371

ug/kg dry

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

08/18/2022 06:36 08/18/2022 16:50 BM CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP

6

EPA 8260C

Page 9 of 73

FAX (203) 357-0166

Client Sample ID: S-2 **York Sample ID:** 22H0961-02

Client Project ID Date Received York Project (SDG) No. **Matrix** Collection Date/Time 22H0961 4 Tripp Lane, Armonk, NY 10504 Soil August 4, 2022 3:00 pm 08/16/2022

Volatile Organics, 8260 Comprehensive

Sample Prepared by Method: EPA 5035A

Log-in Notes:

VOA-CONT

Sample Notes: VOA-CONT

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
100-42-5	Styrene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEP	BMC P,PADEP
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	NELAC-NY	08/18/2022 06:36 /10854,NELAC-NY12	08/18/2022 16:50 2058,NJDEP,PADEP	BMC
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEP	BMC P,PADEP
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.8	5.7	Ĭ	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEF	BMC P,PADEP
108-88-3	Toluene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEF	BMC P,PADEP
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEF	BMC P,PADEP
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.8	5.7	Ī	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEF	BMC P,PADEP
79-01-6	Trichloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEF	BMC P,PADEP
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEF	BMC P,PADEP
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEF	BMC P,PADEP
1330-20-7	Xylenes, Total	ND		ug/kg dry	8.5	17	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 16:50 AC-NY12058,NJDEF	BMC
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	118 %			77-125							

Total Solids Log-in Notes: VOA-CONT **Sample Notes:**

97.2 %

96.4 %

Sample Prepared by Method: % Solids Prep

Surrogate: SURR: Toluene-d8

Surrogate: SURR:

 $p\hbox{-} Bromofluor obenzene$

2037-26-5

460-00-4

CAS	No.	Parameter	Result	Flag	Units	Reported LOQ	o Dilution	Reference 1	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids		88.3		%	0.100	1	SM 2540G		08/22/2022 11:00	08/22/2022 14:38	YR
								Certifications:	CTDOH			

85-120

76-130

Sample Information

Client Sample ID: S-3			York Sample ID:	22H0961-03
York Project (SDG) No.	Client Project ID	<u>Matrix</u>	Collection Date/Time	Date Received
22H0961	4 Tripp Lane, Armonk, NY 10504	Soil	August 4, 2022 3:00 pm	08/16/2022

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE **RICHMOND HILL, NY 11418** www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 10 of 73

Client Sample ID: S-3 **York Sample ID:**

22H0961-03

York Project (SDG) No. 22H0961

Client Project ID 4 Tripp Lane, Armonk, NY 10504 Matrix Soil

Collection Date/Time August 4, 2022 3:00 pm Date Received 08/16/2022

Volatile Organics, 8260 Comprehensive

Log-in Notes:

VOA-CONT

Sample Notes: VOA-CONT

Sample Prepared by Method: EPA 5035A

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		e/Time epared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/20 CTDOH,NELAC-NY	022 06:36 10854,NEL	08/18/2022 17:20 AC-NY12058,NJDE	BMC P,PADEP
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/20 CTDOH,NELAC-NY	022 06:36 10854,NEL	08/18/2022 17:20 AC-NY12058,NJDE	
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:		022 06:36	08/18/2022 17:20	BMC
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:		022 06:36	08/18/2022 17:20	ВМС
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/20 CTDOH,NELAC-NY	022 06:36 10854,NEL	08/18/2022 17:20 AC-NY12058,NJDE	BMC P,PADEP
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:		022 06:36	08/18/2022 17:20	BMC
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:		022 06:36	08/18/2022 17:20	BMC
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:		022 06:36	08/18/2022 17:20	BMC
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/20 NELAC-NY10854,NE	022 06:36 ELAC-NY12	08/18/2022 17:20 2058,NJDEP	BMC
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:		022 06:36	08/18/2022 17:20	BMC
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/20 CTDOH,NELAC-NY	022 06:36 10854,NEL	08/18/2022 17:20 AC-NY12058,NJDE	BMC P,PADEP
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.6	5.3	Ī	EPA 8260C Certifications:	08/18/20 CTDOH,NELAC-NY	022 06:36 10854,NEL	08/18/2022 17:20 AC-NY12058,NJDE	
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/20 CTDOH,NELAC-NY	022 06:36 10854,NEL	08/18/2022 17:20 AC-NY12058,NJDE	BMC P,PADEP
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/20 CTDOH,NELAC-NY	022 06:36 10854,NEL	08/18/2022 17:20 AC-NY12058,NJDE	
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/20 CTDOH,NELAC-NY	022 06:36 10854,NEL	08/18/2022 17:20 AC-NY12058,NJDE	BMC P,PADEP
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.6	5.3	Ī	EPA 8260C Certifications:	08/18/20 CTDOH,NELAC-NY	022 06:36 10854,NEL	08/18/2022 17:20 AC-NY12058,NJDE	BMC P,PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/20 CTDOH,NELAC-NY	022 06:36 10854,NEL	08/18/2022 17:20 AC-NY12058,NJDE	
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/20 CTDOH,NELAC-NY	022 06:36 10854,NEL	08/18/2022 17:20 AC-NY12058,NJDE	BMC P,PADEP
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/20 CTDOH,NELAC-NY	022 06:36 10854,NEL	08/18/2022 17:20 AC-NY12058,NJDE	
123-91-1	1,4-Dioxane	ND		ug/kg dry	53	110	Ī	EPA 8260C Certifications:	08/18/20 NELAC-NY10854,NE	022 06:36 ELAC-NY12	08/18/2022 17:20 2058,NJDEP,PADEP	ВМС
78-93-3	2-Butanone	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/20 CTDOH,NELAC-NY	022 06:36 10854,NEL	08/18/2022 17:20 AC-NY12058,NJDE	BMC P,PADEP
591-78-6	2-Hexanone	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/20 CTDOH,NELAC-NY	022 06:36 10854,NEL	08/18/2022 17:20 AC-NY12058,NJDE	
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.6	5.3	1	EPA 8260C		022 06:36	08/18/2022 17:20	BMC

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 11 of 73

Client Sample ID: S-3

York Sample ID: 22H0961-03

York Project (SDG) No. 22H0961

Sample Prepared by Method: EPA 5035A

Client Project ID
4 Tripp Lane, Armonk, NY 10504

<u>Matrix</u> Soil Collection Date/Time
August 4, 2022 3:00 pm

Date Received 08/16/2022

Volatile Organics, 8260 Comprehensive

Log-in Notes:

VOA-CONT

Sample Notes: VOA-CONT

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Date/Time Method Prepared Analyzed A	Analyst
67-64-1	Acetone	ND		ug/kg dry	5.3	11	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC ADEP
107-02-8	Acrolein	ND		ug/kg dry	5.3	11	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC ADEP
107-13-1	Acrylonitrile	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC ADEP
71-43-2	Benzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC ADEP
74-97-5	Bromochloromethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC ADEP
75-25-2	Bromoform	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC
74-83-9	Bromomethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC
75-15-0	Carbon disulfide	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC
108-90-7	Chlorobenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC
75-00-3	Chloroethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC
67-66-3	Chloroform	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC
74-87-3	Chloromethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC
110-82-7	Cyclohexane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC
74-95-3	Dibromomethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC ADEP
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18/2022 17:20 NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP	BMC
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 12 of 73

Client Sample ID: S-3 **York Sample ID:**

22H0961-03

York Project (SDG) No. 22H0961

Client Project ID 4 Tripp Lane, Armonk, NY 10504 Matrix Soil

Collection Date/Time August 4, 2022 3:00 pm Date Received 08/16/2022

Analyst

BMC

Volatile Organics, 8260 Comprehensive

Log-in Notes:

VOA-CONT

Sample Notes: VOA-CONT

Sample Prepare	ed by Method: EPA 5035A											
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference N	Method	Date/Time Prepared	Date/Time Analyzed	Analys
79-20-9	Methyl acetate	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	NELAC-NY	08/18/2022 06:36 Y10854,NELAC-NY1	08/18/2022 17:20 2058,NJDEP,PADEP	ВМС
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 17:20 AC-NY12058,NJDEP	BMC PADEP
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	NELAC-NY	08/18/2022 06:36 Y10854,NELAC-NY1	08/18/2022 17:20 2058,NJDEP,PADEP	BMC
75-09-2	Methylene chloride	ND		ug/kg dry	5.3	11	Ĩ	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 17:20 AC-NY12058,NJDEP	BMC P,PADEP
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 17:20 AC-NY12058,NJDEP	BMC P,PADEP
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C		08/18/2022 06:36	08/18/2022 17:20	BMC

			P					
	Surrogate Recoveries	Result	Accen	tance Range	:			
1330-20-7	Xylenes, Total	ND	ug/kg dry	7.9	16	1	EPA 8260C Certifications:	08/18/2022 06:36
75-01-4	Vinyl Chloride	ND	ug/kg dry	2.6	5.3	ī	EPA 8260C Certifications:	08/18/2022 06:36
75-69-4	Trichlorofluoromethane	ND	ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36
79-01-6	Trichloroethylene	ND	ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36
10061-02-6	trans-1,3-Dichloropropylene	ND	ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18/2022 17:20 BMC CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
156-60-5	trans-1,2-Dichloroethylene	ND	ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36
108-88-3	Toluene	ND	ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36
127-18-4	Tetrachloroethylene	ND	ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18/2022 17:20 BMC CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
98-06-6	tert-Butylbenzene	ND	ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18/2022 17:20 BMC CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
75-65-0	tert-Butyl alcohol (TBA)	ND	ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18/2022 17:20 BMC NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
100-42-5	Styrene	ND	ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18/2022 17:20 BMC CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
135-98-8	sec-Butylbenzene	ND	ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18/2022 17:20 BMC CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
99-87-6	p-Isopropyltoluene	ND	ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36
179601-23-1	p- & m- Xylenes	ND	ug/kg dry	5.3	11	1	EPA 8260C Certifications:	08/18/2022 06:36
95-47-6	o-Xylene	ND	ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36
103-65-1	n-Propylbenzene	ND	ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36
104-51-8	n-Butylbenzene	ND	ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36
75-09-2	Methylene chloride	ND	ug/kg dry	5.3	11	1	EPA 8260C Certifications:	08/18/2022 06:36
108-87-2	Methylcyclohexane	ND	ug/kg dry	2.6	5.3	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18/2022 17:20 BMC NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP

	Surrogate Recoveries	Result	Acceptance Ran
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	119 %	77-125
2037-26-5	Surrogate: SURR: Toluene-d8	96.9 %	85-120

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

Page 13 of 73

FAX (203) 357-0166

Client Sample ID: S-3

York Sample ID:

22H0961-03

York Project (SDG) No. 22H0961

Client Project ID 4 Tripp Lane, Armonk, NY 10504 Matrix Soil

Collection Date/Time August 4, 2022 3:00 pm Date Received 08/16/2022

Volatile Organics, 8260 Comprehensive

Log-in Notes:

VOA-CONT

Sample Notes: VOA-CONT

Sample Prepared by Method: EPA 5035A

Parameter

Flag Units

Units

%

Dilution LOQ

Date/Time

Date/Time Analyzed Analyst

460-00-4

Surrogate: SURR:

Result 95.9 %

94.4

76-130

Reported to LOD/MDL

Reference Method

Prepared

Date/Time

Prepared

p-Bromofluorobenzene

Total Solids

CAS No.

Sample Prepared by Method: % Solids Prep

Log-in Notes:

0.100

VOA-CONT Sample Notes:

solids

* % Solids

CAS No. **Parameter** Result Flag Reported to Dilution LOQ

Date/Time

Analyzed Analyst

SM 2540G

Reference Method

08/22/2022 11:00

08/22/2022 14:38

Certifications: CTDOH

Sample Information

Client Sample ID:

York Sample ID:

22H0961-04

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

22H0961

4 Tripp Lane, Armonk, NY 10504

Soil

August 4, 2022 3:00 pm

08/16/2022

YR

Volatile Organics, 8260 Comprehensive

Log-in Notes:

VOA-CONT

Sample Notes: VOA-CONT

Sample Prepared by Method: EPA 5035A

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference !	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 17:49 AC-NY12058,NJDEP	BMC PADEP
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 17:49 AC-NY12058,NJDEP	BMC PADEP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 17:49 AC-NY12058,NJDEP	BMC PADEP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 17:49 AC-NY12058,NJDEP	BMC
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 17:49 AC-NY12058,NJDEP	BMC PADEP
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 17:49 AC-NY12058,NJDEP	BMC PADEP
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 17:49 AC-NY12058,NJDEP	BMC PADEP
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	NELAC-NY	08/18/2022 06:36 (10854,NELAC-NY12	08/18/2022 17:49 2058,NJDEP,PADEP	ВМС
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	NELAC-NY	08/18/2022 06:36 /10854,NELAC-NY12	08/18/2022 17:49 2058,NJDEP	BMC
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	NELAC-NY	08/18/2022 06:36 /10854,NELAC-NY12	08/18/2022 17:49 2058,NJDEP,PADEP	BMC
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 ELAC-NY10854.NEL	08/18/2022 17:49 AC-NY12058,NJDEP	BMC PADEP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 14 of 73

Client Sample ID: S-4

York Sample ID: 22H0961-04

York Project (SDG) No. 22H0961 Client Project ID
4 Tripp Lane, Armonk, NY 10504

<u>Matrix</u> Soil Collection Date/Time
August 4, 2022 3:00 pm

Date Received 08/16/2022

Volatile Organics, 8260 Comprehensive

Log-in Notes:

VOA-CONT

Sample Notes: VOA-CONT

Sample Prepared by Method:	EPA 5035A	

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 17:49 AC-NY12058,NJDEF	BMC P,PADEP
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 17:49 AC-NY12058,NJDEF	BMC PADEP
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 17:49 AC-NY12058,NJDEF	BMC PADEP
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 17:49 AC-NY12058,NJDEF	BMC PADEP
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NE	08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 17:49 AC-NY12058,NJDEF	BMC PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:		08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 17:49	BMC
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.8	5.6	Ī	EPA 8260C Certifications:		08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 17:49	ВМС
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.8	5.6	Ĭ	EPA 8260C Certifications:		08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 17:49	BMC
123-91-1	1,4-Dioxane	ND		ug/kg dry	56	110	1	EPA 8260C Certifications:		08/18/2022 06:36 10854,NELAC-NY12	08/18/2022 17:49	BMC
78-93-3	2-Butanone	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:		08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 17:49	BMC PADEP
591-78-6	2-Hexanone	ND		ug/kg dry	2.8	5.6	Ī	EPA 8260C Certifications:		08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 17:49	BMC
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.8	5.6	Ĭ	EPA 8260C Certifications:		08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 17:49	ВМС
67-64-1	Acetone	ND		ug/kg dry	5.6	11	1	EPA 8260C Certifications:		08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 17:49	BMC
107-02-8	Acrolein	ND		ug/kg dry	5.6	11	1	EPA 8260C Certifications:		08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 17:49	BMC
107-13-1	Acrylonitrile	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:		08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 17:49	BMC
71-43-2	Benzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:		08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 17:49	BMC
74-97-5	Bromochloromethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:		08/18/2022 06:36 10854,NELAC-NY12	08/18/2022 17:49	ВМС
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:		08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 17:49	BMC PADEP
75-25-2	Bromoform	ND		ug/kg dry	2.8	5.6	Ī	EPA 8260C Certifications:		08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 17:49	BMC
74-83-9	Bromomethane	ND		ug/kg dry	2.8	5.6	Ĭ	EPA 8260C Certifications:		08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 17:49	BMC
75-15-0	Carbon disulfide	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:		08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 17:49	BMC
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:		08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 17:49	BMC
108-90-7	Chlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:		08/18/2022 06:36 LAC-NY10854,NEL	08/18/2022 17:49	BMC
								Certifications:	CIDON,NE.	LAC-IN 1 10034,INEL	AC-IN I 12036,NJDEF	,I ADEF

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 15 of 73

FAX (203) 357-0166

Client Sample ID: S-4 22H0961-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received22H09614 Tripp Lane, Armonk, NY 10504SoilAugust 4, 20223:00 pm08/16/2022

Volatile Organics, 8260 Comprehensive

Sample Prepared by Method: EPA 5035A

Log-in Notes: VOA-CONT S	Sample Notes: VOA-CONT
--------------------------	------------------------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method Date/Ti		Date/Time Analyzed	Analyst
75-00-3	Chloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	08/18/2022 CTDOH,NELAC-NY108		8/18/2022 17:49 NY12058,NJDEP,	BMC PADEP
67-66-3	Chloroform	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	08/18/2022 CTDOH,NELAC-NY108		8/18/2022 17:49 NY12058,NJDEP,	BMC PADEP
74-87-3	Chloromethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	08/18/2022 CTDOH,NELAC-NY108	06:36 08	8/18/2022 17:49	BMC
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	08/18/2022 CTDOH,NELAC-NY108:	06:36 08	8/18/2022 17:49	BMC
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	08/18/2022 CTDOH,NELAC-NY108	06:36 08	8/18/2022 17:49	BMC
110-82-7	Cyclohexane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	08/18/2022 NELAC-NY10854,NELA	06:36 08	8/18/2022 17:49	BMC
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	08/18/2022 NELAC-NY10854,NELA	06:36 08	8/18/2022 17:49	ВМС
74-95-3	Dibromomethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	08/18/2022 NELAC-NY10854,NELA	06:36 08	8/18/2022 17:49	ВМС
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	08/18/2022	06:36 08	8/18/2022 17:49	ВМС
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	08/18/2022	06:36 08	8/18/2022 17:49	BMC
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.8	5.6	1	Certifications:	08/18/2022	06:36 08	8/18/2022 17:49	BMC
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.8	5.6	ī	Certifications:	NELAC-NY10854,NELA 08/18/2022	06:36 08	8/18/2022 17:49	BMC
79-20-9	Methyl acetate	ND		ug/kg dry	2.8	5.6	1	Certifications:	08/18/2022	06:36 08	8/18/2022 17:49	PADEP BMC
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.8	5.6	1	Certifications:	NELAC-NY10854,NELA 08/18/2022	06:36 08	8/18/2022 17:49	BMC
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.8	5.6	Ī	Certifications: EPA 8260C	O8/18/2022	06:36 08	8/18/2022 17:49	P,PADEP BMC
75-09-2	Methylene chloride	ND		ug/kg dry	5.6	11	ī	Certifications: EPA 8260C	NELAC-NY10854,NELA 08/18/2022	06:36 08	8/18/2022 17:49	ВМС
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.8	5.6	1	Certifications: EPA 8260C	O8/18/2022		NY12058,NJDEP, 8/18/2022 17:49	PADEP BMC
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.8	5.6	1	Certifications: EPA 8260C	O8/18/2022		NY12058,NJDEP, 8/18/2022 17:49	P,PADEP BMC
95-47-6	o-Xylene	ND		ug/kg dry	2.8	5.6	1	Certifications: EPA 8260C	O8/18/2022		NY 12058,NJDEP, 8/18/2022 17:49	P,PADEP BMC
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.6	11	Ī	Certifications: EPA 8260C	CTDOH,NELAC-NY1085 08/18/2022		NY12058,PADEP 8/18/2022 17:49	BMC
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.8	5.6	1	Certifications: EPA 8260C	CTDOH,NELAC-NY1085 08/18/2022		NY12058,PADEP 8/18/2022 17:49	BMC
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.8	5.6	1	Certifications: EPA 8260C	CTDOH,NELAC-NY1083 08/18/2022		NY 12058, NJDEP, 8/18/2022 17:49	
	200 • O O O O O							Certifications:	CTDOH,NELAC-NY108	54,NELAC-N	NY12058,NJDEP,	,PADEP
100-42-5	Styrene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	08/18/2022 CTDOH,NELAC-NY108		8/18/2022 17:49 NY12058,NJDEP,	BMC PADEP

 120 RESEARCH DRIVE
 STRATFORD, CT 06615

 www.YORKLAB.com
 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 16 of 73

Client Sample ID: S-4

York Project (SDG) No. Client Project ID **Matrix** Collection Date/Time Date Received 22H0961 4 Tripp Lane, Armonk, NY 10504 August 4, 2022 3:00 pm Soil 08/16/2022

Volatile Organics, 8260 Comprehensive

Log-in Notes:

VOA-CONT

Sample Notes: VOA-CONT

York Sample ID:

22H0961-04

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	NELAC-NY	08/18/2022 06:36 /10854,NELAC-NY12	08/18/2022 17:49 2058,NJDEP,PADEP	BMC
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 17:49 AC-NY12058,NJDEP	BMC PADEP
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 17:49 AC-NY12058,NJDEP	BMC PADEP
108-88-3	Toluene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 17:49 AC-NY12058,NJDEP	BMC PADEP
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 17:49 AC-NY12058,NJDEP	BMC PADEP
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 17:49 AC-NY12058,NJDEP	BMC PADEP
79-01-6	Trichloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 17:49 AC-NY12058,NJDEP	BMC PADEP
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.8	5.6	Ī	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 17:49 AC-NY12058,NJDEP	BMC PADEP
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 17:49 AC-NY12058,NJDEP	BMC PADEP
1330-20-7	Xylenes, Total	ND		ug/kg dry	8.4	17	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 17:49 AC-NY12058,NJDEP	BMC
	Surrogate Recoveries	Result		Acce	otance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	133 %	S-03		77-125							
2037-26-5	Surrogate: SURR: Toluene-d8	95.5 %			85-120							
160-00-4	Surrogate: SURR: p-Bromofluorobenzene	91.9 %			76-130							

Total Solids Log-in Notes: VOA-CONT **Sample Notes:**

Sample Prepared by Method: % Solids Prep

CAS	No.	Parameter	Result	Flag	Units	Reported t	o Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids		89.3		%	0.100	1	SM 2540G		08/22/2022 11:00	08/22/2022 14:38	YR
								Certifications:	CTDOH			

Sample Information

<u>c</u>	nent Sample ID: S-5			York Sample ID:	22H0961-05
Y	York Project (SDG) No.	Client Project ID	<u>Matrix</u>	Collection Date/Time	Date Received
	22H0961	4 Tripp Lane, Armonk, NY 10504	Soil	August 4, 2022 3:00 pm	08/16/2022

VOA-CONT **Sample Notes: VOA-CONT Volatile Organics, 8260 Comprehensive Log-in Notes:**

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE **RICHMOND HILL, NY 11418**

(203) 325-1371 www.YORKLAB.com FAX (203) 357-0166 ClientServices@ Page 17 of 73

Client Sample ID: S-5

York Sample ID: 22H0961-05

York Project (SDG) No. 22H0961

Client Project ID
4 Tripp Lane, Armonk, NY 10504

Matrix Soil Collection Date/Time
August 4, 2022 3:00 pm

Date Received 08/16/2022

22000 000 00000	•	50-W 17079	SE COMO	control (Section)	Reported to			10002 1000	options toler use	Date/Time	Date/Time	ar 675 m
CAS No	o. Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 18:18 AC-NY12058,NJDEF	BMC P,PADEP
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 18:18 AC-NY12058,NJDEF	BMC P,PADEP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 18:18 AC-NY12058,NJDEF	BMC P,PADEP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,N	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 18:18 AC-NY12058,NJDEP	BMC
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,N	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 18:18 AC-NY12058,NJDEF	BMC P,PADEP
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 18:18 AC-NY12058,NJDEF	BMC P,PADEP
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 18:18 AC-NY12058,NJDEF	BMC P,PADEP
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	NELAC-N	08/18/2022 06:36 Y10854,NELAC-NY1	08/18/2022 18:18 2058,NJDEP,PADEP	BMC
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	NELAC-N	08/18/2022 06:36 Y10854,NELAC-NY1	08/18/2022 18:18 2058,NJDEP	BMC
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	NELAC-N	08/18/2022 06:36 Y10854,NELAC-NY1	08/18/2022 18:18 2058,NJDEP,PADEP	BMC
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 18:18 AC-NY12058,NJDEF	BMC P,PADEP
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 18:18 AC-NY12058,NJDEF	BMC P,PADEP
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 18:18 AC-NY12058,NJDEF	BMC P,PADEP
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 18:18 AC-NY12058,NJDEF	BMC P,PADEP
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 18:18	BMC
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 18:18	BMC
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 18:18	BMC
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 18:18	ВМС
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.8	5.7	Ī	EPA 8260C		08/18/2022 06:36	08/18/2022 18:18	ВМС
123-91-1	1,4-Dioxane	ND		ug/kg dry	57	110	1	Certifications:		08/18/2022 06:36	08/18/2022 18:18	BMC
78-93-3	2-Butanone	ND		ug/kg dry	2.8	5.7	1	Certifications:		Y10854,NELAC-NY1: 08/18/2022 06:36	08/18/2022 18:18	BMC
591-78-6	2-Hexanone	ND		ug/kg dry	2.8	5.7	1	Certifications: EPA 8260C		08/18/2022 06:36	08/18/2022 18:18	BMC
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.8	5.7	ī	Certifications: EPA 8260C	CTDOH,NI	08/18/2022 06:36	AC-NY12058,NJDEF 08/18/2022 18:18	P,PADEP BMC
67-64-1	Acetone	ND		ug/kg dry	5.7	11	1	Certifications: EPA 8260C	CTDOH,NI	08/18/2022 06:36	AC-NY12058,NJDEP 08/18/2022 18:18	P,PADEP BMC
and the second								Certifications:	CTDOH,NI	ELAC-NY10854,NEL	AC-NY12058,NJDEF	

Client Sample ID: S-5

York Sample ID:

22H0961-05

York Project (SDG) No. 22H0961 Client Project ID
4 Tripp Lane, Armonk, NY 10504

Matrix Soil Collection Date/Time
August 4, 2022 3:00 pm

Date Received 08/16/2022

Volatile Organics, 8260 Comprehensive

Log-in Notes:

VOA-CONT

Sample Notes: VOA-CONT

Sample Prepared by Method: EPA 5035A

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Date/Time Method Prepared Analyzed	Analyst
107-02-8	Acrolein	ND		ug/kg dry	5.7	11	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC P,PADEP
107-13-1	Acrylonitrile	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC P,PADEP
71-43-2	Benzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC P,PADEP
74-97-5	Bromochloromethane	ND		ug/kg dry	2.8	5.7	Ī	EPA 8260C Certifications:	08/18/2022 06:36	BMC
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC P.PADEP
75-25-2	Bromoform	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC
74-83-9	Bromomethane	ND		ug/kg dry	2.8	5.7	Ī	EPA 8260C Certifications:	08/18/2022 06:36	BMC
75-15-0	Carbon disulfide	ND		ug/kg dry	2.8	5.7	Ĩ	EPA 8260C Certifications:	08/18/2022 06:36 08/18/2022 18:18 CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEF	BMC
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18/2022 18:18 CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEF	BMC
108-90-7	Chlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18/2022 18:18 CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEF	BMC
75-00-3	Chloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC
67-66-3	Chloroform	ND		ug/kg dry	2.8	5.7	Ĭ	EPA 8260C Certifications:	08/18/2022 06:36	BMC
74-87-3	Chloromethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.8	5.7	Ĩ	EPA 8260C Certifications:	08/18/2022 06:36	BMC
110-82-7	Cyclohexane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36	ВМС
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC
74-95-3	Dibromomethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36	BMC
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.8	5.7	Ī	EPA 8260C Certifications:	08/18/2022 06:36	BMC
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.8	5.7	Ĭ	EPA 8260C Certifications:	08/18/2022 06:36	BMC P.PADEP
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36	ВМС
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18/2022 18:18 CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEF	BMC P.PADEP
79-20-9	Methyl acetate	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 08/18/2022 18:18 NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP	BMC

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 19 of 73

FAX (203) 357-0166 Clie

Log-in Notes:

Client Sample ID: S-5

York Sample ID: 22H0961-05

York Project (SDG) No. 22H0961

Client Project ID 4 Tripp Lane, Armonk, NY 10504 Matrix Soil

VOA-CONT

Collection Date/Time August 4, 2022 3:00 pm

Sample Notes: VOA-CONT

Date Received 08/16/2022

Volatile Organics, 8260 Comprehensive

Sample Prepared by Method: EPA 5035A

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEI	08/18/2022 18:18 AC-NY12058,NJDEF	BMC P,PADEP
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	NELAC-NY	08/18/2022 06:36 Y10854,NELAC-NY1	08/18/2022 18:18 2058,NJDEP,PADEP	BMC
75-09-2	Methylene chloride	ND		ug/kg dry	5.7	11	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 18:18 AC-NY12058,NJDEI	BMC P,PADEP
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:18 AC-NY12058,NJDEF	BMC
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:18 AC-NY12058,NJDEI	BMC
95-47-6	o-Xylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:18 AC-NY12058,PADEI	BMC
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.7	11	Ī	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:18 AC-NY12058,PADEI	BMC
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.8	5.7	Ĭ	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:18 AC-NY12058,NJDEI	BMC
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:18 AC-NY12058,NJDEI	BMC
100-42-5	Styrene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:18 AC-NY12058,NJDEI	BMC
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/kg dry	2.8	5.7	Ī	EPA 8260C Certifications:		08/18/2022 06:36 Y10854,NELAC-NY1	08/18/2022 18:18	ВМС
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.8	5.7	Ĭ	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:18 AC-NY12058,NJDEI	BMC P.PADEP
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:18 AC-NY12058,NJDEI	BMC
108-88-3	Toluene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:18 AC-NY12058,NJDEF	BMC
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:18 AC-NY12058,NJDEI	BMC
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.8	5.7	Ī	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEI	08/18/2022 18:18 AC-NY12058,NJDEF	BMC P,PADEP
79-01-6	Trichloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEI	08/18/2022 18:18 AC-NY12058,NJDEF	BMC P,PADEP
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEI	08/18/2022 18:18 AC-NY12058,NJDEI	BMC P,PADEP
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.8	5.7	Ī	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEI	08/18/2022 18:18 AC-NY12058,NJDEI	BMC P,PADEP
1330-20-7	Xylenes, Total	ND		ug/kg dry	8.5	17	Ĩ	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEI	08/18/2022 18:18 AC-NY12058,NJDEI	BMC
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	119 %		·	77-125							
2037-26-5	Surrogate: SURR: Toluene-d8	98.2 %			85-120							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	98.1 %			76-130							

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 20 of 73

Client Sample ID: S-5

York Sample ID: 22H0961-05

York Project (SDG) No. 22H0961

Client Project ID
4 Tripp Lane, Armonk, NY 10504

Matrix Soil Collection Date/Time
August 4, 2022 3:00 pm

Date Received 08/16/2022

Total Solids

Log-in Notes:

VOA-CONT Sample Notes:

Sample Prepared by Method: % Solids Prep

CAS	No.	Parameter	Result	Flag	Units	Reported LOQ	o Dilution	Reference M	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids		87.8		%	0.100	1	SM 2540G		08/22/2022 11:00	08/22/2022 14:38	YR
								Certifications:	CTDOH			

Sample Information

Client Sample ID: S-6

York Sample ID:

22H0961-06

York Project (SDG) No. 22H0961

<u>Client Project ID</u>
4 Tripp Lane, Armonk, NY 10504

Matrix

Collection Date/Time

Date Received 08/16/2022

Soil August 4, 2022 3:00 pm

Volatile Organics, 8260 Comprehensive

Log-in Notes:

VOA-CONT

Sample Notes: VOA-CONT

Sample	Prepared	by	Method:	EPA	5035A	

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	CTDOH,N	08/18/2022 06:36 ELAC-NY10854,NELA	08/18/2022 18:47 AC-NY12058,NJDEP,	BMC PADEP
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NELA	08/18/2022 18:47 AC-NY12058,NJDEP,	BMC PADEP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL/	08/18/2022 18:47 AC-NY12058,NJDEP,	BMC PADEP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NELA	08/18/2022 18:47 AC-NY12058,NJDEP	BMC
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL/	08/18/2022 18:47 AC-NY12058,NJDEP,	BMC PADEP
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	CTDOH,N	08/18/2022 06:36 ELAC-NY10854,NEL/	08/18/2022 18:47 AC-NY12058,NJDEP,	BMC PADEP
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL/	08/18/2022 18:47 AC-NY12058,NJDEP,	BMC PADEP
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	NELAC-N	08/18/2022 06:36 Y10854,NELAC-NY12	08/18/2022 18:47 2058,NJDEP,PADEP	BMC
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	NELAC-N	08/18/2022 06:36 Y10854,NELAC-NY12	08/18/2022 18:47 2058,NJDEP	BMC
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	NELAC-N	08/18/2022 06:36 Y10854,NELAC-NY12	08/18/2022 18:47 2058,NJDEP,PADEP	BMC
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	CTDOH,N	08/18/2022 06:36 ELAC-NY10854,NEL/	08/18/2022 18:47 AC-NY12058,NJDEP,	BMC PADEP
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL/	08/18/2022 18:47 AC-NY12058,NJDEP,	BMC PADEP
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	CTDOH,N	08/18/2022 06:36 ELAC-NY10854,NEL/	08/18/2022 18:47 AC-NY12058,NJDEP,	BMC PADEP
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL/	08/18/2022 18:47 AC-NY12058,NJDEP,	BMC PADEP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 21 of 73

Client Sample ID: S-6 22H0961-06

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received22H09614 Tripp Lane, Armonk, NY 10504SoilAugust 4, 20223:00 pm08/16/2022

Volatile Organics, 8260 Comprehensive

Sample Prepared by Method: EPA 5035A

Log-in Notes:	VOA-CONT	Sample Notes:	VOA-CONT
----------------------	-----------------	---------------	----------

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	CTDOH.NE	08/18/2022 06:36 LAC-NY10854.NEL	08/18/2022 18:47 AC-NY12058,NJDEF	BMC P.PADEP
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:47 AC-NY12058,NJDEF	BMC
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:47 AC-NY12058,NJDEF	BMC
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.9	5.7	Ĩ	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:47 AC-NY12058,NJDEF	BMC
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:47 AC-NY12058,NJDEF	BMC
123-91-1	1,4-Dioxane	ND		ug/kg dry	57	110	1	EPA 8260C		08/18/2022 06:36	08/18/2022 18:47 2058,NJDEP,PADEP	BMC
78-93-3	2-Butanone	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:47 AC-NY12058,NJDEF	ВМС
591-78-6	2-Hexanone	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:47 AC-NY12058,NJDEF	BMC
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:47 AC-NY12058,NJDEF	BMC
67-64-1	Acetone	ND		ug/kg dry	5.7	11	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:47 AC-NY12058,NJDEF	BMC
107-02-8	Acrolein	ND		ug/kg dry	5.7	11	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:47 AC-NY12058,NJDEF	BMC
107-13-1	Acrylonitrile	ND		ug/kg dry	2.9	5.7	Ĭ	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:47 AC-NY12058,NJDEF	BMC
71-43-2	Benzene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:47 AC-NY12058,NJDEF	BMC
74-97-5	Bromochloromethane	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:47 2058,NJDEP,PADEP	BMC
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:47 AC-NY12058,NJDEF	BMC PADEP
75-25-2	Bromoform	ND		ug/kg dry	2.9	5.7	Ī	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:47 AC-NY12058,NJDEF	BMC
74-83-9	Bromomethane	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:47 AC-NY12058,NJDEF	BMC
75-15-0	Carbon disulfide	ND		ug/kg dry	2.9	5.7	1	EPA 8260C		08/18/2022 06:36	08/18/2022 18:47 AC-NY12058,NJDEF	BMC
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:47 AC-NY12058,NJDEF	BMC
108-90-7	Chlorobenzene	ND		ug/kg dry	2.9	5.7	ī	EPA 8260C Certifications:		08/18/2022 06:36		BMC
75-00-3	Chloroethane	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:47 AC-NY12058,NJDEF	BMC
67-66-3	Chloroform	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:47 AC-NY12058,NJDEF	BMC
74-87-3	Chloromethane	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:		08/18/2022 06:36	08/18/2022 18:47 AC-NY12058,NJDEF	BMC

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 22 of 73

FAX (203) 357-0166

Client Sample ID: S-6 22H0961-06

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received22H09614 Tripp Lane, Armonk, NY 10504SoilAugust 4, 20223:00 pm08/16/2022

Volatile Organics, 8260 Comprehensive

Sample Prepared by Method: EPA 5035A

Log-in Notes:	VOA-CONT	Sample Notes:	VOA-CONT
LUZ-III MUICS.	1011 00111	Sample Notes.	1 On-Con

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Method Prepared	Date/Time Analyzed	Analyst
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELAC	08/18/2022 18:47 C-NY12058,NJDEP,	BMC PADEP
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELAC	08/18/2022 18:47 C-NY12058,NJDEP,	BMC PADEP
110-82-7	Cyclohexane	ND		ug/kg dry	2.9	5.7	Ī	EPA 8260C Certifications:	08/18/2022 06:36 NELAC-NY10854,NELAC-NY1205	08/18/2022 18:47 58,NJDEP,PADEP	BMC
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 NELAC-NY10854,NELAC-NY1205	08/18/2022 18:47 58,NJDEP,PADEP	BMC
74-95-3	Dibromomethane	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 NELAC-NY10854,NELAC-NY1205	08/18/2022 18:47 58,NJDEP,PADEP	BMC
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 NELAC-NY10854,NELAC-NY1205	08/18/2022 18:47 58,NJDEP,PADEP	BMC
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELAC	08/18/2022 18:47 C-NY12058,NJDEP,	BMC PADEP
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 NELAC-NY10854,NELAC-NY1205	08/18/2022 18:47 58,NJDEP,PADEP	BMC
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELAC	08/18/2022 18:47 C-NY12058,NJDEP,	BMC PADEP
79-20-9	Methyl acetate	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 NELAC-NY10854,NELAC-NY1205	08/18/2022 18:47 58,NJDEP,PADEP	BMC
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELAC	08/18/2022 18:47 C-NY12058,NJDEP,	BMC PADEP
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.9	5.7	Ī	EPA 8260C Certifications:	08/18/2022 06:36 NELAC-NY10854,NELAC-NY120:	08/18/2022 18:47 58,NJDEP,PADEP	BMC
75-09-2	Methylene chloride	ND		ug/kg dry	5.7	11	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELAC	08/18/2022 18:47 C-NY12058,NJDEP,	BMC PADEP
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELAC	08/18/2022 18:47 C-NY12058,NJDEP,	BMC PADEP
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELAC	08/18/2022 18:47 C-NY12058,NJDEP,	BMC PADEP
95-47-6	o-Xylene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELAC	08/18/2022 18:47 C-NY12058,PADEP	BMC
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.7	11	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELAC	08/18/2022 18:47 C-NY12058,PADEP	BMC
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELAC	08/18/2022 18:47 C-NY12058,NJDEP,	BMC PADEP
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELAC	08/18/2022 18:47 C-NY12058,NJDEP,	BMC PADEP
100-42-5	Styrene	ND		ug/kg dry	2.9	5.7	Ī	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELAC	08/18/2022 18:47 C-NY12058,NJDEP,	BMC PADEP
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 NELAC-NY10854,NELAC-NY1205	08/18/2022 18:47 58,NJDEP,PADEP	BMC
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELAC	08/18/2022 18:47 C-NY12058,NJDEP,	BMC PADEP
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	08/18/2022 06:36 CTDOH,NELAC-NY10854,NELAC	08/18/2022 18:47 C-NY12058,NJDEP,	BMC PADEP

 120 RESEARCH DRIVE
 STRATFORD, CT 06615

 www.YORKLAB.com
 (203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 23 of 73

Client Sample ID: S-6

York Sample ID:

22H0961-06

York Project (SDG) No. 22H0961

<u>Client Project ID</u> 4 Tripp Lane, Armonk, NY 10504 Matrix Soil Collection Date/Time
August 4, 2022 3:00 pm

Date Received 08/16/2022

Volatile Organics, 8260 Comprehensive

Log-in Notes:

VOA-CONT

Sample Notes: VOA-CONT

Sample Prepared by Method: EPA 5035A

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-88-3	Toluene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 18:47 AC-NY12058,NJDEP	BMC PADEP
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 18:47 AC-NY12058,NJDEP	BMC PADEP
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 18:47 AC-NY12058,NJDEP	BMC PADEP
79-01-6	Trichloroethylene	ND		ug/kg dry	2.9	5.7	Ī	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 18:47 AC-NY12058,NJDEP	BMC PADEP
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NELA	08/18/2022 18:47 AC-NY12058,NJDEP	BMC PADEP
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.9	5.7	1	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NELA	08/18/2022 18:47 AC-NY12058,NJDEP	BMC PADEP
1330-20-7	Xylenes, Total	ND		ug/kg dry	8.6	17	Ī	EPA 8260C Certifications:	CTDOH,NI	08/18/2022 06:36 ELAC-NY10854,NEL	08/18/2022 18:47 AC-NY12058,NJDEP	BMC
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	119 %			77-125							
2037-26-5	Surrogate: SURR: Toluene-d8	97.7 %			85-120							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	96.3 %			76-130							

Total Solids

Log-in Notes:

Sample Notes:

Sample Prepared by Method: % Solids Prep

CAS	No.	Parameter	Result	Flag	Units	Reported t	o Dilution	Reference Met	hod	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids		87.3		%	0.100	1	SM 2540G		08/22/2022 11:00	08/22/2022 14:38	YR
								Certifications: CTI	HOC			

Sample Information

Client Sample ID: Comp-1, C-1

Client Project ID

York Sample ID:

22H0961-07

York Project (SDG) No. 22H0961

4 Tripp Lane, Armonk, NY 10504

<u>Matrix</u> Soil

VOA-CONT

Collection Date/Time
August 4, 2022 3:00 pm

Date Received 08/16/2022

Semi-Volatiles, 8270 Comprehensive

Sample Prepared by Method: EPA 3546 SVOA

Log-in Notes:

Sample Notes:

CAS N	0.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl		ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	NELAC-NY	08/17/2022 13:21 Y10854,NJDEP,PADEP	08/18/2022 11:44	КН

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

ClientServices@

Page 24 of 73

Client Sample ID: Comp-1, C-1

York Sample ID: 22H0961-07

York Project (SDG) No. 22H0961 Client Project ID
4 Tripp Lane, Armonk, NY 10504

Matrix Soil Collection Date/Time
August 4, 2022 3:00 pm

Date Received 08/16/2022

Semi-Volatiles, 8270 Comprehensive

Log-in Notes:

Sample Notes:

	Lie Made & EDA 2546 CVOA				nog in	1000		Sum	sic riotes	<u>,, ,</u>		
CAS No	d by Method: EPA 3546 SVOA Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		mg/kg dry	0.0906	0.181	2	EPA 8270D Certifications:	NELAC-NY	08/17/2022 13:21 10854,NJDEP,PADEP	08/18/2022 11:44	KH
120-82-1	1,2,4-Trichlorobenzene	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
95-50-1	1,2-Dichlorobenzene	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	NELAC-NY	08/17/2022 13:21 10854,PADEP	08/18/2022 11:44	КН
122-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	NELAC-NY	08/17/2022 13:21 10854,NJDEP,PADEP	08/18/2022 11:44	KH
541-73-1	1,3-Dichlorobenzene	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	NELAC-NY	08/17/2022 13:21 10854,PADEP	08/18/2022 11:44	KH
106-46-7	1,4-Dichlorobenzene	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	NELAC-NY	08/17/2022 13:21 10854,PADEP	08/18/2022 11:44	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		mg/kg dry	0.0906	0.181	2	EPA 8270D Certifications:	NELAC-NY	08/17/2022 13:21 10854,NJDEP,PADEP	08/18/2022 11:44	КН
95-95-4	2,4,5-Trichlorophenol	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	КН
88-06-2	2,4,6-Trichlorophenol	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
120-83-2	2,4-Dichlorophenol	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
105-67-9	2,4-Dimethylphenol	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
51-28-5	2,4-Dinitrophenol	ND		mg/kg dry	0.0906	0.181	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	КН
121-14-2	2,4-Dinitrotoluene	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
606-20-2	2,6-Dinitrotoluene	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	КН
91-58-7	2-Chloronaphthalene	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
95-57-8	2-Chlorophenol	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
91-57-6	2-Methylnaphthalene	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	КН
95-48-7	2-Methylphenol	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
88-74-4	2-Nitroaniline	ND		mg/kg dry	0.0906	0.181	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
88-75-5	2-Nitrophenol	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	КН
65794-96-9	3- & 4-Methylphenols	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	КН
91-94-1	3,3-Dichlorobenzidine	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	NELAC-NY	08/17/2022 13:21 10854,NJDEP,PADEP	08/18/2022 11:44	KH
99-09-2	3-Nitroaniline	ND		mg/kg dry	0.0906	0.181	2	EPA 8270D Certifications:	CTDOH NE	08/17/2022 13:21 LAC-NY10854.NJDE	08/18/2022 11:44 P.PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

CTDOH,NELAC-NY10854,NJDEP,PADEP

ClientServices@

FAX (203) 357-0166

Page 25 of 73

Client Sample ID: Comp-1, C-1 **York Sample ID:** 22H0961-07

York Project (SDG) No. 22H0961

Client Project ID 4 Tripp Lane, Armonk, NY 10504 Matrix Soil

Collection Date/Time August 4, 2022 3:00 pm Date Received 08/16/2022

Semi-Volatiles, 8270 Comprehensive

Log-in Notes:

Sample Notes:

	ed by Method: EPA 3546 SVOA	22000 J. J. A. A. S.	No. 100		Reported to				Date/Time	Date/Time	
CAS N	o. Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference Me	thod Prepared	Analyzed	Analyst
534-52-1	4,6-Dinitro-2-methylphenol	ND		mg/kg dry	0.0906	0.181	2	EPA 8270D Certifications: CT	08/17/2022 13:21 DOH,NELAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
101-55-3	4-Bromophenyl phenyl ether	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications: CT	08/17/2022 13:21 DOH,NELAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
59-50-7	4-Chloro-3-methylphenol	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications: CT	08/17/2022 13:21 DOH,NELAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
106-47-8	4-Chloroaniline	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications: CT	08/17/2022 13:21 DOH,NELAC-NY10854,NJDE	08/18/2022 11:44 P.PADEP	KH
7005-72-3	4-Chlorophenyl phenyl ether	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D	08/17/2022 13:21 DOH,NELAC-NY10854,NJDE	08/18/2022 11:44	KH
100-01-6	4-Nitroaniline	ND		mg/kg dry	0.0906	0.181	2	EPA 8270D	08/17/2022 13:21	08/18/2022 11:44	KH
100-02-7	4-Nitrophenol	ND		mg/kg dry	0.0906	0.181	2	EPA 8270D	DOH,NELAC-NY10854,NJDE 08/17/2022 13:21	08/18/2022 11:44	КН
83-32-9	Acenaphthene	ND		mg/kg dry	0.0454	0.0906	2	Certifications: CT EPA 8270D	DOH,NELAC-NY10854,NJDE 08/17/2022 13:21	P,PADEP 08/18/2022 11:44	KH
208-96-8	Acenaphthylene	ND		mg/kg dry	0.0454	0.0906	2	Certifications: CT	DOH,NELAC-NY10854,NJDE 08/17/2022 13:21	P,PADEP 08/18/2022 11:44	KH
98-86-2	Acetophenone	ND		mg/kg dry	0.0454	0.0906	2	Certifications: CT EPA 8270D	DOH,NELAC-NY10854,NJDE 08/17/2022 13:21	P,PADEP 08/18/2022 11:44	KH
	. Textophonone	1,2							LAC-NY10854,NJDEP,PADEP		
62-53-3	Aniline	ND		mg/kg dry	0.181	0.363	2	EPA 8270D Certifications: NE	08/17/2022 13:21 LAC-NY10854,NJDEP,PADEP	08/18/2022 11:44	KH
120-12-7	Anthracene	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications: CT	08/17/2022 13:21 DOH,NELAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
1912-24-9	Atrazine	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications: NE	08/17/2022 13:21 LAC-NY10854,NJDEP,PADEP	08/18/2022 11:44	KH
100-52-7	Benzaldehyde	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications: NE	08/17/2022 13:21 LAC-NY10854,NJDEP,PADEP	08/18/2022 11:44	KH
92-87-5	Benzidine	ND		mg/kg dry	0.181	0.363	2	EPA 8270D	08/17/2022 13:21 DOH,NELAC-NY10854,PADE	08/18/2022 11:44	KH
56-55-3	Benzo(a)anthracene	0.0905	J	mg/kg dry	0.0454	0.0906	2	EPA 8270D	08/17/2022 13:21	08/18/2022 11:44	KH
	, ,	,						Certifications: CT	DOH,NELAC-NY10854,NJDE	EP,PADEP	
50-32-8	Benzo(a)pyrene	0.0949		mg/kg dry	0.0454	0.0906	2	EPA 8270D	08/17/2022 13:21	08/18/2022 11:44	KH
								Certifications: CT	TOOH,NELAC-NY10854,NJDF	EP,PADEP	
205-99-2	Benzo(b)fluoranthene	0.109		mg/kg dry	0.0454	0.0906	2	EPA 8270D	08/17/2022 13:21	08/18/2022 11:44	KH
									DOH,NELAC-NY10854,NJDF		
191-24-2	Benzo(g,h,i)perylene	0.0804	J	mg/kg dry	0.0454	0.0906	2	EPA 8270D	08/17/2022 13:21	08/18/2022 11:44	KH
207-08-9	Benzo(k)fluoranthene	0.07/0		ma/ka dm	0.0454	0.0006	2		DOH,NELAC-NY10854,NJDE 08/17/2022 13:21	08/18/2022 11:44	VII
207-08-9	Denzo(k)nuoi anthene	0.0760	J	mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications: CT	DOH,NELAC-NY10854,NJDE		KH
65-85-0	Benzoic acid	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D	08/17/2022 13:21 LAC-NY10854,NJDEP,PADEP	08/18/2022 11:44	KH
100-51-6	Benzyl alcohol	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D	08/17/2022 13:21 LAC-NY10854,NJDEP,PADEP	08/18/2022 11:44	KH
85-68-7	Benzyl butyl phthalate	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D	08/17/2022 13:21 DOH,NELAC-NY10854,NJDE	08/18/2022 11:44	KH
								Cerunicauons: C1.	DOII,NELAC-N I 10834,NJDE	LADEL	

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 26 of 73

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166

Client Sample ID: Comp-1, C-1

York Sample ID: 22H0961-07

York Project (SDG) No. 22H0961 Client Project ID
4 Tripp Lane, Armonk, NY 10504

<u>Matrix</u> Soil Collection Date/Time
August 4, 2022 3:00 pm

Date Received 08/16/2022

Semi-Volatiles, 8270 Comprehensive

Sample Prepared by Method: EPA 3546 SVOA

Log-in Notes:

Sample Notes:

111-44-4 B	Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether	ND ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D	08/17/2022 13:21		****
108-60-1 B								Certifications:	CTDOH,NELAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
	Bis(2-chloroisopropyl)ether			mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
		ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
117-81-7 B	Bis(2-ethylhexyl)phthalate	0.131		mg/kg dry	0.0454	0.0906	2	EPA 8270D	08/17/2022 13:21	08/18/2022 11:44	KH
								Certifications:	CTDOH,NELAC-NY10854,NJDE	EP,PADEP	
105-60-2 C	Caprolactam	ND		mg/kg dry	0.0906	0.181	2	EPA 8270D Certifications:	08/17/2022 13:21 NELAC-NY10854,NJDEP,PADEP	08/18/2022 11:44	КН
86-74-8 C	Carbazole	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
218-01-9	Chrysene	0.0978		mg/kg dry	0.0454	0.0906	2	EPA 8270D	08/17/2022 13:21	08/18/2022 11:44	KH
								Certifications:	CTDOH,NELAC-NY10854,NJDE	EP,PADEP	
53-70-3 D	Dibenzo(a,h)anthracene	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
132-64-9	Dibenzofuran	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
84-66-2 D	Diethyl phthalate	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
131-11-3	Dimethyl phthalate	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
84-74-2 D	Di-n-butyl phthalate	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
117-84-0	Di-n-octyl phthalate	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
206-44-0 F	Fluoranthene	0.151		mg/kg dry	0.0454	0.0906	2	EPA 8270D	08/17/2022 13:21	08/18/2022 11:44	KH
								Certifications:	CTDOH,NELAC-NY10854,NJDE	EP,PADEP	
86-73-7 F	luorene	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	08/17/2022 13:21 NELAC-NY10854,NJDEP,PADEP	08/18/2022 11:44	KH
118-74-1 H	Hexachlorobenzene	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
87-68-3 H	Hexachlorobutadiene	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
77-47-4 H	Hexachlorocyclopentadiene	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
67-72-1 H	Hexachloroethane	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJDE	08/18/2022 11:44 P.PADEP	КН
193-39-5 I 1	ndeno(1,2,3-cd)pyrene	0.0746	1	mg/kg dry	0.0454	0.0906	2	EPA 8270D	08/17/2022 13:21		KH
		0.0740		-6-6-7	010.10.1	0.000	_	Certifications:	CTDOH,NELAC-NY10854,NJDE		
78-59-1 Is	sophorone	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJDE	08/18/2022 11:44 P,PADEP	KH
91-20-3 N	Vaphthalene	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJDE	08/18/2022 11:44	KH
98-95-3 N	Vitrobenzene	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJDE	08/18/2022 11:44	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 27 of 73

Client Sample ID: Comp-1, C-1

York Sample ID: 22H0961-07

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

22H0961

4 Tripp Lane, Armonk, NY 10504

Soil

August 4, 2022 3:00 pm

08/16/2022

Semi-Volatiles, 8270 Comprehensive

Sample Prepared by Method: EPA 3546 SVOA

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
62-75-9	N-Nitrosodimethylamine	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	CTDOH,NI	08/17/2022 13:21 ELAC-NY10854,NJDI	08/18/2022 11:44 EP,PADEP	KH
621-64-7	N-nitroso-di-n-propylamine	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	CTDOH,NI	08/17/2022 13:21 ELAC-NY10854,NJDI	08/18/2022 11:44 EP,PADEP	KH
86-30-6	N-Nitrosodiphenylamine	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	CTDOH,NI	08/17/2022 13:21 ELAC-NY10854,NJDI	08/18/2022 11:44 EP,PADEP	KH
87-86-5	Pentachlorophenol	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	CTDOH,NI	08/17/2022 13:21 ELAC-NY10854,NJDI	08/18/2022 11:44 EP,PADEP	KH
85-01-8	Phenanthrene	0.0507	J	mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	CTDOH,N	08/17/2022 13:21 ELAC-NY10854,NJD	08/18/2022 11:44 EP,PADEP	КН
108-95-2	Phenol	ND		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	CTDOH,NI	08/17/2022 13:21 ELAC-NY10854,NJDI	08/18/2022 11:44 EP,PADEP	KH
129-00-0	Pyrene	0.122		mg/kg dry	0.0454	0.0906	2	EPA 8270D Certifications:	CTDOH,N	08/17/2022 13:21 ELAC-NY10854,NJD	08/18/2022 11:44 EP,PADEP	KH
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	30.5 %			20-108							
4165-62-2	Surrogate: SURR: Phenol-d5	31.0 %			23-114							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	42.2 %			22-108							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	34.8 %			21-113							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	39.9 %			19-110							
1718-51-0	Surrogate: SURR: Terphenyl-d14	40.1 %			24-116							

Pesticides, 8081 Target List

Sample Prepared by Method: EPA 3550C

•				
Lo	g-in	N	otes	•

Sample Notes:

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference 1	Method Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	2.25	ug/kg dry	1.79	5	EPA 8081B	08/17/2022 13:34	08/20/2022 06:34	ВЈ
						Certifications:	CTDOH,NELAC-NY10854,NJ	DEP,PADEP	
72-55-9	4,4'-DDE	8.87	ug/kg dry	1.79	5	EPA 8081B	08/17/2022 13:34	08/20/2022 06:34	BJ
						Certifications:	CTDOH,NELAC-NY10854,NJ	DEP,PADEP	
50-29-3	4,4'-DDT	ND	ug/kg dry	1.79	5	EPA 8081B	08/17/2022 13:34	08/20/2022 06:34	BJ
						Certifications:	CTDOH,NELAC-NY10854,NJE	EP,PADEP	
309-00-2	Aldrin	ND	ug/kg dry	1.79	5	EPA 8081B	08/17/2022 13:34	08/20/2022 06:34	BJ
						Certifications:	CTDOH,NELAC-NY10854,NJE	EP,PADEP	
319-84-6	alpha-BHC	ND	ug/kg dry	1.79	5	EPA 8081B	08/17/2022 13:34	08/20/2022 06:34	BJ
						Certifications:	CTDOH,NELAC-NY10854,NJE	EP,PADEP	
5103-71-9	alpha-Chlordane	49.2	ug/kg dry	1.79	5	EPA 8081B	08/17/2022 13:34	08/20/2022 06:34	BJ
						Certifications:	NELAC-NY10854,NJDEP		
319-85-7	beta-BHC	ND	ug/kg dry	1.79	5	EPA 8081B	08/17/2022 13:34	08/20/2022 06:34	ВЈ
						Certifications:	CTDOH,NELAC-NY10854,NJE	EP,PADEP	
319-86-8	delta-BHC	ND	ug/kg dry	1.79	5	EPA 8081B	08/17/2022 13:34	08/20/2022 06:34	BJ
						Certifications:	CTDOH,NELAC-NY10854,NJE	EP,PADEP	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 28 of 73

Client Sample ID: Comp-1, C-1

York Sample ID: 22H0961-07

York Project (SDG) No.Client Project ID22H09614 Tripp Lane, Armonk, NY 10504

MatrixCollection Date/TimeSoilAugust 4, 2022 3:00 pm

Date Received 08/16/2022

Pesticides, 8081 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:	Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported t	o Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
60-57-1	Dieldrin	5.12		ug/kg dry	1.79	5	EPA 8081B		08/17/2022 13:34	08/20/2022 06:34	ВЈ
							Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
959-98-8	Endosulfan I	ND		ug/kg dry	1.79	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDI	08/20/2022 06:34 EP,PADEP	ВЈ
33213-65-9	Endosulfan II	ND		ug/kg dry	1.79	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854	08/20/2022 06:34	BJ
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.79	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDI	08/20/2022 06:34 EP,PADEP	ВЈ
72-20-8	Endrin	ND		ug/kg dry	1.79	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDI	08/20/2022 06:34 EP,PADEP	ВЈ
7421-93-4	Endrin aldehyde	ND		ug/kg dry	1.79	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDI	08/20/2022 06:34 EP,PADEP	ВЈ
53494-70-5	Endrin ketone	ND		ug/kg dry	1.79	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDI	08/20/2022 06:34 EP,PADEP	ВЈ
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.79	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDI	08/20/2022 06:34 EP,PADEP	ВЈ
5566-34-7	gamma-Chlordane	42.8		ug/kg dry	1.79	5	EPA 8081B	NEL LC N	08/17/2022 13:34	08/20/2022 06:34	BJ
		Marie Control					Certifications:	NELAC-N	Y10854,NJDEP		
76-44-8	Heptachlor	ND		ug/kg dry	1.79	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDI	08/20/2022 06:34 EP,PADEP	BJ
1024-57-3	Heptachlor epoxide	ND		ug/kg dry	1.79	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDI	08/20/2022 06:34 EP,PADEP	BJ
72-43-5	Methoxychlor	ND		ug/kg dry	1.79	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDI	08/20/2022 06:34 EP,PADEP	ВЈ
8001-35-2	Toxaphene	ND		ug/kg dry	179	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDI	08/20/2022 06:34 EP,PADEP	ВЈ
	Surrogate Recoveries	Result		Accepta	nce Range						
2051-24-3	Surrogate: Decachlorobiphenyl	58.7 %		30	0-150						
877-09-8	Surrogate: Tetrachloro-m-xylene	40.8 %		30	0-150						

Polychlorinated Biphenyls (PCB)

Sample Prepared by Method: EPA 3550C

Log-in Notes: Sample Notes:

CAS N	0.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016		ND		mg/kg dry	0.0181	1	EPA 8082A Certifications:	NELAC-N	08/17/2022 13:34 Y10854,CTDOH,NJDE	08/18/2022 19:29 EP,PADEP	ВЈ
11104-28-2	Aroclor 1221		ND		mg/kg dry	0.0181	Ī	EPA 8082A Certifications:	NELAC-N	08/17/2022 13:34 Y10854,CTDOH,NJDE	08/18/2022 19:29 EP,PADEP	ВЈ
11141-16-5	Aroclor 1232		ND		mg/kg dry	0.0181	1	EPA 8082A Certifications:	NELAC-N	08/17/2022 13:34 Y10854,CTDOH,NJDE	08/18/2022 19:29 EP,PADEP	ВЈ
53469-21-9	Aroclor 1242		ND		mg/kg dry	0.0181	1	EPA 8082A Certifications:	NELAC-N	08/17/2022 13:34 Y10854,CTDOH,NJDE	08/18/2022 19:29 EP,PADEP	ВЈ
12672-29-6	Aroclor 1248		ND		mg/kg dry	0.0181	1	EPA 8082A Certifications:	NELAC-N	08/17/2022 13:34 Y10854,CTDOH,NJDE	08/18/2022 19:29 EP,PADEP	ВЈ

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 29 of 73

Client Sample ID: Comp-1, C-1 **York Sample ID:** 22H0961-07

York Project (SDG) No. 22H0961

Client Project ID 4 Tripp Lane, Armonk, NY 10504 Matrix Soil

Collection Date/Time August 4, 2022 3:00 pm Date Received 08/16/2022

Polychlorinated Biphenyls (PCB)

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3550C

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
11097-69-1	Aroclor 1254	ND		mg/kg dry	0.0181	1	EPA 8082A Certifications:	NELAC-NY	08/17/2022 13:34 /10854,CTDOH,NJDE	08/18/2022 19:29 P,PADEP	ВЈ
11096-82-5	Aroclor 1260	ND		mg/kg dry	0.0181	1	EPA 8082A Certifications:	NELAC-NY	08/17/2022 13:34 Y10854,CTDOH,NJDE	08/18/2022 19:29 P,PADEP	ВЈ
1336-36-3	* Total PCBs	ND		mg/kg dry	0.0181	1	EPA 8082A Certifications:		08/17/2022 13:34	08/18/2022 19:29	ВЈ
	Surrogate Recoveries	Result		Acceptance l	Range						
877-09-8	Surrogate: Tetrachloro-m-xylene	51.0 %		30-120)						
2051-24-3	Surrogate: Decachlorobiphenyl	65.5 %		30-120)						

Metals, Target Analyte

Log-in Notes:

Sample Notes:

CAS N	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference M	Iethod	Date/Time Prepared	Date/Time Analyzed	Analyst
429-90-5	Aluminum		16100		mg/kg dry	5.99	1	EPA 6010D	(08/16/2022 12:00	08/18/2022 18:08	AJL
								Certifications:	CTDOH,NEL	AC-NY10854,NJD	EP,PADEP	
440-36-0	Antimony		ND		mg/kg dry	3.00	1	EPA 6010D Certifications: C		08/16/2022 12:00 AC-NY10854,NJDE	08/18/2022 18:08 P,PADEP	AJL
440-38-2	Arsenic		5.32		mg/kg dry	1.80	1	EPA 6010D	(08/16/2022 12:00	08/18/2022 18:08	AJL
								Certifications:	CTDOH,NEL	AC-NY10854,NJD	EP,PADEP	
440-39-3	Barium		117		mg/kg dry	3.00	1	EPA 6010D	(08/16/2022 12:00	08/18/2022 18:08	AJL
								Certifications:	CTDOH,NEL	AC-NY10854,NJD	EP,PADEP	
440-41-7	Beryllium		ND		mg/kg dry	0.060	1	EPA 6010D Certifications: C		08/16/2022 12:00 AC-NY10854,NJDE	08/18/2022 18:08 P,PADEP	AJL
440-43-9	Cadmium		0.485		mg/kg dry	0.360	1	EPA 6010D	(08/16/2022 12:00	08/18/2022 18:08	AJL
								Certifications:	CTDOH,NEL	AC-NY10854,NJD	EP,PADEP	
440-70-2	Calcium		17700	В	mg/kg dry	5.99	1	EPA 6010D	(08/16/2022 12:00	08/18/2022 18:08	AJL
								Certifications:	CTDOH,NEL	AC-NY10854,NJD	EP,PADEP	
440-47-3	Chromium		30.0		mg/kg dry	0.599	1	EPA 6010D	(08/16/2022 12:00	08/18/2022 18:08	AJL
								Certifications:	CTDOH,NEL	AC-NY10854,NJD	EP,PADEP	
440-48-4	Cobalt		11.3		mg/kg dry	0.480	1	EPA 6010D	(08/16/2022 12:00	08/18/2022 18:08	AJL
								Certifications:	CTDOH,NEL	AC-NY10854,NJD	EP,PADEP	
440-50-8	Copper		59.1		mg/kg dry	2.40	1	EPA 6010D	(08/16/2022 12:00	08/18/2022 18:08	AJL
								Certifications:	CTDOH,NEL	AC-NY10854,NJD	EP,PADEP	
439-89-6	Iron		21600		mg/kg dry	30.0	1	EPA 6010D	(08/16/2022 12:00	08/18/2022 18:08	AJL
								Certifications:	CTDOH,NEL	AC-NY10854,NJD	EP,PADEP	
439-92-1	Lead		92.6		mg/kg dry	0.599	1	EPA 6010D	(08/16/2022 12:00	08/18/2022 18:08	AJL
								Certifications:	CTDOH,NEL	AC-NY10854,NJD	EP,PADEP	
439-95-4	Magnesium		11600		mg/kg dry	5.99	1	EPA 6010D	(08/16/2022 12:00	08/18/2022 18:08	AJL
								Certifications:	CTDOH,NEL	AC-NY10854,NJD	EP,PADEP	
439-96-5	Manganese		421		mg/kg dry	0.599	1	EPA 6010D	(08/16/2022 12:00	08/18/2022 18:08	AJL
								Certifications: C	CTDOH,NEL	AC-NY10854,NJD	EP,PADEP	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 30 of 73

Client Sample ID: Comp-1, C-1

York Sample ID:

22H0961-07

York Project (SDG) No. 22H0961

<u>Client Project ID</u> 4 Tripp Lane, Armonk, NY 10504 Matrix Soil Collection Date/Time
August 4, 2022 3:00 pm

Date Received 08/16/2022

Metals, Target Analyte

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3050B

CAS N	lo.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-02-0	Nickel		17.9		mg/kg dry	1.20	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:08	AJL
								Certifications:		IELAC-NY10854,NJD	EP,PADEP	
7440-09-7	Potassium		2790	В	mg/kg dry	5.99	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:08	AJL
									CTDOH,NELAC-NY10854,NJDEP,PADEP			
7782-49-2	82-49-2 Selenium		ND		mg/kg dry	3.00	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:08	AJL
								Certifications:	CTDOH,NELAC-NY10854,NJDEP,PADEP			
7440-22-4	Silver		ND		mg/kg dry	0.599	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:08	AJL
								Certifications:	CTDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
7440-23-5	Sodium		ND		mg/kg dry	59.9	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:08	AJL
								Certifications:	CTDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
7440-28-0	Thallium		ND		mg/kg dry	3.00	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:08	AJL
								Certifications:	CTDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
7440-62-2	Vanadium		39.5		mg/kg dry	1.20	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:08	AJL
								Certifications:	CTDOH,N	IELAC-NY10854,NJD	EP,PADEP	
7440-66-6	Zinc		103		mg/kg dry	3.00	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:08	AJL
								Certifications:	CTDOH,N	IELAC-NY10854,NJD	EP,PADEP	

Mercury by 7473 <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA 7473 soil

CAS No.		Parameter	Result Flag Units				Dilut	tion Reference	e Method	Prepared	Analyzed	Analyst
7439-97-6	Mercury		0.139		mg/kg dry	0.0336	1	EPA 7473		08/25/2022 09:56	08/25/2022 13:42	MR
								Certifications:	CTDOH,N	IJDEP,NELAC-NY108	54,PADEP	

<u>Total Solids</u> <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: % Solids Prep

CAS No.	1	Parameter	Result	Flag	Units	Reported LOQ	o Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids		89.4		%	0.100	1	SM 2540G	СТРОИ	08/19/2022 16:46	08/19/2022 19:48	AJS

Sample Information

Client Sample ID: Comp-2, C-2 York Sample ID: 22H0961-08

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received22H09614 Tripp Lane, Armonk, NY 10504SoilAugust 4, 20223:00 pm08/16/2022

Semi-Volatiles, 8270 Comprehensive <u>Log-in Notes:</u> <u>Sample Notes:</u>

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 31 of 73

Client Sample ID: Comp-2, C-2

York Sample ID: 22H0961-08

York Project (SDG) No. 22H0961

Client Project ID
4 Tripp Lane, Armonk, NY 10504

Matrix Colle Soil August

Collection Date/Time
August 4, 2022 3:00 pm

Date Received 08/16/2022

Sample Prepared by Method: EPA 3546 SVOA

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	NELAC-N	08/17/2022 13:21 Y10854,NJDEP,PADEF	08/18/2022 12:15	KH
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		mg/kg dry	0.0894	0.179	2	EPA 8270D Certifications:		08/17/2022 13:21 Y10854,NJDEP,PADEF	08/18/2022 12:15	КН
120-82-1	1,2,4-Trichlorobenzene	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:		08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:15	КН
95-50-1	1,2-Dichlorobenzene	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	NELAC-N	08/17/2022 13:21 Y10854,PADEP	08/18/2022 12:15	KH
122-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	NELAC-N	08/17/2022 13:21 Y10854,NJDEP,PADEF	08/18/2022 12:15	КН
541-73-1	1,3-Dichlorobenzene	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	NELAC-N	08/17/2022 13:21 Y10854,PADEP	08/18/2022 12:15	KH
106-46-7	1,4-Dichlorobenzene	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	NELAC-N	08/17/2022 13:21 Y10854,PADEP	08/18/2022 12:15	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		mg/kg dry	0.0894	0.179	2	EPA 8270D Certifications:	NELAC-N	08/17/2022 13:21 Y10854,NJDEP,PADEF	08/18/2022 12:15	KH
95-95-4	2,4,5-Trichlorophenol	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NI	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:15 P,PADEP	KH
88-06-2	2,4,6-Trichlorophenol	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NI	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:15 P,PADEP	KH
120-83-2	2,4-Dichlorophenol	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NI	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:15 P,PADEP	KH
105-67-9	2,4-Dimethylphenol	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NI	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:15 P,PADEP	KH
51-28-5	2,4-Dinitrophenol	ND		mg/kg dry	0.0894	0.179	2	EPA 8270D Certifications:	CTDOH,NI	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:15 P,PADEP	KH
121-14-2	2,4-Dinitrotoluene	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:		08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:15	KH
606-20-2	2,6-Dinitrotoluene	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NI	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:15 P,PADEP	КН
91-58-7	2-Chloronaphthalene	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:		08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:15	KH
95-57-8	2-Chlorophenol	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:		08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:15	KH
91-57-6	2-Methylnaphthalene	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:		08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:15	KH
95-48-7	2-Methylphenol	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:		08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:15	KH
88-74-4	2-Nitroaniline	ND		mg/kg dry	0.0894	0.179	2	EPA 8270D Certifications:		08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:15	KH
88-75-5	2-Nitrophenol	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:		08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:15	КН
65794-96-9	3- & 4-Methylphenols	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:		08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:15	КН
91-94-1	3,3-Dichlorobenzidine	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:		08/17/2022 13:21 Y10854,NJDEP,PADEF	08/18/2022 12:15	КН
99-09-2	3-Nitroaniline	ND		mg/kg dry	0.0894	0.179	2	EPA 8270D Certifications:		08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:15	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 32 of 73

Client Sample ID: Comp-2, C-2

York Sample ID:

22H0961-08

York Project (SDG) No. 22H0961

Client Project ID
4 Tripp Lane, Armonk, NY 10504

Matrix Soil Collection Date/Time
August 4, 2022 3:00 pm

Date Received 08/16/2022

Semi-Volatiles, 8270 Comprehensive

Sample Prepared by Method: EPA 3546 SVOA

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
534-52-1	4,6-Dinitro-2-methylphenol	ND		mg/kg dry	0.0894	0.179	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,NJDI	08/18/2022 12:15 EP,PADEP	КН
101-55-3	4-Bromophenyl phenyl ether	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,NJDI	08/18/2022 12:15 EP,PADEP	КН
59-50-7	4-Chloro-3-methylphenol	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,NJDI	08/18/2022 12:15 EP,PADEP	KH
106-47-8	4-Chloroaniline	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,NJDI	08/18/2022 12:15 EP,PADEP	KH
7005-72-3	4-Chlorophenyl phenyl ether	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,NJDI	08/18/2022 12:15 EP,PADEP	KH
100-01-6	4-Nitroaniline	ND		mg/kg dry	0.0894	0.179	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,NJDI	08/18/2022 12:15 EP,PADEP	KH
100-02-7	4-Nitrophenol	ND		mg/kg dry	0.0894	0.179	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,NJDI	08/18/2022 12:15 EP,PADEP	КН
83-32-9	Acenaphthene	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,NJDI	08/18/2022 12:15 EP,PADEP	KH
208-96-8	Acenaphthylene	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,NJDI	08/18/2022 12:15 EP,PADEP	KH
98-86-2	Acetophenone	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	NELAC-NY	08/17/2022 13:21 /10854,NJDEP,PADE	08/18/2022 12:15	KH
62-53-3	Aniline	ND		mg/kg dry	0.179	0.358	2	EPA 8270D Certifications:	NELAC-NY	08/17/2022 13:21 /10854,NJDEP,PADE	08/18/2022 12:15	KH
120-12-7	Anthracene	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,NJDI	08/18/2022 12:15 EP,PADEP	КН
1912-24-9	Atrazine	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	NELAC-NY	08/17/2022 13:21 /10854,NJDEP,PADE	08/18/2022 12:15	КН
100-52-7	Benzaldehyde	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	NELAC-NY	08/17/2022 13:21 /10854,NJDEP,PADE	08/18/2022 12:15	KH
92-87-5	Benzidine	ND		mg/kg dry	0.179	0.358	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,PADI	08/18/2022 12:15 EP	КН
56-55-3	Benzo(a)anthracene	0.186		mg/kg dry	0.0448	0.0894	2	EPA 8270D		08/17/2022 13:21	08/18/2022 12:15	KH
50-32-8	Panza(a)nyrana	0.214			0.0440	0.0004	2	Certifications: EPA 8270D	CTDOH,N	ELAC-NY10854,NJD 08/17/2022 13:21	EP,PADEP 08/18/2022 12:15	KH
30-32-8	Benzo(a)pyrene	0.214		mg/kg dry	0.0448	0.0894	2	Certifications:	CTDOH,N	ELAC-NY10854,NJD		KH
205-99-2	Benzo(b)fluoranthene	0.210		mg/kg dry	0.0448	0.0894	2	EPA 8270D		08/17/2022 13:21	08/18/2022 12:15	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
191-24-2	Benzo(g,h,i)perylene	0.163		mg/kg dry	0.0448	0.0894	2	EPA 8270D		08/17/2022 13:21	08/18/2022 12:15	KH
207.00.0	Donne (I.) Green wath on a	0.474		7 1			-	Certifications:	CTDOH,N	ELAC-NY10854,NJD		1711
207-08-9	Benzo(k)fluoranthene	0.161		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,N	08/17/2022 13:21 ELAC-NY10854,NJD	08/18/2022 12:15 EP,PADEP	KH
65-85-0	Benzoic acid	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:		08/17/2022 13:21 /10854,NJDEP,PADE	08/18/2022 12:15	КН
100-51-6	Benzyl alcohol	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	NELAC-NY	08/17/2022 13:21 (10854,NJDEP,PADE	08/18/2022 12:15	КН
85-68-7	Benzyl butyl phthalate	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,NJDI	08/18/2022 12:15 EP,PADEP	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@

Page 33 of 73

Client Sample ID: Comp-2, C-2 **York Sample ID:**

22H0961-08

York Project (SDG) No. 22H0961

Client Project ID 4 Tripp Lane, Armonk, NY 10504 Matrix Soil

Collection Date/Time August 4, 2022 3:00 pm Date Received 08/16/2022

Semi-Volatiles, 8270 Comprehensive

Sample Prepared by Method: EPA 3546 SVOA

Log-in Notes:

Sam	pre	110	tes:
_	_		

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
111-91-1	Bis(2-chloroethoxy)methane	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 12:15 EP,PADEP	КН
111-44-4	Bis(2-chloroethyl)ether	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDF	08/18/2022 12:15 EP,PADEP	KH
108-60-1	Bis(2-chloroisopropyl)ether	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 12:15 EP,PADEP	KH
117-81-7	Bis(2-ethylhexyl)phthalate	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDF	08/18/2022 12:15 EP,PADEP	КН
105-60-2	Caprolactam	ND		mg/kg dry	0.0894	0.179	2	EPA 8270D Certifications:	NELAC-NY	08/17/2022 13:21 10854,NJDEP,PADEI	08/18/2022 12:15	КН
86-74-8	Carbazole	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 12:15 EP,PADEP	КН
218-01-9	Chrysene	0.180		mg/kg dry	0.0448	0.0894	2	EPA 8270D		08/17/2022 13:21	08/18/2022 12:15	KH
								Certifications:	CTDOH,NI	ELAC-NY10854,NJD	EP,PADEP	
53-70-3	Dibenzo(a,h)anthracene	0.0522	J	mg/kg dry	0.0448	0.0894	2	EPA 8270D		08/17/2022 13:21	08/18/2022 12:15	KH
								Certifications:	CTDOH,NI	ELAC-NY10854,NJD	EP,PADEP	
132-64-9	Dibenzofuran	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 12:15 EP,PADEP	KH
84-66-2	Diethyl phthalate	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 12:15 EP,PADEP	KH
131-11-3	Dimethyl phthalate	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDF	08/18/2022 12:15 EP,PADEP	КН
84-74-2	Di-n-butyl phthalate	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDF	08/18/2022 12:15 EP,PADEP	KH
117-84-0	Di-n-octyl phthalate	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDF	08/18/2022 12:15 EP,PADEP	КН
206-44-0	Fluoranthene	0.288		mg/kg dry	0.0448	0.0894	2	EPA 8270D		08/17/2022 13:21	08/18/2022 12:15	KH
								Certifications:	CTDOH,NI	ELAC-NY10854,NJD	EP,PADEP	
86-73-7	Fluorene	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	NELAC-NY	08/17/2022 13:21 10854,NJDEP,PADE	08/18/2022 12:15 P	KH
118-74-1	Hexachlorobenzene	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDF	08/18/2022 12:15 EP,PADEP	KH
87-68-3	Hexachlorobutadiene	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 12:15 EP,PADEP	KH
77-47-4	Hexachlorocyclopentadiene	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDF	08/18/2022 12:15 EP,PADEP	КН
67-72-1	Hexachloroethane	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 12:15 EP,PADEP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	0.138		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NI	08/17/2022 13:21 ELAC-NY10854,NJD	08/18/2022 12:15 EP,PADEP	КН
78-59-1	Isophorone	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 12:15 EP,PADEP	КН
91-20-3	Naphthalene	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDF	08/18/2022 12:15 EP,PADEP	KH
98-95-3	Nitrobenzene	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJDE	08/18/2022 12:15 EP,PADEP	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 34 of 73

Client Sample ID: Comp-2, C-2

York Sample ID:

22H0961-08

York Project (SDG) No. 22H0961

Client Project ID 4 Tripp Lane, Armonk, NY 10504 Matrix Soil

Collection Date/Time August 4, 2022 3:00 pm Date Received 08/16/2022

Semi-Volatiles, 8270 Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3546 SVOA

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
62-75-9	N-Nitrosodimethylamine	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:15 P,PADEP	KH
621-64-7	N-nitroso-di-n-propylamine	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:15 P,PADEP	КН
86-30-6	N-Nitrosodiphenylamine	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:15 P,PADEP	КН
87-86-5	Pentachlorophenol	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:15 EP,PADEP	KH
85-01-8	Phenanthrene	0.0922		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,N	08/17/2022 13:21 ELAC-NY10854,NJD	08/18/2022 12:15 EP,PADEP	КН
108-95-2	Phenol	ND		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:15 P,PADEP	KH
129-00-0	Pyrene	0.255		mg/kg dry	0.0448	0.0894	2	EPA 8270D Certifications:	CTDOH,N	08/17/2022 13:21 ELAC-NY10854,NJD	08/18/2022 12:15 EP,PADEP	КН
	Surrogate Recoveries	Result		Acce	otance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	27.6 %			20-108							
4165-62-2	Surrogate: SURR: Phenol-d5	26.8 %			23-114							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	33.8 %			22-108							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	28.9 %			21-113							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	32.4 %			19-110							
1718-51-0	Surrogate: SURR: Terphenyl-d14	35.2 %			24-116							

Pesticides, 8081 Target List

Sample Prepared by Method: EPA 3550C

Log-in	Notes:
LUZ-III	Tiutes.

Sample Notes:

CAS N	o. Parameter	Result	Flag Units	Reported to LOQ Diluti	on Reference	Method Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND	ug/kg dry	1.79 5	EPA 8081B Certifications:	08/17/2022 13:34 CTDOH,NELAC-NY10854,NJD	08/20/2022 06:51 EP,PADEP	ВЈ
72-55-9	4,4'-DDE	11.4	ug/kg dry	1.79 5	EPA 8081B Certifications:	08/17/2022 13:34 CTDOH,NELAC-NY10854,NJD	08/20/2022 06:51 EP,PADEP	ВЈ
50-29-3	4,4'-DDT	ND	ug/kg dry	1.79 5	EPA 8081B Certifications:	08/17/2022 13:34 CTDOH,NELAC-NY10854,NJD	08/20/2022 06:51 EP,PADEP	ВЈ
309-00-2	Aldrin	ND	ug/kg dry	1.79 5	EPA 8081B Certifications:	08/17/2022 13:34 CTDOH,NELAC-NY10854,NJD	08/20/2022 06:51 EP,PADEP	BJ
319-84-6	alpha-BHC	ND	ug/kg dry	1.79 5	EPA 8081B Certifications:	08/17/2022 13:34 CTDOH,NELAC-NY10854,NJD	08/20/2022 06:51 EP,PADEP	ВЈ
5103-71-9	alpha-Chlordane	11.2	ug/kg dry	1.79 5	EPA 8081B Certifications:	08/17/2022 13:34 NELAC-NY10854,NJDEP	08/20/2022 06:51	ВЈ
319-85-7	beta-BHC	ND	ug/kg dry	1.79 5	EPA 8081B Certifications:	08/17/2022 13:34 CTDOH,NELAC-NY10854,NJD	08/20/2022 06:51 EP,PADEP	ВЈ
319-86-8	delta-BHC	ND	ug/kg dry	1.79 5	EPA 8081B Certifications:	08/17/2022 13:34 CTDOH,NELAC-NY10854,NJD	08/20/2022 06:51 EP,PADEP	BJ

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 35 of 73

Client Sample ID: Comp-2, C-2 **York Sample ID:**

22H0961-08

York Project (SDG) No. 22H0961

Client Project ID 4 Tripp Lane, Armonk, NY 10504 Matrix Soil

Collection Date/Time August 4, 2022 3:00 pm Date Received 08/16/2022

Pesticides, 8081 Target List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3550C

CAS N	o. Parameter	Result	Flag	Units	Reported t	o Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
60-57-1	Dieldrin	2.23		ug/kg dry	1.79	5	EPA 8081B		08/17/2022 13:34	08/20/2022 06:51	ВЈ
							Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
959-98-8	Endosulfan I	ND		ug/kg dry	1.79	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDI	08/20/2022 06:51 EP,PADEP	ВЈ
33213-65-9	Endosulfan II	ND		ug/kg dry	1.79	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854	08/20/2022 06:51	BJ
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.79	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDI	08/20/2022 06:51 EP,PADEP	ВЈ
72-20-8	Endrin	ND		ug/kg dry	1.79	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDI	08/20/2022 06:51 EP,PADEP	ВЈ
7421-93-4	Endrin aldehyde	ND		ug/kg dry	1.79	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDI	08/20/2022 06:51 EP,PADEP	ВЈ
53494-70-5	Endrin ketone	ND		ug/kg dry	1.79	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDI	08/20/2022 06:51 EP,PADEP	ВЈ
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.79	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDI	08/20/2022 06:51 EP,PADEP	ВЈ
5566-34-7	gamma-Chlordane	9.28		ug/kg dry	1.79	5	EPA 8081B		08/17/2022 13:34	08/20/2022 06:51	BJ
							Certifications:	NELAC-N	Y10854,NJDEP		
76-44-8	Heptachlor	ND		ug/kg dry	1.79	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDI	08/20/2022 06:51 EP,PADEP	BJ
1024-57-3	Heptachlor epoxide	ND		ug/kg dry	1.79	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDI	08/20/2022 06:51 EP,PADEP	ВЈ
72-43-5	Methoxychlor	ND		ug/kg dry	1.79	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDI	08/20/2022 06:51 EP,PADEP	BJ
8001-35-2	Toxaphene	ND		ug/kg dry	179	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDI	08/20/2022 06:51 EP,PADEP	ВЈ
	Surrogate Recoveries	Result		Accepta	nce Range						
2051-24-3	Surrogate: Decachlorobiphenyl	65.5 %		30)-150						
877-09-8	Surrogate: Tetrachloro-m-xylene	67.6 %		30	0-150						

Polychlorinated Biphenyls (PCB)

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

	red by Method: E11133											
CAS N	lo.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016		ND		mg/kg dry	0.0180	1	EPA 8082A Certifications:	NELAC-N	08/17/2022 13:34 /10854,CTDOH,NJDE	08/18/2022 19:43 EP,PADEP	ВЈ
11104-28-2	Aroclor 1221		ND		mg/kg dry	0.0180	Ì	EPA 8082A Certifications:	NELAC-N	08/17/2022 13:34 Y10854,CTDOH,NJDE	08/18/2022 19:43 EP,PADEP	ВЈ
11141-16-5	Aroclor 1232		ND		mg/kg dry	0.0180	1	EPA 8082A Certifications:	NELAC-N	08/17/2022 13:34 Y10854,CTDOH,NJDE	08/18/2022 19:43 EP,PADEP	ВЈ
53469-21-9	Aroclor 1242		ND		mg/kg dry	0.0180	1	EPA 8082A Certifications:	NELAC-N	08/17/2022 13:34 Y10854,CTDOH,NJDE	08/18/2022 19:43 EP,PADEP	ВЈ
12672-29-6	Aroclor 1248		ND		mg/kg dry	0.0180	Ĭ	EPA 8082A Certifications:	NELAC-N	08/17/2022 13:34 Y10854,CTDOH,NJDE	08/18/2022 19:43 EP,PADEP	ВЈ

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

RICHMOND HILL, NY 11418

132-02 89th AVENUE FAX (203) 357-0166

ClientServices@ Page 36 of 73

Client Sample ID: Comp-2, C-2

York Sample ID:

22H0961-08

York Project (SDG) No. 22H0961

Client Project ID
4 Tripp Lane, Armonk, NY 10504

Matrix Soil Collection Date/Time
August 4, 2022 3:00 pm

Date Received 08/16/2022

Polychlorinated Biphenyls (PCB)

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3550C

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
11097-69-1	Aroclor 1254	ND		mg/kg dry	0.0180	1	EPA 8082A Certifications:	NELAC-NY	08/17/2022 13:34 Y10854,CTDOH,NJDI	08/18/2022 19:43 EP,PADEP	ВЈ
11096-82-5	Aroclor 1260	ND		mg/kg dry	0.0180	1	EPA 8082A Certifications:	NELAC-NY	08/17/2022 13:34 Y10854,CTDOH,NJDI	08/18/2022 19:43 EP,PADEP	ВЈ
1336-36-3	* Total PCBs	ND		mg/kg dry	0.0180	1	EPA 8082A Certifications:		08/17/2022 13:34	08/18/2022 19:43	ВЈ
	Surrogate Recoveries	Result		Acceptance	Range						
877-09-8	Surrogate: Tetrachloro-m-xylene	60.0 %		30-12	20						
2051-24-3	Surrogate: Decachlorobiphenyl	72.5 %		30-12	20						

Metals, Target Analyte

Sample Prepared by Method: EPA 3050B

Log-in Notes: Sample Notes:

CAS N	lo.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
429-90-5	Aluminum		14000		mg/kg dry	5.82	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:10	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
440-36-0	Antimony		ND		mg/kg dry	2.91	1	EPA 6010D Certifications:	CTDOH,NI	08/16/2022 12:00 ELAC-NY10854,NJDE	08/18/2022 18:10 P,PADEP	AJL
440-38-2	Arsenic		3.37		mg/kg dry	1.75	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:10	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
440-39-3	Barium		104		mg/kg dry	2.91	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:10	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
440-41-7	Beryllium		ND		mg/kg dry	0.058	1	EPA 6010D Certifications:	CTDOH,NI	08/16/2022 12:00 ELAC-NY10854,NJDE	08/18/2022 18:10 P,PADEP	AJL
440-43-9	Cadmium		ND		mg/kg dry	0.349	1	EPA 6010D Certifications:	CTDOH,NI	08/16/2022 12:00 ELAC-NY10854,NJDE	08/18/2022 18:10 P,PADEP	AJL
440-70-2	Calcium		9760	В	mg/kg dry	5.82	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:10	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
440-47-3	Chromium		24.0		mg/kg dry	0.582	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:10	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
440-48-4	Cobalt		10.3		mg/kg dry	0.466	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:10	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
440-50-8	Copper		30.2		mg/kg dry	2.33	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:10	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
439-89-6	Iron		17800		mg/kg dry	29.1	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:10	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
439-92-1	Lead		54.5		mg/kg dry	0.582	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:10	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
439-95-4	Magnesium		7390		mg/kg dry	5.82	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:10	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
439-96-5	Manganese		321		mg/kg dry	0.582	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:10	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ P

Page 37 of 73

Client Sample ID: Comp-2, C-2

York Sample ID:

22H0961-08

York Project (SDG) No. 22H0961

<u>Client Project ID</u>
4 Tripp Lane, Armonk, NY 10504

<u>Matrix</u> Soil Collection Date/Time
August 4, 2022 3:00 pm

D-4-/T:---

Date Received 08/16/2022

Metals, Target Analyte

Log-in Notes:

Sample Notes:

, _____

Sample Prepa	red by Method: EPA	A 3050B										
CAS N	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-02-0	Nickel		13.3		mg/kg dry	1.16	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:10	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-09-7	Potassium		2310	В	mg/kg dry	5.82	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:10	AJL
							Certifications: CTDOH			ELAC-NY10854,NJD	EP,PADEP	
7782-49-2	Selenium		ND		mg/kg dry	2.91	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:10	AJL
								Certifications:	: CTDOH,NELAC-NY10854,NJDEP,PADEP			
7440-22-4	Silver		ND		mg/kg dry	0.582	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:10	AJL
								Certifications:	CTDOH,NI	ELAC-NY10854,NJDE	EP,PADEP	
7440-23-5	Sodium		ND		mg/kg dry	58.2	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:10	AJL
								Certifications:	CTDOH,NI	ELAC-NY10854,NJDF	EP,PADEP	
7440-28-0	Thallium		ND		mg/kg dry	2.91	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:10	AJL
								Certifications:	CTDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
7440-62-2	Vanadium		34.5		mg/kg dry	1.16	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:10	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-66-6	Zinc		76.2		mg/kg dry	2.91	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:10	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	

Mercury by 7473 <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA 7473 soil

_	CAS No	0.	Parameter	Result	Flag	Units	Reported t LOQ	Dilution	Reference M	Iethod	Prepared	Analyzed	Analyst
74	39-97-6	Mercury		0.109		mg/kg dry	0.0326	1	EPA 7473		08/25/2022 09:56	08/25/2022 13:51	MR
									Certifications:	CTDOH,N	JDEP,NELAC-NY108	54,PADEP	

Total Solids <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: % Solids Prep

CAS N	0.	Parameter	Result	Flag	Units	Reported LOQ	o Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids		92.1		%	0.100	1	SM 2540G	CTDOU	08/19/2022 16:46	08/19/2022 19:48	AJS

Sample Information

Client Sample ID: Comp-3, C-3 York Sample ID: 22H0961-09

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received22H09614 Tripp Lane, Armonk, NY 10504SoilAugust 4, 20223:00 pm08/16/2022

Semi-Volatiles, 8270 Comprehensive Log-in Notes: Sample Notes:

(203) 325-1371

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com

FAX (203) 357-0166

ClientServices@ Page 38 of 73

Client Sample ID: Comp-3, C-3 **York Sample ID:** 22H0961-09

York Project (SDG) No. 22H0961

Client Project ID 4 Tripp Lane, Armonk, NY 10504 Matrix Soil

Collection Date/Time August 4, 2022 3:00 pm Date Received 08/16/2022

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
92-52-4	1,1-Biphenyl	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	NELAC-N	08/17/2022 13:21 Y10854,NJDEP,PADEF	08/18/2022 12:45	КН
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		mg/kg dry	0.0909	0.182	2	EPA 8270D Certifications:	NELAC-N	08/17/2022 13:21 Y10854,NJDEP,PADEF	08/18/2022 12:45	КН
120-82-1	1,2,4-Trichlorobenzene	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	CTDOH,NI	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:45 P,PADEP	КН
95-50-1	1,2-Dichlorobenzene	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	NELAC-N	08/17/2022 13:21 Y10854,PADEP	08/18/2022 12:45	KH
122-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	NELAC-N	08/17/2022 13:21 Y10854,NJDEP,PADEF	08/18/2022 12:45	КН
541-73-1	1,3-Dichlorobenzene	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	NELAC-N	08/17/2022 13:21 Y10854,PADEP	08/18/2022 12:45	KH
106-46-7	1,4-Dichlorobenzene	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	NELAC-N	08/17/2022 13:21 Y10854,PADEP	08/18/2022 12:45	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		mg/kg dry	0.0909	0.182	2	EPA 8270D Certifications:	NELAC-N	08/17/2022 13:21 Y10854,NJDEP,PADEF	08/18/2022 12:45	КН
95-95-4	2,4,5-Trichlorophenol	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:		08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:45	KH
88-06-2	2,4,6-Trichlorophenol	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	CTDOH,NI	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:45 P,PADEP	КН
120-83-2	2,4-Dichlorophenol	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	CTDOH,NI	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:45 P,PADEP	КН
105-67-9	2,4-Dimethylphenol	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	CTDOH,N	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:45 P,PADEP	КН
51-28-5	2,4-Dinitrophenol	ND		mg/kg dry	0.0909	0.182	2	EPA 8270D Certifications:	CTDOH,NI	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:45 P,PADEP	КН
121-14-2	2,4-Dinitrotoluene	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:		08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:45	КН
606-20-2	2,6-Dinitrotoluene	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	CTDOH,NI	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:45 P,PADEP	КН
91-58-7	2-Chloronaphthalene	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	CTDOH,NI	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:45 P,PADEP	КН
95-57-8	2-Chlorophenol	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:		08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:45	KH
91-57-6	2-Methylnaphthalene	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:		08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:45	КН
95-48-7	2-Methylphenol	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:		08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:45	КН
88-74-4	2-Nitroaniline	ND		mg/kg dry	0.0909	0.182	2	EPA 8270D Certifications:			08/18/2022 12:45	КН
88-75-5	2-Nitrophenol	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:		08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:45	КН
65794-96-9	3- & 4-Methylphenols	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:		08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:45	КН
91-94-1	3,3-Dichlorobenzidine	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:		08/17/2022 13:21 Y10854,NJDEP,PADEF	08/18/2022 12:45	КН
99-09-2	3-Nitroaniline	ND		mg/kg dry	0.0909	0.182	2	EPA 8270D Certifications:		08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:45	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 39 of 73

Client Sample ID: Comp-3, C-3

York Sample ID: 22H0961-09

York Project (SDG) No. 22H0961 Client Project ID
4 Tripp Lane, Armonk, NY 10504

Matrix Col Soil Augu

Collection Date/Time
August 4, 2022 3:00 pm

Date Received 08/16/2022

Semi-Volatiles, 8270 Comprehensive

Log-in Notes:

Sample Notes:

	ed by Method: EPA 3546 SVOA				nog III	10000		Sum	<i>310</i> 1 10 10 1	<u>,,,</u>		
CAS No		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
534-52-1	4,6-Dinitro-2-methylphenol	ND		mg/kg dry	0.0909	0.182	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	КН
101-55-3	4-Bromophenyl phenyl ether	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	KH
59-50-7	4-Chloro-3-methylphenol	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	KH
106-47-8	4-Chloroaniline	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	KH
7005-72-3	4-Chlorophenyl phenyl ether	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	KH
100-01-6	4-Nitroaniline	ND		mg/kg dry	0.0909	0.182	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	KH
100-02-7	4-Nitrophenol	ND		mg/kg dry	0.0909	0.182	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	КН
83-32-9	Acenaphthene	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	KH
208-96-8	Acenaphthylene	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	KH
98-86-2	Acetophenone	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	NELAC-NY	08/17/2022 13:21 (10854,NJDEP,PADE	08/18/2022 12:45 P	KH
62-53-3	Aniline	ND		mg/kg dry	0.182	0.364	2	EPA 8270D Certifications:	NELAC-NY	08/17/2022 13:21 10854,NJDEP,PADE	08/18/2022 12:45 P	KH
120-12-7	Anthracene	0.0589	J	mg/kg dry	0.0456	0.0909	2	EPA 8270D		08/17/2022 13:21	08/18/2022 12:45	KH
								Certifications:	CTDOH,NI	ELAC-NY10854,NJI	DEP,PADEP	
1912-24-9	Atrazine	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	NELAC-NY	08/17/2022 13:21 10854,NJDEP,PADE	08/18/2022 12:45 P	KH
100-52-7	Benzaldehyde	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	NELAC-NY	08/17/2022 13:21 10854,NJDEP,PADE	08/18/2022 12:45 P	KH
92-87-5	Benzidine	ND		mg/kg dry	0.182	0.364	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,PAD	08/18/2022 12:45 EP	КН
56-55-3	Benzo(a)anthracene	0.325		mg/kg dry	0.0456	0.0909	2	EPA 8270D		08/17/2022 13:21	08/18/2022 12:45	KH
								Certifications:	CTDOH,NI	ELAC-NY10854,NJI		
50-32-8	Benzo(a)pyrene	0.310		mg/kg dry	0.0456	0.0909	2	EPA 8270D	CTROUN	08/17/2022 13:21	08/18/2022 12:45	KH
205-99-2	Benzo(b)fluoranthene	0.276		ma/ka dar	0.0456	0.0000	2	Certifications: EPA 8270D	CIDOH,NI	ELAC-NY10854,NJI 08/17/2022 13:21	08/18/2022 12:45	КН
205-99-2	Benzo(b)muorantnene	0.376		mg/kg dry	0.0456	0.0909	2	Certifications:	CTDOH.NI	ELAC-NY10854,NJI		KH
191-24-2	Benzo(g,h,i)perylene	0.227		mg/kg dry	0.0456	0.0909	2	EPA 8270D	,	08/17/2022 13:21	08/18/2022 12:45	KH
								Certifications:	CTDOH,NI	ELAC-NY10854,NJI	DEP,PADEP	
207-08-9	Benzo(k)fluoranthene	0.281		mg/kg dry	0.0456	0.0909	2	EPA 8270D		08/17/2022 13:21	08/18/2022 12:45	KH
								Certifications:	CTDOH,NI	ELAC-NY10854,NJI	DEP,PADEP	
65-85-0	Benzoic acid	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	NELAC-NY	08/17/2022 13:21 10854,NJDEP,PADE	08/18/2022 12:45 P	KH
100-51-6	Benzyl alcohol	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	NELAC-NY	08/17/2022 13:21 10854,NJDEP,PADE	08/18/2022 12:45 P	KH
85-68-7	Benzyl butyl phthalate	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 LAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	KH

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 40 of 73

Client Sample ID: Comp-3, C-3

York Sample ID: 22H0961-09

York Project (SDG) No. 22H0961

Client Project ID
4 Tripp Lane, Armonk, NY 10504

<u>Matrix</u> Soil Collection Date/Time
August 4, 2022 3:00 pm

Date Received 08/16/2022

Semi-Volatiles, 8270 Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepare	d by Method: EPA 3546 SVOA										
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Date/Time Method Prepared	Date/Time Analyzed	Analyst
111-91-1	Bis(2-chloroethoxy)methane	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	КН
111-44-4	Bis(2-chloroethyl)ether	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	KH
108-60-1	Bis(2-chloroisopropyl)ether	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	КН
117-81-7	Bis(2-ethylhexyl)phthalate	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	KH
105-60-2	Caprolactam	ND		mg/kg dry	0.0909	0.182	2	EPA 8270D Certifications:	08/17/2022 13:21 NELAC-NY10854,NJDEP,PADE	08/18/2022 12:45 P	КН
86-74-8	Carbazole	0.0480	J	mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJE	08/18/2022 12:45 DEP,PADEP	КН
218-01-9	Chrysene	0.375		mg/kg dry	0.0456	0.0909	2	EPA 8270D	08/17/2022 13:21	08/18/2022 12:45	KH
	D2 (-1) (1								CTDOH,NELAC-NY10854,NJE		
53-70-3	Dibenzo(a,h)anthracene	0.0836	J	mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJE	08/18/2022 12:45 DEP.PADEP	KH
132-64-9	Dibenzofuran	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJD	08/18/2022 12:45	КН
84-66-2	Diethyl phthalate	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	KH
131-11-3	Dimethyl phthalate	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	КН
84-74-2	Di-n-butyl phthalate	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	KH
117-84-0	Di-n-octyl phthalate	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	KH
206-44-0	Fluoranthene	0.651		mg/kg dry	0.0456	0.0909	2	EPA 8270D	08/17/2022 13:21	08/18/2022 12:45	KH
									CTDOH,NELAC-NY10854,NJE		
86-73-7	Fluorene	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	08/17/2022 13:21 NELAC-NY10854,NJDEP,PADE	08/18/2022 12:45 P	KH
118-74-1	Hexachlorobenzene	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	KH
87-68-3	Hexachlorobutadiene	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	КН
77-47-4	Hexachlorocyclopentadiene	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	КН
67-72-1	Hexachloroethane	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	0.201		mg/kg dry	0.0456	0.0909	2	EPA 8270D	08/17/2022 13:21	08/18/2022 12:45	KH
	v.								CTDOH,NELAC-NY10854,NJE		
78-59-1	Isophorone	ND		mg/kg dry	0.0456	0.0909	2		08/17/2022 13:21 CTDOH,NELAC-NY10854,NJD		KH
91-20-3	Naphthalene	ND		mg/kg dry	0.0456	0.0909	2		08/17/2022 13:21 CTDOH,NELAC-NY10854,NJD		KH
98-95-3	Nitrobenzene	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	08/17/2022 13:21 CTDOH,NELAC-NY10854,NJD	08/18/2022 12:45 EP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 41 of 73

Client Sample ID: Comp-3, C-3

York Sample ID:

22H0961-09

York Project (SDG) No. 22H0961

Client Project ID
4 Tripp Lane, Armonk, NY 10504

Matrix Soil Collection Date/Time
August 4, 2022 3:00 pm

Date Received 08/16/2022

Semi-Volatiles, 8270 Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3546 SVOA

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
62-75-9	N-Nitrosodimethylamine	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:45 EP,PADEP	KH
621-64-7	N-nitroso-di-n-propylamine	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:45 EP,PADEP	KH
86-30-6	N-Nitrosodiphenylamine	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:45 EP,PADEP	KH
87-86-5	Pentachlorophenol	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:45 EP,PADEP	KH
85-01-8	Phenanthrene	0.302		mg/kg dry	0.0456	0.0909	2	EPA 8270D		08/17/2022 13:21	08/18/2022 12:45	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
108-95-2	Phenol	ND		mg/kg dry	0.0456	0.0909	2	EPA 8270D Certifications:	CTDOH,NE	08/17/2022 13:21 ELAC-NY10854,NJDE	08/18/2022 12:45 EP,PADEP	KH
129-00-0	Pyrene	0.515		mg/kg dry	0.0456	0.0909	2	EPA 8270D		08/17/2022 13:21	08/18/2022 12:45	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
	Surrogate Recoveries	Result		Accep	otance Range	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	22.1 %			20-108							
4165-62-2	Surrogate: SURR: Phenol-d5	27.1 %			23-114							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	35.6 %			22-108							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	29.8 %			21-113							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	36.0 %			19-110							

Pesticides, 8081 Target List

Surrogate: SURR: Terphenyl-d14

1718-51-0

Sample Prepared by Method: EPA 3550C

Log-in Notes:

24-116

Sample Notes:

CAS N	No. Parameter	Result	Flag Units	Reported to LOQ D	ilution	Reference M	Date/Time ethod Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND	ug/kg dry	1.80	5	EPA 8081B Certifications: C	08/17/2022 13:34 TDOH,NELAC-NY10854,NJDE	08/20/2022 07:10 P,PADEP	ВЈ
72-55-9	4,4'-DDE	1.91	ug/kg dry	1.80	5	EPA 8081B Certifications:	08/17/2022 13:34 CTDOH,NELAC-NY10854,NJD	08/20/2022 07:10 EP,PADEP	ВЈ
50-29-3	4,4'-DDT	ND	ug/kg dry	1.80	5	EPA 8081B Certifications: C	08/17/2022 13:34 TDOH,NELAC-NY10854,NJDE	08/20/2022 07:10 P,PADEP	ВЈ
309-00-2	Aldrin	ND	ug/kg dry	1.80	5	EPA 8081B Certifications: C	08/17/2022 13:34 TDOH,NELAC-NY10854,NJDE	08/20/2022 07:10 P,PADEP	ВЈ
319-84-6	alpha-BHC	ND	ug/kg dry	1.80	5	EPA 8081B Certifications: C	08/17/2022 13:34 TDOH,NELAC-NY10854,NJDE	08/20/2022 07:10 P,PADEP	BJ
5103-71-9	alpha-Chlordane	12.8	ug/kg dry	1.80	5	EPA 8081B Certifications: N	08/17/2022 13:34 NELAC-NY10854,NJDEP	08/20/2022 07:10	ВЈ
319-85-7	beta-BHC	ND	ug/kg dry	1.80	5	EPA 8081B Certifications: C	08/17/2022 13:34 TDOH,NELAC-NY10854,NJDE	08/20/2022 07:10 P,PADEP	ВЈ
319-86-8	delta-BHC	ND	ug/kg dry	1.80	5	EPA 8081B Certifications: C	08/17/2022 13:34 TDOH,NELAC-NY10854,NJDE	08/20/2022 07:10 P,PADEP	BJ

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

35.2 %

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 42 of 73

Client Sample ID: Comp-3, C-3

York Sample ID:

22H0961-09

York Project (SDG) No. 22H0961

Client Project ID
4 Tripp Lane, Armonk, NY 10504

Matrix Soil Collection Date/Time
August 4, 2022 3:00 pm

Date Received 08/16/2022

<u>Pesticides, 8081 Target List</u> Sample Prepared by Method: EPA 3550C **Log-in Notes:**

Sample Notes:

CAS N	No. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
60-57-1	Dieldrin	2.55		ug/kg dry	1.80	5	EPA 8081B		08/17/2022 13:34	08/20/2022 07:10	BJ
							Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
959-98-8	Endosulfan I	ND		ug/kg dry	1.80	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDE	08/20/2022 07:10 P,PADEP	BJ
33213-65-9	Endosulfan II	ND		ug/kg dry	1.80	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854	08/20/2022 07:10	ВЈ
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.80	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDE	08/20/2022 07:10 P,PADEP	ВЈ
72-20-8	Endrin	ND		ug/kg dry	1.80	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDE	08/20/2022 07:10 P,PADEP	ВЈ
7421-93-4	Endrin aldehyde	ND		ug/kg dry	1.80	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDE	08/20/2022 07:10 P,PADEP	BJ
53494-70-5	Endrin ketone	ND		ug/kg dry	1.80	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDE	08/20/2022 07:10 P,PADEP	ВЈ
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.80	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDE	08/20/2022 07:10 P,PADEP	ВЈ
5566-34-7	gamma-Chlordane	9.20		ug/kg dry	1.80	5	EPA 8081B		08/17/2022 13:34	08/20/2022 07:10	ВЈ
							Certifications:	NELAC-N	Y10854,NJDEP		
76-44-8	Heptachlor	ND		ug/kg dry	1.80	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDE	08/20/2022 07:10 P,PADEP	ВЈ
1024-57-3	Heptachlor epoxide	ND		ug/kg dry	1.80	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDE	08/20/2022 07:10 P,PADEP	ВЈ
72-43-5	Methoxychlor	ND		ug/kg dry	1.80	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDE	08/20/2022 07:10 P,PADEP	ВЈ
8001-35-2	Toxaphene	ND		ug/kg dry	180	5	EPA 8081B Certifications:	CTDOH,NI	08/17/2022 13:34 ELAC-NY10854,NJDE	08/20/2022 07:10 P,PADEP	ВЈ

Polychlorinated Biphenyls (PCB)

2051-24-3

877-09-8

Surrogate Recoveries

Surrogate: Decachlorobiphenyl

Surrogate: Tetrachloro-m-xylene

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag Units	Reported to LOQ 1	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016	ND	mg/kg dry	0.0182	1	EPA 8082A Certifications:	NELAC-NY	08/17/2022 13:34 10854,CTDOH,NJDE	08/18/2022 19:56 P,PADEP	ВЈ
11104-28-2	Aroclor 1221	ND	mg/kg dry	0.0182	Ì	EPA 8082A Certifications:	NELAC-NY	08/17/2022 13:34 10854,CTDOH,NJDE	08/18/2022 19:56 P,PADEP	ВЈ
11141-16-5	Aroclor 1232	ND	mg/kg dry	0.0182	1	EPA 8082A Certifications:	NELAC-NY	08/17/2022 13:34 10854,CTDOH,NJDE	08/18/2022 19:56 P,PADEP	ВЈ
53469-21-9	Aroclor 1242	ND	mg/kg dry	0.0182	1	EPA 8082A Certifications:	NELAC-NY	08/17/2022 13:34 10854,CTDOH,NJDE	08/18/2022 19:56 P,PADEP	ВЈ
12672-29-6	Aroclor 1248	ND	mg/kg dry	0.0182	1	EPA 8082A Certifications:	NELAC-NY	08/17/2022 13:34 10854,CTDOH,NJDE	08/18/2022 19:56 P,PADEP	ВЈ

Acceptance Range

30-150

30-150

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

Result

45.4 %

46.0 %

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 43 of 73

Client Sample ID: Comp-3, C-3

York Sample ID:

22H0961-09

York Project (SDG) No. 22H0961

Client Project ID
4 Tripp Lane, Armonk, NY 10504

Matrix Soil Collection Date/Time
August 4, 2022 3:00 pm

Date Received 08/16/2022

Polychlorinated Biphenyls (PCB)

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3550C

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
11097-69-1	Aroclor 1254	ND		mg/kg dry	0.0182	1	EPA 8082A Certifications:	NELAC-NY	08/17/2022 13:34 /10854,CTDOH,NJDF	08/18/2022 19:56 EP,PADEP	ВЈ
11096-82-5	Aroclor 1260	ND		mg/kg dry	0.0182	1	EPA 8082A Certifications:	NELAC-NY	08/17/2022 13:34 /10854,CTDOH,NJDE	08/18/2022 19:56 EP,PADEP	BJ
1336-36-3	* Total PCBs	ND		mg/kg dry	0.0182	Ī	EPA 8082A Certifications:		08/17/2022 13:34	08/18/2022 19:56	ВЈ
	Surrogate Recoveries	Result		Acceptance	Range						
877-09-8	Surrogate: Tetrachloro-m-xylene	40.5 %		30-120	0						
2051-24-3	Surrogate: Decachlorobiphenyl	47.5 %		30-120	0						

Metals, Target Analyte

Sample Prepared by Method: EPA 3050B

Log-in Notes: Sample Notes:

129-90-5		Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
	Aluminum		14900		mg/kg dry	5.73	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:12	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
440-36-0	Antimony		ND		mg/kg dry	2.87	1	EPA 6010D Certifications:	CTDOH,NI	08/16/2022 12:00 ELAC-NY10854,NJDE	08/18/2022 18:12 P,PADEP	AJL
140-38-2	Arsenic		2.77		mg/kg dry	1.72	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:12	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
140-39-3	Barium		104		mg/kg dry	2.87	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:12	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
440-41-7	Beryllium		ND		mg/kg dry	0.057	1	EPA 6010D Certifications:	CTDOH,NI	08/16/2022 12:00 ELAC-NY10854,NJDE	08/18/2022 18:12 P,PADEP	AJL
140-43-9	Cadmium		0.963		mg/kg dry	0.344	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:12	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
140-70-2	Calcium		8630	В	mg/kg dry	5.73	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:12	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
140-47-3	Chromium		26.8		mg/kg dry	0.573	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:12	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
140-48-4	Cobalt		11.2		mg/kg dry	0.459	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:12	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
140-50-8	Copper		32.3		mg/kg dry	2.29	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:12	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
139-89-6	Iron		19900		mg/kg dry	28.7	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:12	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
139-92-1	Lead		62.9		mg/kg dry	0.573	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:12	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
139-95-4	Magnesium		6660		mg/kg dry	5.73	I	EPA 6010D		08/16/2022 12:00	08/18/2022 18:12	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
139-96-5	Manganese		373		mg/kg dry	0.573	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:12	AJL
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 44 of 73

Client Sample ID: Comp-3, C-3

York Sample ID:

22H0961-09

York Project (SDG) No. 22H0961

Client Project ID
4 Tripp Lane, Armonk, NY 10504

Matrix Soil Collection Date/Time
August 4, 2022 3:00 pm

Date Received 08/16/2022

Metals, Target Analyte

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3050B

CAS No	o. Para	ameter Result	Flag	Units	Reported to	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-02-0	Nickel	12.3		mg/kg dry	1.15	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:12	AJL
							Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-09-7	Potassium	1420	В	mg/kg dry	5.73	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:12	AJL
							Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7782-49-2	Selenium	ND		mg/kg dry	2.87	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:12	AJL
							Certifications:	CTDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
7440-22-4	Silver	ND		mg/kg dry	0.573	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:12	AJL
							Certifications:	CTDOH,NI	ELAC-NY10854,NJDF	EP,PADEP	
7440-23-5	Sodium	ND		mg/kg dry	57.3	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:12	AJL
							Certifications:	CTDOH,NI	ELAC-NY10854,NJDF	EP,PADEP	
7440-28-0	Thallium	ND		mg/kg dry	2.87	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:12	AJL
							Certifications:	CTDOH,NI	ELAC-NY10854,NJDF	EP,PADEP	
7440-62-2	Vanadium	38.9		mg/kg dry	1.15	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:12	AJL
							Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-66-6	Zinc	90.7		mg/kg dry	2.87	1	EPA 6010D		08/16/2022 12:00	08/18/2022 18:12	AJL
							Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	

Mercury by 7473 <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA 7473 soil

CAS N	No.	Parameter	Result	Flag	Units	Reported to LOQ	o Dilut	tion Re	ference Method	Prepared	Analyzed	Analyst
7439-97-6	Mercury		0.115		mg/kg dry	0.0333	1	1 EPA 74	173	08/25/2022 09:56	08/25/2022 14:00	MR
								Certific	ations: CTDOH	NJDEP,NELAC-NY108	54,PADEP	

Total Solids <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: % Solids Prep

CAS	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids		90.2		%	0.100	1	SM 2540G		08/19/2022 16:46	08/19/2022 19:48	AJS
								Certifications:	CTDOH			

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 3

(203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 45 of 73

Analytical Batch Summary

Batch ID: BH20963	Preparation Method:	EPA 3050B	Prepared By:	FG
YORK Sample ID	Client Sample ID	Preparation Date		
22Н0961-07	Comp-1, C-1	08/16/22		
22H0961-08	Comp-2, C-2	08/16/22		
22H0961-09	Comp-3, C-3	08/16/22		
BH20963-BLK1	Blank	08/16/22		
BH20963-DUP1	Duplicate	08/16/22		
BH20963-MS1	Matrix Spike	08/16/22		
BH20963-PS1	Post Spike	08/16/22		
BH20963-SRM1	Reference	08/16/22		
Batch ID: BH21078	Preparation Method:	EPA 3546 SVOA	Prepared By:	KEO
YORK Sample ID	Client Sample ID	Preparation Date		
22Н0961-07	Comp-1, C-1	08/17/22		
22H0961-08	Comp-2, C-2	08/17/22		
22H0961-09	Comp-3, C-3	08/17/22		
BH21078-BLK1	Blank	08/17/22		
BH21078-BS1	LCS	08/17/22		
BH21078-MS1	Matrix Spike	08/17/22		
BH21078-MSD1	Matrix Spike Dup	08/17/22		
BILLIO70 MODI	маши брис Бир	33/17/22		
Batch ID: BH21081	Preparation Method:	EPA 3550C	Prepared By:	KEO
YORK Sample ID	Client Sample ID	Preparation Date		
YORK Sample ID 22H0961-07	Client Sample ID Comp-1, C-1	Preparation Date 08/17/22		
The second of th				
22H0961-07	Comp-1, C-1	08/17/22		
22H0961-07 22H0961-07	Comp-1, C-1 Comp-1, C-1	08/17/22 08/17/22		
22H0961-07 22H0961-07 22H0961-08	Comp-1, C-1 Comp-1, C-1 Comp-2, C-2	08/17/22 08/17/22 08/17/22		
22H0961-07 22H0961-07 22H0961-08 22H0961-08	Comp-1, C-1 Comp-1, C-1 Comp-2, C-2 Comp-2, C-2 Comp-3, C-3	08/17/22 08/17/22 08/17/22 08/17/22		
22H0961-07 22H0961-07 22H0961-08 22H0961-08 22H0961-09	Comp-1, C-1 Comp-1, C-1 Comp-2, C-2 Comp-2, C-2 Comp-3, C-3 Comp-3, C-3	08/17/22 08/17/22 08/17/22 08/17/22 08/17/22		
22H0961-07 22H0961-07 22H0961-08 22H0961-09 22H0961-09	Comp-1, C-1 Comp-1, C-1 Comp-2, C-2 Comp-2, C-2 Comp-3, C-3 Comp-3, C-3 Blank	08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22		
22H0961-07 22H0961-07 22H0961-08 22H0961-08 22H0961-09 22H0961-09 BH21081-BLK1 BH21081-BLK2	Comp-1, C-1 Comp-1, C-1 Comp-2, C-2 Comp-2, C-2 Comp-3, C-3 Comp-3, C-3 Blank Blank	08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22		
22H0961-07 22H0961-07 22H0961-08 22H0961-08 22H0961-09 22H0961-09 BH21081-BLK1	Comp-1, C-1 Comp-1, C-1 Comp-2, C-2 Comp-2, C-2 Comp-3, C-3 Comp-3, C-3 Blank	08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22		
22H0961-07 22H0961-07 22H0961-08 22H0961-08 22H0961-09 22H0961-09 BH21081-BLK1 BH21081-BLK2 BH21081-BS1	Comp-1, C-1 Comp-1, C-1 Comp-2, C-2 Comp-2, C-2 Comp-3, C-3 Comp-3, C-3 Blank Blank LCS	08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22	Prepared By:	BMC
22H0961-07 22H0961-07 22H0961-08 22H0961-08 22H0961-09 22H0961-09 BH21081-BLK1 BH21081-BLK2 BH21081-BS1 BH21081-BS2	Comp-1, C-1 Comp-1, C-1 Comp-2, C-2 Comp-2, C-2 Comp-3, C-3 Comp-3, C-3 Blank Blank LCS LCS	08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22	Prepared By:	ВМС
22H0961-07 22H0961-07 22H0961-08 22H0961-08 22H0961-09 22H0961-09 BH21081-BLK1 BH21081-BLK2 BH21081-BS1 BH21081-BS2 Batch ID: BH21134	Comp-1, C-1 Comp-1, C-1 Comp-2, C-2 Comp-2, C-2 Comp-3, C-3 Comp-3, C-3 Blank Blank LCS LCS Preparation Method:	08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22	Prepared By:	ВМС
22H0961-07 22H0961-07 22H0961-08 22H0961-08 22H0961-09 22H0961-09 BH21081-BLK1 BH21081-BLK2 BH21081-BS1 BH21081-BS2 Batch ID: BH21134 YORK Sample ID	Comp-1, C-1 Comp-1, C-1 Comp-2, C-2 Comp-2, C-2 Comp-3, C-3 Comp-3, C-3 Blank Blank LCS LCS Preparation Method: Client Sample ID S-1	08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 EPA 5035A	Prepared By:	ВМС
22H0961-07 22H0961-07 22H0961-08 22H0961-08 22H0961-09 22H0961-09 BH21081-BLK1 BH21081-BLK2 BH21081-BS1 BH21081-BS2 Batch ID: BH21134 YORK Sample ID 22H0961-01	Comp-1, C-1 Comp-1, C-1 Comp-2, C-2 Comp-2, C-2 Comp-3, C-3 Comp-3, C-3 Blank Blank LCS LCS Preparation Method: Client Sample ID S-1 S-2	08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 EPA 5035A Preparation Date	Prepared By:	ВМС
22H0961-07 22H0961-07 22H0961-08 22H0961-08 22H0961-09 22H0961-09 BH21081-BLK1 BH21081-BLK2 BH21081-BS1 BH21081-BS2 Batch ID: BH21134 YORK Sample ID 22H0961-01 22H0961-02 22H0961-03	Comp-1, C-1 Comp-1, C-1 Comp-2, C-2 Comp-2, C-2 Comp-3, C-3 Comp-3, C-3 Blank Blank LCS LCS Preparation Method: Client Sample ID S-1 S-2 S-3	08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 EPA 5035A Preparation Date 08/18/22 08/18/22	Prepared By:	ВМС
22H0961-07 22H0961-07 22H0961-08 22H0961-08 22H0961-09 BH21081-BLK1 BH21081-BLK2 BH21081-BS1 BH21081-BS2 Batch ID: BH21134 YORK Sample ID 22H0961-01 22H0961-02 22H0961-03 22H0961-04	Comp-1, C-1 Comp-1, C-1 Comp-2, C-2 Comp-2, C-2 Comp-3, C-3 Comp-3, C-3 Blank Blank LCS LCS Preparation Method: Client Sample ID S-1 S-2 S-3 S-4	08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 EPA 5035A Preparation Date 08/18/22 08/18/22 08/18/22 08/18/22	Prepared By:	ВМС
22H0961-07 22H0961-07 22H0961-08 22H0961-08 22H0961-09 22H0961-09 BH21081-BLK1 BH21081-BS1 BH21081-BS2 Batch ID: BH21134 YORK Sample ID 22H0961-01 22H0961-02 22H0961-03 22H0961-04 22H0961-05	Comp-1, C-1 Comp-1, C-1 Comp-2, C-2 Comp-2, C-2 Comp-3, C-3 Comp-3, C-3 Blank Blank LCS LCS Preparation Method: Client Sample ID S-1 S-2 S-3 S-4 S-5	08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 EPA 5035A Preparation Date 08/18/22 08/18/22 08/18/22 08/18/22 08/18/22	Prepared By:	ВМС
22H0961-07 22H0961-07 22H0961-08 22H0961-08 22H0961-09 BH21081-BLK1 BH21081-BLK2 BH21081-BS1 BH21081-BS2 Batch ID: BH21134 YORK Sample ID 22H0961-01 22H0961-02 22H0961-03 22H0961-04 22H0961-05 22H0961-06	Comp-1, C-1 Comp-1, C-1 Comp-2, C-2 Comp-2, C-2 Comp-3, C-3 Comp-3, C-3 Blank Blank LCS LCS Preparation Method: Client Sample ID S-1 S-2 S-3 S-4 S-5 S-6	08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 EPA 5035A Preparation Date 08/18/22 08/18/22 08/18/22 08/18/22 08/18/22 08/18/22 08/18/22	Prepared By:	ВМС
22H0961-07 22H0961-07 22H0961-08 22H0961-08 22H0961-09 BH21081-BLK1 BH21081-BLK2 BH21081-BS1 BH21081-BS2 Batch ID: BH21134 YORK Sample ID 22H0961-01 22H0961-02 22H0961-03 22H0961-04 22H0961-06 BH21134-BLK1	Comp-1, C-1 Comp-1, C-1 Comp-2, C-2 Comp-2, C-2 Comp-3, C-3 Comp-3, C-3 Blank Blank LCS LCS Preparation Method: Client Sample ID S-1 S-2 S-3 S-4 S-5 S-6 Blank	08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 EPA 5035A Preparation Date 08/18/22 08/18/22 08/18/22 08/18/22 08/18/22 08/18/22 08/18/22 08/18/22		
22H0961-07 22H0961-07 22H0961-08 22H0961-08 22H0961-09 BH21081-BLK1 BH21081-BLK2 BH21081-BS1 BH21081-BS2 Batch ID: BH21134 YORK Sample ID 22H0961-01 22H0961-02 22H0961-03 22H0961-04 22H0961-05 22H0961-06	Comp-1, C-1 Comp-1, C-1 Comp-2, C-2 Comp-2, C-2 Comp-3, C-3 Comp-3, C-3 Blank Blank LCS LCS Preparation Method: Client Sample ID S-1 S-2 S-3 S-4 S-5 S-6	08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 08/17/22 EPA 5035A Preparation Date 08/18/22 08/18/22 08/18/22 08/18/22 08/18/22 08/18/22 08/18/22		ND HILL, NY 11418

BH21134-BS1 LCS 08/18/22 08/18/22 BH21134-BSD1 LCS Dup

Batch ID: BH21246	Preparation Method:	% Solids Prep	Prepared By:	AJS
YORK Sample ID	Client Sample ID	Preparation Date		
22Н0961-07	Comp-1, C-1	08/19/22		
22H0961-08	Comp-2, C-2	08/19/22		
22H0961-09	Comp-3, C-3	08/19/22		
BH21246-DUP1	Duplicate	08/19/22		
Batch ID: BH21321	Preparation Method:	% Solids Prep	Prepared By:	YR
YORK Sample ID	Client Sample ID	Preparation Date		
22Н0961-01	S-1	08/22/22		
22H0961-02	S-2	08/22/22		
22H0961-03	S-3	08/22/22		
22H0961-04	S-4	08/22/22		
22H0961-05	S-5	08/22/22		
22H0961-06	S-6	08/22/22		
BH21321-DUP1	Duplicate	08/22/22		
BH21321-DUP2	Duplicate	08/22/22		
Batch ID: BH21519	Preparation Method:	EPA 7473 soil	Prepared By:	MR
YORK Sample ID	Client Sample ID	Preparation Date		
22H0961-07	Comp-1, C-1	08/25/22		
22H0961-08	Comp-2, C-2	08/25/22		
22H0961-09	Comp-3, C-3	08/25/22		
BH21519-BLK1	Blank	08/25/22		
BH21519-DUP1	Duplicate	08/25/22		
BH21519-MS1	Matrix Spike	08/25/22		
BH21519-SRM1	Reference	08/25/22		

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 Page 47 of 73 (203) 325-1371 FAX (203) 357-0166 ClientServices@

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BH21134-BLK1)			Prepared & Analyzed: 08/18/2022
1,1,1,2-Tetrachloroethane	ND	5.0 ug/kg wet	
1,1,1-Trichloroethane	ND	5.0 "	
1,1,2,2-Tetrachloroethane	ND	5.0 "	
,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	5.0 "	
13)			
,1,2-Trichloroethane	ND	5.0 "	
1-Dichloroethane	ND	5.0 "	
,1-Dichloroethylene	ND	5.0 "	
2,3-Trichlorobenzene	ND	5.0 "	
2,3-Trichloropropane	ND	5.0 "	
,2,4-Trichlorobenzene	ND	5.0 "	
2,4-Trimethylbenzene	ND	5.0 "	
2-Dibromo-3-chloropropane	ND	5.0 "	
2-Dibromoethane	ND	5.0 "	
2-Dichlorobenzene	ND	5.0 "	
2-Dichloroethane	ND	5.0 "	
2-Dichloropropane	ND	5.0 "	
3,5-Trimethylbenzene	ND	5.0 "	
3-Dichlorobenzene	ND	5.0 "	
4-Dichlorobenzene	ND	5.0 "	
4-Dioxane	ND	100 "	
Butanone	ND	5.0 "	
Hexanone	ND	5.0 "	
Methyl-2-pentanone	ND	5.0 "	
cetone	ND	10 "	
erolein	ND	10 "	
rylonitrile	ND	5.0 "	
enzene	ND	5.0 "	
romochloromethane	ND	5.0 "	
romodichloromethane	ND	5.0 "	
romoform	ND	5.0 "	
romomethane	ND	5.0 "	
arbon disulfide	ND	5.0 "	
arbon tetrachloride	ND	5.0 "	
llorobenzene	ND	5.0 "	
lloroethane	ND	5.0 "	
nloroform	ND	5.0 "	
hloromethane	ND	5.0 "	
s-1,2-Dichloroethylene	ND	5.0 "	
-1,3-Dichloropropylene	ND	5.0 "	
vclohexane	ND	5.0 "	
bromochloromethane	ND	5.0 "	
bromomethane	ND	5.0 "	
ichlorodifluoromethane	ND	5.0 "	
hyl Benzene	ND	5.0 "	
exachlorobutadiene	ND	5.0 "	
opropylbenzene	ND	5.0 "	
ethyl acetate	ND	5.0 "	
(ather) to at boated ather (MTDE)			

120 RESEARCH DRIVE

Methyl tert-butyl ether (MTBE)

Methylcyclohexane

STRATFORD, CT 06615

ND

ND

5.0

5.0

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 48 of 73

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
<u> </u>											

Blank (BH21134-BLK1)						Prepared & Analyzed: 08/18/2022
Methylene chloride	ND	10	ug/kg wet			
-Butylbenzene	ND	5.0	"			
-Propylbenzene	ND	5.0	11			
-Xylene	ND	5.0	"			
- & m- Xylenes	ND	10	"			
-Isopropyltoluene	ND	5.0				
ec-Butylbenzene	ND	5.0	"			
tyrene	ND	5.0	"			
ert-Butyl alcohol (TBA)	ND	5.0	"			
ert-Butylbenzene	ND	5.0	n			
etrachloroethylene	ND	5.0	п			
oluene	ND	5.0	"			
rans-1,2-Dichloroethylene	ND	5.0				
rans-1,3-Dichloropropylene	ND	5.0	"			
richloroethylene	ND	5.0	"			
richlorofluoromethane	ND	5.0	"			
inyl Chloride	ND	5.0	"			
ylenes, Total	ND	15	n			
urrogate: SURR: 1,2-Dichloroethane-d4	52.5		ug/L	50.0	105	77-125
urrogate: SURR: Toluene-d8	48.3		"	50.0	96.6	85-120
urrogate: SURR: p-Bromofluorobenzene	47.6		"	50.0	95.2	76-130
						Prepared & Analyzed: 08/18/2022
CS (BH21134-BS1)	40.0		le:		2.5.0	III. Sale - William Par Helindam - Co. Second Victorial District
1,1,2-Tetrachloroethane	48.0		ug/L "	50.0	96.0	75-129
,1-Trichloroethane	46.5		"	50.0	93.1	71-137
1,2,2-Tetrachloroethane	44.6			50.0	89.1	79-129
1,2-Trichloro-1,2,2-trifluoroethane (Freon 3)	42.5		"	50.0	85.0	58-146
1,2-Trichloroethane	45.3		"	50.0	90.7	83-123
1-Dichloroethane	44.8		11	50.0	89.5	75-130
1-Dichloroethylene	44.7		"	50.0	89.4	64-137
2,3-Trichlorobenzene	43.6		,,	50.0	87.1	81-140
,2,3-Trichloropropane	47.4		,,	50.0	94.8	81-126
2,4-Trichlorobenzene	44.9		"	50.0	89.7	80-141
,2,4-Trientotochizene	44.5		,,	50.0	89.1	84-125
2-Dibromo-3-chloropropane	44.3			50.0	81.8	74-142
2-Dibromoethane	46.8		"	50.0	93.6	74-142 86-123
2-Dichlorobenzene	43.3		11	50.0	93.6 86.7	85-122
2-Dichloroethane						
2-Dichloropropane	48.4 44.2		"	50.0 50.0	96.9 88.4	71-133 81-122
3,5-Trimethylbenzene	44.2		"	50.0	88.4 86.3	81-122 82-126
3-Dichlorobenzene	43.1		"			
4-Dichlorobenzene			"	50.0	87.1	84-124
4-Dichlorobenzene 4-Dioxane	43.2		"	50.0	86.3	84-124
H-Dioxane Butanone	909		"	1050	86.6	10-228
	44.0		" "	50.0	87.9	58-147
Hexanone Methyl 2 mentanana	44.9		".	50.0	89.8	70-139
Methyl-2-pentanone	45.3		"	50.0	90.6	72-132
cetone	54.6			50.0	109	36-155
crolein	46.0		"	50.0	91.9	10-238
crylonitrile	46.6		"	50.0	93.3	66-141

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@

Page 49 of 73

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch	BH21	134 -	EPA 5035A
-------	------	-------	-----------

LCS (BH21134-BS1)					Prep	oared & Analyzed: 08/18/2022
Bromochloromethane	47.6	ug/L	50.0	95.2	74-129	
Bromodichloromethane	46.6	n	50.0	93.2	81-124	
Bromoform	45.4		50.0	90.7	80-136	
Bromomethane	38.5	n	50.0	77.0	32-177	
Carbon disulfide	41.6	"	50.0	83.1	10-136	
Carbon tetrachloride	49.2	<u></u>	50.0	98.5	66-143	
Chlorobenzene	46.0	"	50.0	92.1	86-120	
Chloroethane	43.3	n	50.0	86.5	51-142	
Chloroform	47.3	"	50.0	94.6	76-131	
Chloromethane	35.9	n	50.0	71.8	49-132	
is-1,2-Dichloroethylene	45.0		50.0	90.1	74-132	
eis-1,3-Dichloropropylene	46.3	Ti Ti	50.0	92.6	81-129	
Cyclohexane	38.8	"	50.0	77.6	70-130	
Dibromochloromethane	48.9	<u></u>	50.0	97.7	10-200	
Dibromomethane	44.7	"	50.0	89.5	83-124	
Dichlorodifluoromethane	28.3		50.0	56.6	28-158	
thyl Benzene	44.7	"	50.0	89.3	84-125	
Iexachlorobutadiene	44.7	"	50.0	89.4	83-133	
sopropylbenzene	44.5	"	50.0	88.9	81-127	
Methyl acetate	38.0	Ti Ti	50.0	76.0	41-143	
Methyl tert-butyl ether (MTBE)	37.4		50.0	74.9	74-131	
Methylcyclohexane	39.0	"	50.0	77.9	70-130	
Aethylene chloride	43.6	"	50.0	87.2	57-141	
-Butylbenzene	42.9	"	50.0	85.8	80-130	
-Propylbenzene	43.2	"	50.0	86.4	74-136	
-Xylene	46.4	"	50.0	92.7	83-123	
- & m- Xylenes	91.4	"	100	91.4	82-128	
-Isopropyltoluene	44.6	W .	50.0	89.2	85-125	
ec-Butylbenzene	43.7		50.0	87.3	83-125	
Styrene	44.7		50.0	89.3	86-126	
ert-Butyl alcohol (TBA)	201	"	250	80.5	70-130	
ert-Butylbenzene	44.4	"	50.0	88.7	80-127	
etrachloroethylene	39.7	"	50.0	79.4	80-129	Low Bias
oluene	43.1	"	50.0	86.2	85-121	
rans-1,2-Dichloroethylene	44.1	"	50.0	88.3	72-132	
rans-1,3-Dichloropropylene	41.3	**	50.0	82.6	78-132	
richloroethylene	43.3	"	50.0	86.5	84-123	
richlorofluoromethane	43.7		50.0	87.3	62-140	
Vinyl Chloride	38.3	11	50.0	76.6	52-130	
Surrogate: SURR: 1,2-Dichloroethane-d4	52.6	"	50.0	105	77-125	
Surrogate: SURR: Toluene-d8	48.8	"	50.0	97.7	85-120	
Surrogate: SURR: p-Bromofluorobenzene	48.9	"	50.0	97.8	76-130	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 50 of 73

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	
Batch BH21134 - EPA 5035A												

.CS Dup (BH21134-BSD1)					Prepared &	Analyzed: 08/18/2	2022
,1,1,2-Tetrachloroethane	54.8	ug/L	50.0	110	75-129	13.2	30
,1,1-Trichloroethane	51.4	n	50.0	103	71-137	10.0	30
,1,2,2-Tetrachloroethane	49.9		50.0	99.8	79-129	11.3	30
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 13)	47.0	TI.	50.0	94.0	58-146	9.99	30
,1,2-Trichloroethane	50.1	11	50.0	100	83-123	9.96	30
,1-Dichloroethane	48.6		50.0	97.2	75-130	8.27	30
,1-Dichloroethylene	48.1	w	50.0	96.1	64-137	7.22	30
,2,3-Trichlorobenzene	48.9	11	50.0	97.9	81-140	11.6	30
,2,3-Trichloropropane	52.1	n n	50.0	104	81-126	9.39	30
,2,4-Trichlorobenzene	49.4		50.0	98.9	80-141	9.71	30
,2,4-Trimethylbenzene	50.8	,,	50.0	102	84-125	13.1	30
,2-Dibromo-3-chloropropane	46.6		50.0	93.2	74-142	13.0	30
,2-Dibromoethane	52.6	**	50.0	105	86-123	11.7	30
,2-Dichlorobenzene	48.5	"	50.0	97.0	85-122	11.3	30
,2-Dichloroethane	52.1	n	50.0	104	71-133	7.22	30
,2-Dichloropropane	50.2		50.0	100	81-122	12.6	30
,3,5-Trimethylbenzene	49.9	īī	50.0	99.8	82-126	14.6	30
,3-Dichlorobenzene	49.5	,,	50.0	98.9	84-124	12.7	30
,4-Dichlorobenzene	49.9	n	50.0	99.7	84-124	14.4	30
,4-Dioxane	1080	11	1050	103	10-228	17.3	30
-Butanone	48.1	11	50.0	96.2	58-147	9.01	30
-Hexanone	50.6		50.0	101	70-139	12.0	30
-Methyl-2-pentanone	51.2		50.0	102	72-132	12.2	30
cetone	61.0	11	50.0	122	36-155	11.0	30
crolein	48.5	11	50.0	97.1	10-238	5.46	30
crylonitrile	50.8	,,	50.0	102	66-141	8.48	30
Benzene	48.9		50.0	97.8	77-127	9.76	30
Bromochloromethane	50.9	"	50.0	102	74-129	6.60	30
Bromodichloromethane	52.0	11	50.0	102	81-124	11.0	30
Bromoform	50.1		50.0	104	80-136	9.97	30
Bromomethane	42.6	11	50.0	85.2	32-177	10.1	30
Carbon disulfide	46.6		50.0	93.1	10-136	11.3	30
Carbon distribuce	54.7		50.0	109	66-143	10.5	30
Chlorobenzene	51.9	"	50.0	109	86-120	12.0	30
Chloroethane	48.9		50.0	97.8	51-142	12.2	30
Chloroform	52.0	"	50.0	104	76-131	9.45	30
Chloromethane	38.6	"	50.0	77.3	49-132	7.35	30
is-1,2-Dichloroethylene						9.32	30
is-1,3-Dichloropropylene	49.4	"	50.0	98.9	74-132	12.9	30
Cyclohexane	52.7	"	50.0	105 85.6	81-129	9.83	30
Dibromochloromethane	42.8	"	50.0	85.6	70-130		30
Dibromocnioromethane	54.5	"	50.0	109	10-200	11.0	
	51.9	"	50.0	104	83-124	14.8	30
Dichlorodifluoromethane	30.1	" "	50.0	60.2	28-158	6.27	30
thyl Benzene	51.4		50.0	103	84-125	13.9	30
Iexachlorobutadiene	52.4	"	50.0	105	83-133	16.0	30
sopropylbenzene	51.7	"	50.0	103	81-127	15.0	30
Methyl acetate	42.8	"	50.0	85.6	41-143	11.9	30
Methyl tert-butyl ether (MTBE)	41.3		50.0	82.5	74-131	9.76	30
Methylcyclohexane	45.6	"	50.0	91.2	70-130	15.7	30

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 (203) 325-1371 FAX (203) 357-0166 www.YORKLAB.com

ClientServices@ Page 51 of 73

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
-											

Ratch	BH2	1124	FDA	5035A
Daten	ВПА	1 74 -	D. PA	THITA

LCS Dup (BH21134-BSD1)					Prepared & Analyzed: 08/18/2022					
n-Butylbenzene	49.0	ug/L	50.0	98.1	80-130	13.4	30			
n-Propylbenzene	50.2	11	50.0	100	74-136	15.1	30			
o-Xylene	52.7	11	50.0	105	83-123	12.8	30			
p- & m- Xylenes	104	11	100	104	82-128	12.6	30			
p-Isopropyltoluene	50.9	m .	50.0	102	85-125	13.2	30			
sec-Butylbenzene	50.3	"	50.0	101	83-125	14.1	30			
Styrene	50.5	11	50.0	101	86-126	12.2	30			
tert-Butyl alcohol (TBA)	230	"	250	92.2	70-130	13.5	30			
tert-Butylbenzene	51.8	"	50.0	104	80-127	15.4	30			
Tetrachloroethylene	45.0	n	50.0	90.0	80-129	12.5	30			
Toluene	48.6	11.	50.0	97.1	85-121	11.9	30			
trans-1,2-Dichloroethylene	49.0	11.	50.0	98.0	72-132	10.4	30			
trans-1,3-Dichloropropylene	45.9	"	50.0	91.7	78-132	10.4	30			
Trichloroethylene	49.8	n	50.0	99.7	84-123	14.1	30			
Trichlorofluoromethane	48.8	11	50.0	97.6	62-140	11.1	30			
Vinyl Chloride	43.5	"	50.0	86.9	52-130	12.6	30			
Surrogate: SURR: 1,2-Dichloroethane-d4	51.7	"	50.0	103	77-125					
Surrogate: SURR: Toluene-d8	48.9	"	50.0	97.8	85-120					
Surrogate: SURR: p-Bromofluorobenzene	50.1	"	50.0	100	76-130					

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 52 of 73

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BH21078 - EPA 3546 SVOA											
Blank (BH21078-BLK1)							Prepa	ared: 08/17/2	2022 Analyz	ed: 08/18/2	2022
1,1-Biphenyl	ND	0.0416	mg/kg wet								
1,2,4,5-Tetrachlorobenzene	ND	0.0830	"								
1,2,4-Trichlorobenzene	ND	0.0416	11								
1,2-Dichlorobenzene	ND	0.0416	"								
1,2-Diphenylhydrazine (as Azobenzene)	ND	0.0416	m .								
1,3-Dichlorobenzene	ND	0.0416	22								
1,4-Dichlorobenzene	ND	0.0416	"								
2,3,4,6-Tetrachlorophenol	ND	0.0830	"								
2,4,5-Trichlorophenol	ND	0.0416	"								
2,4,6-Trichlorophenol	ND	0.0416	"								
2,4-Dichlorophenol	ND	0.0416	11								
2,4-Dimethylphenol	ND	0.0416	n n								
2,4-Dinitrophenol	ND	0.0830	"								
2,4-Dinitrotoluene	ND	0.0416	<u></u>								
2,6-Dinitrotoluene	ND	0.0416	"								
2-Chloronaphthalene	ND	0.0416	"								
2-Chlorophenol	ND	0.0416	"								
2-Methylnaphthalene	ND	0.0416	"								
2-Methylphenol	ND	0.0416									
2-Nitroaniline	ND	0.0830	11								
2-Nitrophenol	ND	0.0416	"								
3- & 4-Methylphenols	ND	0.0416	21								
3,3-Dichlorobenzidine	ND	0.0416	"								
3-Nitroaniline	ND	0.0830	"								
4,6-Dinitro-2-methylphenol	ND	0.0830	"								
4-Bromophenyl phenyl ether	ND	0.0416	n								
4-Chloro-3-methylphenol	ND	0.0416									
4-Chloroaniline	ND	0.0416	n								
4-Chlorophenyl phenyl ether	ND	0.0416	"								
4-Nitroaniline	ND	0.0830									
4-Nitrophenol	ND	0.0830	"								
Acenaphthene	ND	0.0416	"								
Acenaphthylene	ND	0.0416	"								
Acetophenone	ND	0.0416	n								
Aniline	ND	0.166	"								
Anthracene	ND	0.0416	"								
Atrazine	ND	0.0416	m .								
Benzaldehyde	ND	0.0416	11								
Benzidine	ND	0.166	"								
Benzo(a)anthracene	ND	0.0416	"								
Benzo(a)pyrene	ND	0.0416	"								
Benzo(b)fluoranthene	ND	0.0416	11								
Benzo(g,h,i)perylene	ND	0.0416	11								
Benzo(k)fluoranthene	ND	0.0416	"								
Benzoic acid	ND	0.0416	"								
Benzyl alcohol	ND	0.0416									
Benzyl butyl phthalate	ND	0.0416	"								
Bis(2-chloroethoxy)methane	ND	0.0416	"								
Bis(2-chloroethyl)ether	ND	0.0416	"								
Bis(2-chloroisopropyl)ether	ND	0.0416									
Bis(2-ethylhexyl)phthalate	ND	0.0416									

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 53 of 73

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BH21078 - EPA 3546 SVOA						
Blank (BH21078-BLK1)						Prepared: 08/17/2022 Analyzed: 08/18/2022
Caprolactam	ND	0.0830	mg/kg wet			
Carbazole	ND	0.0416	"			
Chrysene	ND	0.0416	"			
Dibenzo(a,h)anthracene	ND	0.0416	TI.			
Dibenzofuran	ND	0.0416	"			
Diethyl phthalate	ND	0.0416	11			
Dimethyl phthalate	ND	0.0416	11			
Di-n-butyl phthalate	ND	0.0416	"			
Di-n-octyl phthalate	ND	0.0416	"			
Fluoranthene	ND	0.0416	"			
Fluorene	ND	0.0416				
Hexachlorobenzene	ND	0.0416	"			
Hexachlorobutadiene	ND	0.0416				
Iexachlorocyclopentadiene	ND	0.0416	"			
Hexachloroethane	ND	0.0416	"			
ndeno(1,2,3-cd)pyrene	ND	0.0416	"			
sophorone	ND	0.0416	"			
Naphthalene	ND	0.0416	"			
Vitrobenzene	ND	0.0416	"			
N-Nitrosodimethylamine	ND	0.0416	11			
N-nitroso-di-n-propylamine	ND	0.0416				
N-Nitrosodiphenylamine	ND	0.0416	"			
entachlorophenol	ND	0.0416	"			
Phenanthrene	ND	0.0416	"			
Phenol	ND	0.0416	"			
yrene	ND	0.0416	n			
Surrogate: SURR: 2-Fluorophenol	0.530		"	1.66	31.9	20-108
Surrogate: SURR: Phenol-d5	0.484		"	1.66	29.1	23-114
Surrogate: SURR: Nitrobenzene-d5	0.279		"	0.831	33.6	22-108
Surrogate: SURR: 2-Fluorobiphenyl	0.280		"	0.831	33.7	21-113
Surrogate: SURR: 2,4,6-Tribromophenol	0.929		"	1.66	55.9	19-110
Surrogate: SURR: Terphenyl-d14	0.380		"	0.831	45.7	24-116

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 54 of 73

www.YORKLAB.com (203) 325-1371

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BH21078 - EPA 3546 SVOA											
LCS (BH21078-BS1)							Prepa	ared: 08/17/2	2022 Analyz	ed: 08/18/2	2022
1,1-Biphenyl	0.405	0.0416	mg/kg wet	0.831		48.7	18-111				
1,2,4,5-Tetrachlorobenzene	0.456	0.0830		0.831		55.0	21-131				
1,2,4-Trichlorobenzene	0.427	0.0416		0.831		51.4	10-140				
1,2-Dichlorobenzene	0.375	0.0416		0.831		45.1	34-108				
1,2-Diphenylhydrazine (as Azobenzene)	0.362	0.0416		0.831		43.6	17-137				
1,3-Dichlorobenzene	0.369	0.0416		0.831		44.4	33-110				
1,4-Dichlorobenzene	0.389	0.0416	"	0.831		46.9	32-104				
2,3,4,6-Tetrachlorophenol	0.500	0.0830		0.831		60.2	30-130				
2,4,5-Trichlorophenol	0.461	0.0416	"	0.831		55.6	27-118				
2,4,6-Trichlorophenol	0.417	0.0416	n	0.831		50.2	31-120				
2,4-Dichlorophenol	0.434	0.0416	11	0.831		52.2	20-127				
2,4-Dimethylphenol	0.403	0.0416	11	0.831		48.6	14-132				
2,4-Dinitrophenol	0.489	0.0830		0.831		58.8	10-171				
2,4-Dinitrotoluene	0.511	0.0416	"	0.831		61.5	34-131				
2,6-Dinitrotoluene	0.498	0.0416	"	0.831		60.0	31-128				
2-Chloronaphthalene	0.390	0.0416	"	0.831		47.0	31-117				
2-Chlorophenol	0.382	0.0416		0.831		46.0	33-113				
2-Methylnaphthalene	0.394	0.0416		0.831		47.4	12-138				
2-Methylphenol	0.351	0.0416	11	0.831		42.3	10-136				
2-Nitroaniline	0.474	0.0830	11	0.831		57.1	27-132				
2-Nitrophenol	0.502	0.0416		0.831		60.4	17-129				
3- & 4-Methylphenols	0.326	0.0416		0.831		39.3	29-103				
3,3-Dichlorobenzidine	0.363	0.0416	"	0.831		43.8	22-149				
3-Nitroaniline	0.403	0.0830	"	0.831		48.6	20-133				
4,6-Dinitro-2-methylphenol	0.668	0.0830	"	0.831		80.5	10-143				
4-Bromophenyl phenyl ether	0.486	0.0416	n	0.831		58.5	29-120				
4-Chloro-3-methylphenol	0.399	0.0416	11	0.831		48.0	24-129				
4-Chloroaniline	0.336	0.0416	"	0.831		40.4	10-132				
4-Chlorophenyl phenyl ether	0.413	0.0416	,,	0.831		49.8	27-124				
4-Nitroaniline	0.470	0.0830	n	0.831		56.6	16-128				
4-Nitrophenol	0.362	0.0830	11	0.831		43.6	10-141				
Acenaphthene	0.407	0.0416	n	0.831		49.0	30-121				
Acenaphthylene	0.366	0.0416	"	0.831		44.0	30-115				
Acetophenone	0.363	0.0416	n	0.831		43.7	20-112				
Aniline	0.312	0.166	11	0.831		37.6	10-119				
Anthracene	0.438	0.0416	11	0.831		52.7	34-118				
Atrazine	0.522	0.0416		0.831		62.9	26-112				
Benzaldehyde	0.376	0.0416		0.831		45.2	21-100				
Benzo(a)anthracene	0.441	0.0416	"	0.831		53.1	32-122				
Benzo(a)pyrene	0.431	0.0416		0.831		51.8	29-133				
Benzo(b)fluoranthene	0.458	0.0416	"	0.831		55.2	25-133				
Benzo(g,h,i)perylene	0.453	0.0416		0.831		54.5	10-143				
Benzo(k)fluoranthene	0.451	0.0416		0.831		54.4	25-128				
Benzoic acid	0.351	0.0416	"	0.831		42.2	10-140				
Benzyl alcohol	0.355	0.0416		0.831		42.8	30-115				
Benzyl butyl phthalate	0.390	0.0416		0.831		47.0	26-126				
Bis(2-chloroethoxy)methane	0.344	0.0416		0.831		41.4	19-132				
Bis(2-chloroethyl)ether	0.335	0.0416	"	0.831		40.4	19-125				
Bis(2-chloroisopropyl)ether	0.237	0.0416		0.831		28.5	20-135				
Bis(2-ethylhexyl)phthalate	0.386	0.0416		0.831		46.5	10-155				
Caprolactam	0.505	0.0830		0.831		60.8	10-127				
T	0.505	0.0050		0.001		00.0	10 14/				

120 RESEARCH DRIVE (203) 325-1371 www.YORKLAB.com

STRATFORD, CT 06615

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 55 of 73

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

LCS (BH21078-BS1)						Prepared: 08/17/2022 Analyzed: 08/18/2022
Carbazole	0.448	0.0416	mg/kg wet	0.831	53.9	35-123
Chrysene	0.448	0.0416	"	0.831	54.0	32-123
Dibenzo(a,h)anthracene	0.467	0.0416	"	0.831	56.2	10-136
Dibenzofuran	0.409	0.0416	"	0.831	49.2	29-121
Diethyl phthalate	0.401	0.0416	n	0.831	48.3	34-116
Dimethyl phthalate	0.405	0.0416	n	0.831	48.8	35-124
Di-n-butyl phthalate	0.400	0.0416	"	0.831	48.1	31-116
Di-n-octyl phthalate	0.386	0.0416	n	0.831	46.5	26-136
Fluoranthene	0.428	0.0416	"	0.831	51.5	33-122
Fluorene	0.400	0.0416	n	0.831	48.1	29-123
Hexachlorobenzene	0.384	0.0416	11	0.831	46.2	21-124
Hexachlorobutadiene	0.456	0.0416	n	0.831	55.0	10-149
Hexachlorocyclopentadiene	0.219	0.0416		0.831	26.3	10-129
Hexachloroethane	0.363	0.0416	n	0.831	43.8	28-108
Indeno(1,2,3-cd)pyrene	0.300	0.0416	n	0.831	36.1	10-135
Isophorone	0.339	0.0416	п	0.831	40.8	20-132
Naphthalene	0.382	0.0416	"	0.831	46.0	23-124
Nitrobenzene	0.364	0.0416	n	0.831	43.8	13-132
N-Nitrosodimethylamine	0.241	0.0416		0.831	29.0	11-129
N-nitroso-di-n-propylamine	0.290	0.0416	n.	0.831	35.0	24-119
N-Nitrosodiphenylamine	0.507	0.0416	"	0.831	61.0	22-152
Pentachlorophenol	0.535	0.0416	"	0.831	64.4	10-139
Phenanthrene	0.416	0.0416	"	0.831	50.0	33-123
Phenol	0.373	0.0416	"	0.831	44.9	23-115
Pyrene	0.418	0.0416	"	0.831	50.3	24-130

1.66

1.66

30.2

27.3

20-108

23-114

ClientServices@

Page 56 of 73

Surrogate: SURR: Nitrobenzene-d5 22-108 0.2630.831 31.7 Surrogate: SURR: 2-Fluorobiphenyl 31.4 21-113 0.2610.831 Surrogate: SURR: 2,4,6-Tribromophenol 0.8281.66 49.9 19-110 Surrogate: SURR: Terphenyl-d14 0.320 0.831 38.6 24-116

0.501

0.453

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

FAX (203) 357-0166

www.YORKLAB.com (203) 325-1371

Batch BH21078 - EPA 3546 SVOA

Surrogate: SURR: 2-Fluorophenol

Surrogate: SURR: Phenol-d5

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

D	atak	DII210	70	EDA	2516	SVOA
к	ятсп	BHZI	/A -	F.PA	1740	SVIJA

Matrix Spike (BH21078-MS1)	*Source sample: 22	H0741-13 (N	Matrix Spike)			Prepared: 08/17/2022 Analyze					
,1-Biphenyl	0.309	0.0886	mg/kg dry	0.885	ND	35.0	10-130				
,2,4,5-Tetrachlorobenzene	0.345	0.177	"	0.885	ND	39.0	10-133				
,2,4-Trichlorobenzene	0.345	0.0886		0.885	ND	39.0	10-127				
,2-Dichlorobenzene	0.290	0.0886	11	0.885	ND	32.8	14-111				
,2-Diphenylhydrazine (as Azobenzene)	0.348	0.0886	"	0.885	ND	39.4	10-144				
,3-Dichlorobenzene	0.285	0.0886	"	0.885	ND	32.2	11-111				
,4-Dichlorobenzene	0.307	0.0886	"	0.885	ND	34.7	10-106				
,3,4,6-Tetrachlorophenol	0.398	0.177	"	0.885	ND	45.0	30-130				
,4,5-Trichlorophenol	0.326	0.0886		0.885	ND	36.9	10-127				
,4,6-Trichlorophenol	0.317	0.0886	n	0.885	ND	35.8	10-132				
4-Dichlorophenol	0.351	0.0886		0.885	ND	39.7	10-128				
4-Dimethylphenol	0.313	0.0886	11	0.885	ND	35.4	10-137				
4-Dinitrophenol	ND	0.177		0.885	ND		10-171	Low Bias			
4-Dinitrotoluene	0.324	0.0886	"	0.885	ND	36.6	16-135				
,6-Dinitrotoluene	0.331	0.0886	11	0.885	ND	37.4	18-131				
-Chloronaphthalene	0.309	0.0886	"	0.885	ND	35.0	10-129				
-Chlorophenol	0.292	0.0886	"	0.885	ND	33.0	15-116				
-Methylnaphthalene	0.348	0.0886	,,	0.885	ND	39.4	10-147				
-Methylphenol	0.297	0.0886	"	0.885	ND	33.5	10-147				
-Nitroaniline	0.331	0.177	"	0.885	ND	37.4	10-137				
-Nitrophenol	0.307	0.0886	,,	0.885	ND	34.6	10-137				
- & 4-Methylphenols	0.257	0.0886	,,	0.885	ND	29.0	10-123				
3-Dichlorobenzidine	0.405	0.0886	"	0.885	ND	45.8	10-125				
-Nitroaniline	0.403	0.177	"	0.885	ND	38.2	12-133				
6-Dinitro-2-methylphenol	0.338 ND		"			36.2	10-155	Low Bias			
Bromophenyl phenyl ether		0.177		0.885	ND	41.0		Low Blas			
-Chloro-3-methylphenol	0.371	0.0886		0.885	ND	41.9	14-128				
-Chloroaniline	0.393	0.0886	,,	0.885	ND	44.4	10-134				
	0.296	0.0886	,,	0.885	ND	33.4	10-145				
Chlorophenyl phenyl ether	0.321	0.0886		0.885	ND	36.3	14-130				
-Nitroaniline	0.355	0.177		0.885	ND	40.2	10-147				
Nitrophenol	0.354	0.177	"	0.885	ND	40.0	10-137				
cenaphthene	0.328	0.0886	"	0.885	ND	37.0	10-146				
cenaphthylene	0.305	0.0886	"	0.885	ND	34.5	10-134				
cetophenone	0.333	0.0886	"	0.885	ND	37.7	10-116				
niline	0.219	0.355		0.885	ND	24.8	10-123				
nthracene	0.405	0.0886	"	0.885	ND	45.8	10-142				
trazine	0.425	0.0886	"	0.885	ND	48.1	19-115				
enzaldehyde	0.333	0.0886		0.885	ND	37.7	10-125				
enzo(a)anthracene	0.534	0.0886	"	0.885	0.111	47.8	10-158				
enzo(a)pyrene	0.477	0.0886	"	0.885	0.107	41.8	10-180				
enzo(b)fluoranthene	0.496	0.0886	"	0.885	0.0745	47.6	10-200				
enzo(g,h,i)perylene	0.496	0.0886	"	0.885	0.0787	47.2	10-138				
enzo(k)fluoranthene	0.474	0.0886	11	0.885	0.116	40.5	10-197				
enzoic acid	0.241	0.0886	"	0.885	ND	27.3	10-166				
enzyl alcohol	0.297	0.0886	"	0.885	ND	33.6	12-124				
enzyl butyl phthalate	0.382	0.0886		0.885	ND	43.2	10-154				
is(2-chloroethoxy)methane	0.315	0.0886	"	0.885	ND	35.6	10-132				
is(2-chloroethyl)ether	0.278	0.0886	"	0.885	ND	31.4	10-119				
is(2-chloroisopropyl)ether	0.281	0.0886	"	0.885	ND	31.8	10-139				
is(2-ethylhexyl)phthalate	0.432	0.0886	n	0.885	ND	48.8	10-167				
aprolactam	0.417	0.177		0.885	ND	47.1	10-132				

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 57 of 73

www.YORKLAB.com (203) 325-1371

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

В	atc	h B	H21	07	78 -	EPA	3546	SV	OA
---	-----	-----	-----	----	------	------------	------	----	----

Matrix Spike (BH21078-MS1)	*Source sample: 22	H0741-13 (N	Iatrix Spike)				Prepared: 08/17/2022 Analyzed: 08/18/20			
Carbazole	0.393	0.0886	mg/kg dry	0.885	ND	44.4	10-167			
Chrysene	0.495	0.0886		0.885	0.122	42.1	10-156			
Dibenzo(a,h)anthracene	0.442	0.0886	11	0.885	ND	49.9	10-137			
Dibenzofuran	0.326	0.0886	11	0.885	ND	36.9	10-147			
Diethyl phthalate	0.340	0.0886	,,,	0.885	ND	38.5	20-120			
Dimethyl phthalate	0.336	0.0886		0.885	ND	38.0	18-131			
Di-n-butyl phthalate	0.368	0.0886	"	0.885	ND	41.6	10-137			
Di-n-octyl phthalate	0.401	0.0886	"	0.885	ND	45.4	10-180			
Fluoranthene	0.593	0.0886	"	0.885	0.236	40.3	10-160			
Fluorene	0.340	0.0886	n	0.885	ND	38.5	10-157			
Hexachlorobenzene	0.407	0.0886		0.885	ND	46.0	10-137			
Hexachlorobutadiene	0.345	0.0886	11	0.885	ND	39.0	10-132			
Hexachlorocyclopentadiene	ND	0.0886		0.885	ND		10-106	Low Bias		
Hexachloroethane	0.239	0.0886	"	0.885	ND	27.0	10-110			
Indeno(1,2,3-cd)pyrene	0.476	0.0886	n .	0.885	0.0648	46.4	10-144			
Isophorone	0.339	0.0886	"	0.885	ND	38.3	10-132			
Naphthalene	0.326	0.0886	"	0.885	ND	36.9	10-141			
Nitrobenzene	0.338	0.0886	"	0.885	ND	38.2	10-131			
N-Nitrosodimethylamine	0.264	0.0886	"	0.885	ND	29.8	10-126			
N-nitroso-di-n-propylamine	0.299	0.0886	n.	0.885	ND	33.8	10-125			
N-Nitrosodiphenylamine	0.433	0.0886	11	0.885	ND	48.9	10-177			
Pentachlorophenol	0.248	0.0886		0.885	ND	28.1	10-153			
Phenanthrene	0.505	0.0886	"	0.885	0.139	41.4	10-148			
Phenol	0.289	0.0886	"	0.885	ND	32.6	10-126			
Pyrene	0.542	0.0886		0.885	0.212	37.3	10-165			
Surrogate: SURR: 2-Fluorophenol	0.639		"	1.77		36.1	20-108			
Surrogate: SURR: Phenol-d5	0.634		"	1.77		35.8	23-114			
Surrogate: SURR: Nitrobenzene-d5	0.399		"	0.885		45.0	22-108			
Surrogate: SURR: 2-Fluorobiphenyl	0.340		"	0.885		38.4	21-113			
Surrogate: SURR: 2,4,6-Tribromophenol	0.881		"	1.77		49.8	19-110			
Surrogate: SURR: Terphenyl-d14	0.455		"	0.885		51.4	24-116			

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 FAX (203) 357-0166 ClientServices@ Page 58 of 73

www.YORKLAB.com (203) 325-1371

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch	BH21078 -	EPA 3546 SVOA

Matrix Spike Dup (BH21078-MSD1)	*Source sample: 22	H0741-13 (N	Aatrix Spike l	Dup)			Prepared: 08/17/2022 Analyzed: 08/18/2022				
1,1-Biphenyl	0.469	0.0886	mg/kg dry	0.885	ND	53.0	10-130		40.9	30	Non-dir
1,2,4,5-Tetrachlorobenzene	0.514	0.177	"	0.885	ND	58.1	10-133		39.2	30	Non-dir
1,2,4-Trichlorobenzene	0.522	0.0886	11	0.885	ND	59.0	10-127		41.0	30	Non-dir
1,2-Dichlorobenzene	0.450	0.0886	"	0.885	ND	50.8	14-111		43.1	30	Non-dir
1,2-Diphenylhydrazine (as Azobenzene)	0.537	0.0886	,,	0.885	ND	60.7	10-144		42.7	30	Non-dir
1,3-Dichlorobenzene	0.440	0.0886	"	0.885	ND	49.7	11-111		42.6	30	Non-dir
1,4-Dichlorobenzene	0.456	0.0886	"	0.885	ND	51.5	10-106		39.0	30	Non-dir
2,3,4,6-Tetrachlorophenol	0.599	0.177	"	0.885	ND	67.7	30-130		40.3	30	Non-dir
2,4,5-Trichlorophenol	0.495	0.0886	"	0.885	ND	55.9	10-127		41.0	30	Non-dir
2,4,6-Trichlorophenol	0.471	0.0886	n	0.885	ND	53.3	10-132		39.1	30	Non-dir.
2,4-Dichlorophenol	0.510	0.0886		0.885	ND	57.6	10-128		36.8	30	Non-dir
2,4-Dimethylphenol	0.483	0.0886	"	0.885	ND	54.6	10-137		42.7	30	Non-dir
2,4-Dinitrophenol	ND	0.177		0.885	ND		10-171	Low Bias		30	
2,4-Dinitrotoluene	0.525	0.0886		0.885	ND	59.4	16-135		47.3	30	Non-dir.
2,6-Dinitrotoluene	0.505	0.0886	"	0.885	ND	57.0	18-131		41.7	30	Non-dir.
2-Chloronaphthalene	0.450	0.0886		0.885	ND	50.9	10-129		37.1	30	Non-dir.
2-Chlorophenol	0.440	0.0886	"	0.885	ND	49.8	15-116		40.4	30	Non-dir.
2-Methylnaphthalene	0.517	0.0886	n	0.885	ND	58.4	10-147		39.0	30	Non-dir.
2-Methylphenol	0.437	0.0886	"	0.885	ND	49.4	10-136		38.2	30	Non-dir.
2-Nitroaniline	0.520	0.177	n .	0.885	ND	58.7	10-137		44.5	30	Non-dir.
2-Nitrophenol	0.439	0.0886	,,,	0.885	ND	49.6	10-129		35.5	30	Non-dir.
3- & 4-Methylphenols	0.412	0.0886		0.885	ND	46.6	10-123		46.3	30	Non-dir.
3,3-Dichlorobenzidine	0.675	0.0886	"	0.885	ND	76.2	10-155		50.0	30	Non-dir.
3-Nitroaniline	0.528	0.177	"	0.885	ND	59.7	12-133		44.0	30	Non-dir.
4,6-Dinitro-2-methylphenol	ND	0.177	"	0.885	ND		10-155	Low Bias		30	
4-Bromophenyl phenyl ether	0.554	0.0886	m.	0.885	ND	62.6	14-128		39.5	30	Non-dir.
4-Chloro-3-methylphenol	0.583	0.0886		0.885	ND	65.9	10-134		39.0	30	Non-dir.
4-Chloroaniline	0.452	0.0886	**	0.885	ND	51.1	10-145		41.8	30	Non-dir.
4-Chlorophenyl phenyl ether	0.485	0.0886	,,	0.885	ND	54.8	14-130		40.6	30	Non-dir.
4-Nitroaniline	0.530	0.177	"	0.885	ND	59.8	10-147		39.4	30	Non-dir.
4-Nitrophenol	0.367	0.177	"	0.885	ND	41.4	10-137		3.54	30	
Acenaphthene	0.469	0.0886	"	0.885	ND	53.0	10-146		35.4	30	Non-dir.
Acenaphthylene	0.464	0.0886	"	0.885	ND	52.5	10-134		41.4	30	Non-dir.
Acetophenone	0.525	0.0886		0.885	ND	59.4	10-116		44.7	30	Non-dir.
Aniline	0.355	0.355	"	0.885	ND	40.1	10-123		47.1	30	Non-dir.
Anthracene	0.563	0.0886	"	0.885	ND	63.7	10-142		32.7	30	Non-dir
Atrazine	0.634	0.0886	,,,	0.885	ND	71.7	19-115		39.4	30	Non-dir.
Benzaldehyde	0.491	0.0886	"	0.885	ND	55.4	10-125		38.1	30	Non-dir.
Benzo(a)anthracene	0.689	0.0886	"	0.885	0.111	65.2	10-158		25.2	30	
Benzo(a)pyrene	0.639	0.0886	"	0.885	0.107	60.0	10-180		28.9	30	
Benzo(b)fluoranthene	0.658	0.0886	"	0.885	0.0745	65.9	10-200		28.1	30	
Benzo(g,h,i)perylene	0.692	0.0886	11	0.885	0.0787	69.3	10-138		33.0	30	Non-dir.
Benzo(k)fluoranthene	0.616	0.0886	"	0.885	0.116	56.5	10-197		26.0	30	
Benzoic acid	0.317	0.0886	11	0.885	ND	35.8	10-166		27.1	30	
Benzyl alcohol	0.457	0.0886	,,	0.885	ND	51.7	12-124		42.4	30	Non-dir.
Benzyl butyl phthalate	0.577	0.0886		0.885	ND	65.2	10-154		40.6	30	Non-dir.
Bis(2-chloroethoxy)methane	0.484	0.0886	"	0.885	ND	54.7	10-132		42.3	30	Non-dir
Bis(2-chloroethyl)ether	0.442	0.0886	"	0.885	ND	50.0	10-132		45.6	30	Non-dir
Bis(2-chloroisopropyl)ether	0.425	0.0886	"	0.885	ND	48.1	10-119		40.9	30	Non-dir
Bis(2-ethylhexyl)phthalate	0.595	0.0886	,,	0.885	ND	67.2	10-157		31.7	30	Non-dir
Caprolactam	0.333	0.0880		0.005	110	01.2	10-137		37.0	30	Non-dir.

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 59 of 73

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Datah	BH21078	EDA '	2516	CVOA
вятеп	BHZIU/A	- P.PA	1740	SVIJA

Matrix Spike Dup (BH21078-MSD1)	*Source sample: 22	H0741-13 (N	Aatrix Spike	Dup)			Pre	pared: 08/17/2022 Analyze	d: 08/18	/2022
Carbazole	0.562	0.0886	mg/kg dry	0.885	ND	63.5	10-167	35.4	30	Non-dir.
Chrysene	0.657	0.0886	"	0.885	0.122	60.5	10-156	28.1	30	
Dibenzo(a,h)anthracene	0.627	0.0886	11	0.885	ND	70.9	10-137	34.7	30	Non-dir.
Dibenzofuran	0.487	0.0886	**	0.885	ND	55.0	10-147	39.5	30	Non-dir.
Diethyl phthalate	0.519	0.0886	,,,	0.885	ND	58.6	20-120	41.5	30	Non-dir.
Dimethyl phthalate	0.496	0.0886		0.885	ND	56.0	18-131	38.3	30	Non-dir.
Di-n-butyl phthalate	0.543	0.0886	"	0.885	ND	61.4	10-137	38.4	30	Non-dir.
Di-n-octyl phthalate	0.585	0.0886	"	0.885	ND	66.2	10-180	37.3	30	Non-dir.
Fluoranthene	0.730	0.0886	"	0.885	0.236	55.8	10-160	20.8	30	
Fluorene	0.493	0.0886	n.	0.885	ND	55.8	10-157	36.7	30	Non-dir.
Hexachlorobenzene	0.600	0.0886	11	0.885	ND	67.8	10-137	38.3	30	Non-dir.
Hexachlorobutadiene	0.512	0.0886	"	0.885	ND	57.8	10-132	39.0	30	Non-dir.
Hexachlorocyclopentadiene	ND	0.0886		0.885	ND		10-106	Low Bias	30	
Hexachloroethane	0.384	0.0886		0.885	ND	43.4	10-110	46.5	30	Non-dir.
Indeno(1,2,3-cd)pyrene	0.675	0.0886	"	0.885	0.0648	69.0	10-144	34.7	30	Non-dir.
Isophorone	0.517	0.0886	"	0.885	ND	58.5	10-132	41.7	30	Non-dir.
Naphthalene	0.505	0.0886	"	0.885	ND	57.0	10-141	42.9	30	Non-dir.
Nitrobenzene	0.514	0.0886		0.885	ND	58.1	10-131	41.2	30	Non-dir.
N-Nitrosodimethylamine	0.465	0.0886		0.885	ND	52.6	10-126	55.1	30	Non-dir.
N-nitroso-di-n-propylamine	0.449	0.0886	"	0.885	ND	50.7	10-125	40.2	30	Non-dir.
N-Nitrosodiphenylamine	0.650	0.0886		0.885	ND	73.4	10-177	40.2	30	Non-dir.
Pentachlorophenol	0.423	0.0886		0.885	ND	47.8	10-153	52.1	30	Non-dir.
Phenanthrene	0.630	0.0886	"	0.885	0.139	55.5	10-148	21.9	30	
Phenol	0.445	0.0886	"	0.885	ND	50.2	10-126	42.5	30	Non-dir.
Pyrene	0.683	0.0886	"	0.885	0.212	53.3	10-165	23.1	30	
Surrogate: SURR: 2-Fluorophenol	0.667		"	1.77		37.7	20-108			
Surrogate: SURR: Phenol-d5	0.629		"	1.77		35.5	23-114			
Surrogate: SURR: Nitrobenzene-d5	0.384		"	0.885		43.4	22-108			
Surrogate: SURR: 2-Fluorobiphenyl	0.311		"	0.885		35.1	21-113			
Surrogate: SURR: 2,4,6-Tribromophenol	0.840		"	1.77		47.5	19-110			
Surrogate: SURR: Terphenyl-d14	0.416		"	0.885		47.0	24-116			

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 60 of 73

www.YORKLAB.com (203) 325-1371

Organochlorine Pesticides by GC/ECD - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BH21081 - EPA 3550C											
Blank (BH21081-BLK1)							Pren	ared: 08/17/2	2022 Analyz	ed: 08/18/2	2022
4,4'-DDD	ND	1.64	ug/kg wet								
4,4'-DDE	ND	1.64	ug/kg wet								
4,4'-DDT	ND	1.64	11								
Aldrin	ND	1.64	"								
alpha-BHC	ND	1.64									
alpha-Chlordane	ND	1.64	"								
beta-BHC	ND	1.64	"								
delta-BHC	ND	1.64									
Dieldrin	ND	1.64	"								
Endosulfan I	ND	1.64	n								
Endosulfan II	ND	1.64	11								
Endosulfan sulfate	ND	1.64	"								
Endrin	ND	1.64									
Endrin aldehyde	ND	1.64	"								
Endrin ketone	ND	1.64	"								
gamma-BHC (Lindane)	ND	1.64									
gamma-Chlordane	ND	1.64	"								
Heptachlor	ND	1.64	n								
Heptachlor epoxide	ND	1.64	"								
Methoxychlor	ND	1.64	"								
Toxaphene	ND	164	11								
Surrogate: Decachlorobiphenyl	44.4		"	66.4		66.8	30-150				
Surrogate: Tetrachloro-m-xylene	42.3		"	66.4		63.6	30-150				
LCS (BH21081-BS1)							Prepa	ared: 08/17/2	2022 Analyz	red: 08/18/2	2022
4,4'-DDD	25.3	1.64	ug/kg wet	33.2		76.2	40-140				
4,4'-DDE	22.7	1.64	"	33.2		68.3	40-140				
4,4'-DDT	15.8	1.64	n	33.2		47.5	40-140				
Aldrin	22.8	1.64	11	33.2		68.5	40-140				
alpha-BHC	23.8	1.64	11	33.2		71.5	40-140				
alpha-Chlordane	27.1	1.64	11	33.2		81.4	40-140				
beta-BHC	27.2	1.64	"	33.2		82.0	40-140				
delta-BHC	19.6	1.64		33.2		59.1	40-140				
Dieldrin	27.2	1.64	,,	33.2		81.8	40-140				
Endosulfan I	28.8	1.64		33.2		86.8	40-140				
Endosulfan II	26.3	1.64	n	33.2		79.3	40-140				
Endosulfan sulfate	23.7	1.64		33.2		71.2	40-140				
Endrin	21.3	1.64	"	33.2		64.3	40-140				
Endrin aldehyde	24.3	1.64	n	33.2		73.3	40-140				

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE www.YORKLAB.com (203) 325-1371

26.1

23.9

26.1

23.7

27.2

15.1

41.5

39.1

1.64

1.64

1.64

1.64

1.64

1.64

33.2

33.2

33.2

33.2

33.2

33.2

66.4

66.4

Endrin ketone

Heptachlor

Methoxychlor

gamma-BHC (Lindane)

gamma-Chlordane

Heptachlor epoxide

Surrogate: Decachlorobiphenyl

Surrogate: Tetrachloro-m-xylene

RICHMOND HILL, NY 11418

FAX (203) 357-0166

78.6

71.8

78.6

71.4

81.8

45.4

62.4

58.8

40-140

40-140

40-140

40-140

40-140

40-140

30-150

30-150

Organochlorine Pesticides by GC/ECD - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch Y2G2405 - BG21090											
Performance Mix (Y2G2405-PEM1)							Prep	ared & Anal	yzed: 07/24/	2022	
4,4'-DDD	9.28		ng/mL	0.00			0-200				
4,4'-DDE	1.23		"	0.00			0-200				
4,4'-DDT	221			200		110	0-200				
Endrin	106		n.	100		106	0-200				
Endrin aldehyde	1.58		"	0.00			0-200				
Endrin ketone	5.70		<u></u>	0.00			0-200				
Batch Y2G2747 - BG21247											
Performance Mix (Y2G2747-PEM1)							Prepa	ared & Anal	yzed: 07/27/	2022	
4,4'-DDD	11.6		ng/mL	0.00			0-200				
4,4'-DDE	1.44		11	0.00			0-200				
4,4'-DDT	208		"	200		104	0-200				
Endrin	114			100		114	0-200				
Endrin aldehyde	1.91		11	0.00			0-200				
Endrin ketone	6.22		"	0.00			0-200				
Batch Y2H1925 - BH20915											
Performance Mix (Y2H1925-PEM1)							Prepa	ared & Anal	yzed: 08/18/	2022	
4,4'-DDD	15.8		ng/mL	0.00			0-200				
4,4'-DDE	1.16		"	0.00			0-200				
4,4'-DDT	210		n	200		105	0-200				
Endrin	107		"	100		107	0-200				
Endrin aldehyde	1.98		"	0.00			0-200				
Endrin ketone	8.89		**	0.00			0-200				

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 62 of 73

Organochlorine Pesticides by GC/ECD - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch	Y2H1	958 -	B	G21	169

Performance Mix (Y2H1958-PEM1)				Prepared & Analyzed: 08/19/2022
4,4'-DDD	15.4	ng/mL	0.00	0-200
4,4'-DDE	1.18	11	0.00	0-200
4,4'-DDT	204	n.	200	102 0-200
Endrin	117	11.	100	117 0-200
Endrin aldehyde	2.49	n	0.00	0-200
Endrin ketone	9.38	11	0.00	0-200

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166

ClientServices@ Page 63 of 73

RICHMOND HILL, NY 11418

Polychlorinated Biphenyls by GC/ECD - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BH21081 - EPA 3550C											
Blank (BH21081-BLK2)							Prep	ared: 08/17/2	2022 Analyz	zed: 08/18/2	2022
Aroclor 1016	ND	0.0166	mg/kg wet								
Aroclor 1221	ND	0.0166									
Aroclor 1232	ND	0.0166	"								
Aroclor 1242	ND	0.0166	"								
Aroclor 1248	ND	0.0166									
Aroclor 1254	ND	0.0166									
Aroclor 1260	ND	0.0166	"								
Total PCBs	ND	0.0166	n								
Surrogate: Tetrachloro-m-xylene	0.0419		"	0.0664		63.0	30-120				
Surrogate: Decachlorobiphenyl	0.0528		"	0.0664		79.5	30-120				
LCS (BH21081-BS2)							Prep	ared: 08/17/2	2022 Analyz	zed: 08/18/2	2022
Aroclor 1016	0.259	0.0166	mg/kg wet	0.332		78.0	40-130				
Aroclor 1260	0.295	0.0166	"	0.332		88.8	40-130				
Surrogate: Tetrachloro-m-xylene	0.0429		"	0.0664		64.5	30-120				
Surrogate: Decachlorobiphenyl	0.0485		"	0.0664		73.0	30-120				
Batch Y2H1917 - BH20962											
Aroclor Reference (Y2H1917-ARC1)							Prep	ared & Anal	yzed: 08/18/	/2022	
Surrogate: Tetrachloro-m-xylene	0.210		ug/mL	0.200		105					
Surrogate: Decachlorobiphenyl	0.232		"	0.200		116					

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 FAX (203) 357-0166 ClientServices@ Page 64 of 73

(203) 325-1371 www.YORKLAB.com

Metals by ICP - Quality Control Data

York Analytical Laboratories, Inc.

Reporting

Spike

Source*

%REC

		Reporting		Spike	Source*		%REC			III D	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BH20963 - EPA 3050B											
Blank (BH20963-BLK1)							Prep	ared: 08/16/2	022 Analyz	ed: 08/18/	/2022
Aluminum	ND	6.00	mg/kg wet								
Antimony	ND	3.00	"								
Arsenic	ND	1.80									
Barium	ND	3.00	"								
Beryllium	ND	0.060	"								
Cadmium	ND	0.360	"								
Calcium	8.65	6.00	"								
Chromium	ND	0.600	"								
Cobalt	ND	0.480	"								
Copper	ND	2.40	11								
ron	ND	30.0	11								
Lead	ND	0.600	n n								
Magnesium	ND	6.00									
Manganese	ND	0.600									
Nickel	ND	1.20	"								
Potassium	7.32	6.00									
Selenium	ND	3.00	"								
Silver	ND	0.600	11								
Sodium	ND	60.0	11								
Thallium	ND	3.00	"								
Vanadium	ND	1.20	"								
Zinc	ND	3.00									
Duplicate (BH20963-DUP1)	*Source sample: 2	2H0739-01 (E	Ouplicate)				Prepa	ared: 08/16/2	022 Analyz	ed: 08/18/	/2022
Aluminum	9330	6.85	mg/kg dry		7440				22.6	35	
Antimony	ND	3.43	"		ND					35	
Arsenic	7.40	2.06	"		5.93				22.1	35	
Barium	158	3.43	m,		114				32.1	35	
Beryllium	ND	0.069	w		ND					35	
Cadmium	1.00	0.411	"		0.838				17.9	35	
Calcium	30200	6.85	**		23800				23.8	35	
Chromium	28.4	0.685	11		24.2				15.7	35	
Cobalt	8.71	0.548	22		7.09				20.5	35	
Copper	88.8	2.74	"		68.5				25.8	35	
ron	18800	34.3	"		16800				11.3	35	
Lead	292	0.685	115		151				63.5	35	Non-di
Magnesium	6140	6.85	11		3450				56.2	35	Non-di
Manganese	304	0.685			255				17.5	35	
Nickel	35.2	1.37	•		32.4				8.39	35	
Potassium	1200	6.85			835				35.6	35	Non-di
Selenium	ND	3.43			ND					35	
Silver	ND	0.685			ND					35	
Sodium	292	68.5	**		190				42.1	35	Non-di
Γhallium			"		ND					35	
Hamum	ND	3.43			ND						
Vanadium	ND 34.0	1.37	"		24.5				32.4	35	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 65 of 73

RPD

Metals by ICP - Quality Control Data

York Analytical Laboratories, Inc.

Spike

Reporting

Source*

%REC

		Reporting		Spike	Source*		%REC			IG D	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BH20963 - EPA 3050B											
Matrix Spike (BH20963-MS1)	*Source sample: 2	2H0739-01 (N	Matrix Spike)				Pre	pared: 08/16/20	022 Analyz	ed: 08/18/2	2022
Aluminum	9410	6.85	mg/kg dry	228	7440	863	75-125	High Bias			
Antimony	8.56	3.43	"	28.5	ND	30.0	75-125	Low Bias			
Arsenic	226	2.06	"	228	5.93	96.4	75-125				
Barium	368	3.43	11	228	114	111	75-125				
Beryllium	5.05	0.069	"	5.71	ND	88.4	75-125				
Cadmium	6.47	0.411	"	5.71	0.838	98.6	75-125				
Calcium	30400	6.85	"	114	23800	NR	75-125	High Bias			
Chromium	47.7	0.685	"	22.8	24.2	103	75-125				
Cobalt	67.2	0.548	"	57.1	7.09	105	75-125				
Copper	122	2.74	n	28.5	68.5	188	75-125	High Bias			
Iron	22600	34.3	II .	114	16800	NR	75-125	High Bias			
Lead	273	0.685	"	57.1	151	213	75-125	High Bias			
Magnesium	4870	6.85		114	3450	NR	75-125	High Bias			
Manganese	397	0.685		57.1	255	248	75-125	High Bias			
Nickel	102	1.37	"	57.1	32.4	122	75-125				
Potassium	1290	6.85		114	835	401	75-125	High Bias			
Selenium	171	3.43		228	ND	74.9	75-125	Low Bias			
Silver	5.03	0.685	"	5.71	ND	88.1	75-125				
Sodium	653	68.5		114	190	405	75-125	High Bias			
Thallium	192	3.43	"	228	ND	84.2	75-125				
Vanadium	86.0	1.37		57.1	24.5	108	75-125				
Zinc	322	3.43	"	57.1	199	215	75-125	High Bias			
Post Spike (BH20963-PS1)	*Source sample: 2	2H0739-01 (P	ost Spike)				Pre	pared: 08/16/20	022 Analyz	ed: 08/18/2	2022
Aluminum	77.4		ug/mL	2.00	65.1	612	75-125	High Bias			
Antimony	0.269		"	0.250	0.014	102	75-125				
Arsenic	2.01			2.00	0.052	98.1	75-125				
Barium	3.27		a.	2.00	1.00	113	75-125				
Beryllium	0.045		n	0.0500	-0.004	90.8	75-125				
Cadmium	0.055		"	0.0500	0.007	95.6	75-125				
Calcium	252		11	1.00	209	NR	75-125	High Bias			
Chromium	0.452		n.	0.200	0.212	120	75-125				
Cobalt	0.596		<u>n</u>	0.500	0.062	107	75-125				
Copper	1.00		11	0.250	0.600	161	75-125	High Bias			
Iron	172		"	1.00	147	NR	75-125	High Bias			
Lead	2.18			0.500	1.32	172	75-125	High Bias			
Magnesium	37.7		n	1.00	30.2	746	75-125	High Bias			
Manganese	3.11		11	0.500	2.24	175	75-125	High Bias			
Nickel	0.895		m.	0.500	0.284	122	75-125				
Potassium	13.2		"	1.00	7.31	590	75-125	High Bias			
Selenium	1.58		<u>n</u>	2.00	-0.098	78.9	75-125				
Silver	0.034		II	0.0500	-0.005	68.4	75-125	Low Bias			
Sodium	4.21		"	1.00	1.67	255	75-125	High Bias			
Thallium	1.76		".	2.00	-0.032	87.9	75-125				
Vanadium	0.764		n.	0.500	0.214	110	75-125				

120 RESEARCH DRIVE www.YORKLAB.com

Zinc

STRATFORD, CT 06615

(203) 325-1371

2.53

132-02 89th AVENUE

1.74

0.500

RICHMOND HILL, NY 11418

75-125 High Bias

FAX (203) 357-0166

158

ClientServices@ Page 66 of 73

RPD

Metals by ICP - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BH20963	EDA	2050B
Daten	DELYUADA	- r,rA	30300

Reference (BH20963-SRM1)					Prepared: 08/16/2022 Analyzed: 08/18/2022
Aluminum	9700	6.00	mg/kg wet	10100	96.1 39.5-118.8
Antimony	79.7	3.00	"	244	32.7 10-123
Arsenic	106	1.80	"	109	97.1 63.7-118.3
Barium	385	3.00	"	364	106 70.3-117
Beryllium	55.3	0.060	"	57.0	97.0 69.3-115.4
Cadmium	46.8	0.360		48.7	96.1 67.8-112.9
Calcium	5090	6.00	"	5190	98.1 66.3-116.6
Chromium	172	0.600	"	173	99.3 65.3-120.8
Cobalt	155	0.480	"	148	105 70.3-117.6
Copper	198	2.40		179	111 70.9-117.9
Iron	15200	30.0		15000	101 36.8-162.7
Lead	109	0.600	11	101	108 69.1-126.7
Magnesium	2680	6.00	u	2570	104 56.4-124.9
Manganese	429	0.600		370	116 72.2-119.2
Nickel	64.3	1.20	"	52.2	123 63.4-117.8 High Bias
Potassium	1970	6.00	"	2420	81.4 49.6-118.6
Selenium	72.9	3.00	"	104	70.1 58.5-122.1
Silver	28.8	0.600	n	29.9	96.4 63.5-123.7
Sodium	381	60.0		161	237 30.1-139.1 High Bias
Thallium	88.7	3.00	ii.	101	87.8 59.8-120.8
Vanadium	194	1.20	"	194	100 73.2-117
Zinc	421	3.00		431	97.6 74.9-121.1

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@ Page 67 of 73

Mercury by EPA 7000/200 Series Methods - Quality Control Data

York Analytical Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
Batch BH21519 - EPA 7473 soil											
Blank (BH21519-BLK1)							Prep	pared & Analy	yzed: 08/25/2	2022	
Mercury	ND	0.0300	mg/kg wet								
Duplicate (BH21519-DUP1)	*Source sample: 221	H0962-01 (E	Ouplicate)				Prep	pared & Analy	yzed: 08/25/	2022	
Mercury	1.88	0.0338	mg/kg dry		2.64				33.8	35	
Matrix Spike (BH21519-MS1)	*Source sample: 221	H0962-01 (N	Matrix Spike)				Prep	pared & Analy	yzed: 08/25/2	2022	
Mercury	3.65		mg/kg	0.500	2.35	260	75-125	High Bias			
Reference (BH21519-SRM1)							Prep	pared & Analy	yzed: 08/25/2	2022	
Mercury	31.922		mg/kg	27.2		117	59.9-140.1				

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 68 of 73

Miscellaneous Physical Parameters - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BH21246 - % Solids Prep											
Duplicate (BH21246-DUP1)	*Source sample: 22H1035-05 (Duplicate)							ared & Anal	yzed: 08/19/2	2022	
% Solids	91.5	0.100	%		91.7				0.226	20	
Batch BH21321 - % Solids Prep											
Duplicate (BH21321-DUP1)	*Source sample: 22	H0961-01 (S-	1)				Prepared & Analyzed: 08/22/2022				
% Solids	90.2	0.100	%		90.4				0.185	20	
Duplicate (BH21321-DUP2)	*Source sample: 22	H0961-06 (S-	6)				Prep	ared & Anal	yzed: 08/22/2	2022	
% Solids	87.1	0.100	%		87.3				0.226	20	

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 69 of 73

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
22H0961-01	S-1	8 oz. WM Clear Glass Cool to 4° C
22H0961-02	S-2	8 oz. WM Clear Glass Cool to 4° C
22H0961-03	S-3	8 oz. WM Clear Glass Cool to 4° C
22H0961-04	S-4	8 oz. WM Clear Glass Cool to 4° C
22H0961-05	S-5	8 oz. WM Clear Glass Cool to 4° C
22H0961-06	S-6	8 oz. WM Clear Glass Cool to 4° C

Sample and Data Qualifiers Relating to This Work Order

	Sample and Data Quantiers Relating to This Work Order
VOA-CONT	Non-Compliant - the container(s) provided by the client for soil volatiles do not meet the requirements of EPA SW846-5035A. Results reported below 200 ug/kg may be biased low due to samples not being collected according to EPA SW846 5035A requirements.
S-03	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect. This effect was confirmed by reanalysis.
QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QM-05	The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data are acceptable.
QL-02	This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.
M-SPKM	The spike recovery is not within acceptance windows due to sample non-homogeneity, or matrix interference.
M-ICV2	The recovery for this element in the ICV was outside the 90-110% recovery criteria.
M-DUPS	The RPD between the native sample and the duplicate is outside of limits due to sample non-homogeneity
M-BLK	The target analyte was detected above the RL in the batch method blank. All samples showed >10x the concentration in the blank for this analyte. Data are reported.
J	Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.
CCVE	The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% Difference for average Rf or >20% Drift for quadratic fit).
В	Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants.
	Definitions and Other Explanations
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon
	NELAC 2009 Standards and applies to all analyses.
LOD	
LOD	NELAC 2009 Standards and applies to all analyses. LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect.
	NELAC 2009 Standards and applies to all analyses. LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846. METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200
MDL	NELAC 2009 Standards and applies to all analyses. LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846. METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods. This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile
MDL Reported to	NELAC 2009 Standards and applies to all analyses. LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846. METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods. This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
MDL Reported to	NELAC 2009 Standards and applies to all analyses. LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846. METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods. This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only. Not reported

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 71 of 73

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias

High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir.

Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

Corrective Action: VOCs submitted in bulk containers.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 72 of 73

HES OFFICE Pla

York Analytical Laboratories, Inc.

120 Research Drive 132-02 89th Ave Stratford, CT 06615 Queens, NY 11418

Field Chain-of-Custody Record

î	YORK Project No.	
	2240961	

clientservices@yorklab.com

NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document. This document serves as your written authorization for YORK to proceed with the analyses requested below.

AMALITYICAL LABORATORIES INC	rkiab.com		Your signature I	binds you to YORK's Standar		, -9-1
YOUR Information	EX CITY	rt To:		ice To:	YOUR Project Number	Turn-Around Time
Company: JAL, PLUL	Company: SML, F	rui		LL	4 TRIPP LANE	RUSH - Next Day
Address: SEARN K)	Address: BEST	ong RD	Address: Co BE	story R1)	YOUR Project Name	RUSH - Two Day
MMONK, MY 10504	Drawk,	4 10504	Armony,	W 1050Y	YOUR Project Name	RUSH - Three Day
Phone 914-907-4692	Phone 1 (4- 90) - 4	1692	Phone: 914 - 407 -	4692	SAME AS ABOVE	RUSH - Four Day
CONTAGERICUL BOHLANDER	Contact: RICK BO	MEMALAHOEN	Contact: RIW BE	HLAMPR	77.10	Standard (5-7 Day)
	E mail:				YOUR PO#: NONE	
Please print clearly and legibly. All information me will not be logged in and the turn-around-time clo- questions by YORK are resolved.	ust be complete. Samples ck will not begin until any	Matrix Codes	Samples From	Report	/ EDD Type (circle selections)	YORK Reg. Comp.
		S - soil / solid	New York	Summary Report	CT RCP Standard Excel EDD	Compared to the following Regulation(s): (please fill in)
RICK BOILLANDF	(GW - groundwater	New Jersey	QA Report	CT RCP DQA/DUE EQuIS (Standard)	regulation(o): (presso iii iii)
Samples Collected by: (print your name at	pove and sign below)	DW - drinking water	Connecticut	NY ASP A Package	NJDEP Reduced NYSDEC EQuIS	
1)//		WW - wastewater	Pennsylvania	NY ASP B Package	Deliverables NJDEP SRP HazSite	A - 1
1/1/		O - Oil : Other	Other		NJDKQP Other:	
Sample Identification	on	Sample Matrix	Date/Time Sampled		Analysis Requested	Container Description
5-1		5	8/4/25 3 in	EPA Metho	d. 8260 Fill LIST	802 6455
5-2		5	8 4 22 310			
5-3		5	8/4/22 350			
5-4		5	8/4/22 3rm			
5-5		5	8/4/22 380			
5-6		S	34/21 38	V	V	
Comp-I, C-I		5	8/4/22 3800	EPA 3270, -	TAL METALS PESTICIOES,	
(unp-2 (-2		5	8/4/21 350	Paggura EA	4 8090	
(OM-3, C-3		5	8422 30	1	1	V
			-12-1			Action Services
Comments:					ervation: (check all that apply)	Special Instruction
H LUBL (ANE) Women	w, M 10501	4		HCI MeOH Ascorbic Acid Other	HNO3 H2SO4 NaOH ZnAc pr:	Field Filtered Lab to Filter
Samples Relinquished by / Company	Date/Time	Samples Received by / Compa	any	Date/Time +-16-22	Samples Relinquished by / Company	Date/Time
SMLJPLLL	8/1922 63	45 Chine	Youle	13:40	Chine York	8 1500
Samples Received by / Company	Date/Time	Samples Relinquished by / Co	ompany	Date/Time	Samples Received by / Company	Date/Time
						M. Company
Samples Relinquished by / Company	Date/Time	Samples Received by / Comp	any	Date/Time	Samples Received in LAB by Date/Time	Temp. Received at Lab
Company of the state of the sta					KBlocker 8/10/22 1500	2.8
						Degrees (

4 Tripp Lane Armonk, New York

Summary Laboratory Analytical Results for Soil

Sample ID York ID Sampling Date Client Matrix	NYSDEC Part 375 Unrestricted Use Soil Cleanup Objectives	NYSDEC Part 375 Restricted Use Soil Cleanup Objectives -	5-1 22H0961-01 8/4/2022 Soil		5-2 22H0961-02 8/4/2022 Soil		S-3 22H0961-03 8/4/2022 Soil		5-4 22H0961-04 8/4/2022 Soil		5-5 22H0961-05 8/4/2022 Soil		S-6 22H0961-06 8/4/2022 Soil		Comp-1, C-1 22H0961-07 8/4/2022 Soil		Comp-2, C-2 22H0961-08 8/4/2022 Soil		Comp-3, C-3 22H0961-09 8/4/2022 Soil	
Compound		Restricted Residential	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Volatile Organics, 8260 - Comprehensive (mg/kg) 1,1,1,2-Tetrachloroethane	~	~	0.00280	U	0.00280	U	0.00260	U	0.00280	U	0.00280	U	0.00290	U	NT		NT		NT	$\overline{}$
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	0.68	100	0.00280 0.00280	U	0.00280 0.00280	U	0.00260 0.00260	U	0.00280 0.00280	Ü	0.00280 0.00280	U	0.00290 0.00290	U	NT NT		NT NT		NT NT	-
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	~	~	0.00280	U	0.00280	U	0.00260	U	0.00280	Ü	0.00280	U	0.00290	U	NT NT		NT NT		NT NT	
1,1,2-Trichloroethane 1,1-Dichloroethane	0.27	26	0.00280 0.00280	U	0.00280 0.00280	U	0.00260 0.00260	U	0.00280 0.00280	U	0.00280 0.00280	U	0.00290 0.00290	U	NT NT		NT NT		NT NT	
1,1-Dichloroethylene 1,2,3-Trichlorobenzene	0.33	100	0.00280 0.00280	U	0.00280 0.00280	U	0.00260 0.00260	U	0.00280 0.00280	U	0.00280 0.00280	U	0.00290 0.00290	U	NT NT		NT NT		NT	_
1,2,3-Trichloropenee 1,2,4-Trichlorobenzene	*	~	0.00280	U	0.00280	U	0.00260	U	0.00280 0.00280 0.00280	Ü	0.00280	U	0.00290	U	NT NT		NT NT		NT NT	_
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	3.6	52	0.00280	U	0.00280 0.00280	U	0.00260 0.00260	U	0.00280	U	0.00280 0.00280	U	0.00290 0.00290	U	NT NT		NT NT	_	NT NT	+
1,2-Dibromo-3-chloropropane	~	~	0.00280	U	0.00280	U	0.00260	U	0.00280	U	0.00280	U	0.00290	U	NT		NT		NT	\pm
1,2-Dibromoethane 1,2-Dichlorobenzene	1.1	100	0.00280 0.00280	U	0.00280 0.00280	U	0.00260 0.00260	U	0.00280 0.00280	U	0.00280 0.00280	U	0.00290 0.00290	U	NT NT		NT NT		NT NT	_
1,2-Dichloroethane	0.02	3.1	0.00280 0.00280 0.00280	U	0.00280 0.00280 0.00280	U	0.00260	U	0.00280 0.00280 0.00280	U	0.00280 0.00280	U	0.00290 0.00290 0.00290	U	NT NT		NT NT		NT NT	_
1,3,5-Trimethylbenzene	8.4	52	0.00280	U	0.00280	U	0.00260 0.00260	U	0.00280	U	0.00280	U	0.00290	U	NT NT		NT		NT	\pm
1,3-Dichlorobenzene 1,4-Dichlorobenzene	2.4 1.8	13	0.00280 0.00280	U	0.00280 0.00280	U	0.00260 0.00260	U	0.00280 0.00280	U	0.00280 0.00280 0.0570	U	0.00290 0.00290	U	NT NT		NT NT		NT NT	+
1,4-Dioxane 2-Butanone	0.1 0.12	13 100	0.0550	U	0.0570	U	0.0530 0.00260	U	0.0560	U	0.0570 0.00280	U	0.0570 0.00290	U	NT NT		NT NT		NT NT	_
2-Hexanone 4-Methyl-2-pentanone	~	200	0.00280 0.00280	U	0.00280 0.00280	U	0.00260	Ü	0.00280 0.00280	Û	0.00280	U	0.00290	Ú	NT		NT		NT	
Acetone	0.05	100		U		U	0.00260 0.00530			U	0.00280 0.00570	U	0.00290 0.00570	U	NT NT		NT NT		NT NT	+
Acrolein Acrylonitrile	~		0.00550 0.00280	U	0.00570 0.00280	U	0.00530 0.00260	U	0.00560 0.00280	U	0.00570 0.00280	U	0.00570 0.00290	U	NT NT		NT NT		NT NT	-
Benzene	0.06	4.8	0.00280	U	0.00280	U	0.00260	U	0.00280	Ü	0.00280	U	0.00290	U	NT		NT		NT	
Bromothloromethane Bromodichloromethane Bromoform			0.00280 0.00280 0.00280	U	0.00280 0.00280 0.00280	U	0.00260 0.00260 0.00260	U	0.00280 0.00280 0.00280	U	0.00280 0.00280 0.00280	U	0.00290 0.00290 0.00290	U	NT NT		NT NT		NT NT	\pm
Bromoform Bromomethane	~	~ ~		U		U				Ü		Ü		U	NT NT		NT NT		NT NT	+
Carbon disulfide	~	-	0.00280 0.00280	U	0.00280 0.00280	U	0.00260 0.00260	U	0.00280 0.00280	U	0.00280 0.00280	Ü	0.00290 0.00290 0.00290	U	NT NT		NT NT		NT	\perp
Carbon tetrachloride Chlorobenzene	0.76 1.1	2.4 100	0.00280	U		U	0.00260		0.00280	U	0.00280	U	0.00290	U	NT NT		NT NT		NT NT	\pm
Chloroethane Chloroform Chloromethane	0.37	~ 49	0.00280	U	0.00280 0.00280 0.00280	U	0.00260	U	0.00380	U	0.00280	U	0.00290	U	NT NT		NT NT		NT NT	+=
Chloromethane		~	0.00280 0.00280	U	0.00280	0	0.00260 0.00260	Ü	0.00280 0.00280	U	0.00280 0.00280	Ü	0.00290 0.00290	U	NT NT		NT NT		NT NT	\perp
cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene	0.25	100		U	0.00280	U	0.00260 0.00260	U		U		U	0.00290 0.00290	U	NT NT		NT NT		NT NT	\pm
Cyclohexane Dibromochloromethane	~	2	0.00280 0.00280 0.00280	U	0.00280 0.00280	U	0.00260 0.00260	U	0.00280 0.00280 0.00280	U	0.00280 0.00280 0.00280	U	0.00290	U	NT NT		NT NT		NT NT	+
Dibromomethane Dichlorodifluoromethane		~	0.00280	Ü	0.00280	U	0.00260	U	0.00280	U	0.00280	U	0.00290 0.00290 0.00290	U	NT NT		NT NT		NT NT	\perp
	1	41	0.00280 0.00280	U	0.00280 0.00280	U	0.00260 0.00260		0.00280 0.00280	U	0.00280 0.00280	U		U	NT NT		NT NT		NT NT	+
Hexachlorobutadiene Isopropylbenzene	in in	~	0.00280 0.00280	U	0.00280 0.00280	U	0.00260 0.00260	U	0.00280 0.00280	U	0.00280 0.00280	U	0.00290 0.00290	U	NT NT		NT NT		NT NT	+ =
Methyl acetate		~	0.00280	Ű	0.00280	U	0.00260	- 0	0.00280	Ü	0.00280		0.00290	U	NT		NT		NT	=
Methyl tert-butyl ether (MTBE) Methylcyclohexane Methylene chloride	0.93	100	0.00280 0.00280	U	0.00280 0.00280	U	0.00260 0.00260	U	0.00280 0.00280	Ü	0.00280 0.00280	U	0.00290 0.00290	U	NT NT		NT NT		NT NT	
Methylene chloride n-Butylbenzene	0.05	100 100	0.00550 0.00280	U	0.00570 0.00280	U	0.00530 0.00260	U	0.00560 0.00280	U	0.00570 0.00280	U	0.00290 0.00570 0.00290	U	NT NT		NT NT		NT NT	=
n-Propylbenzene	12 3.9	100	0.00280 0.00280	U	0.00280 0.00280	U	0.00260	Ü	0.00280 0.00280	U	0.00280 0.00280	Ü	0.00290 0.00290	U	NT		NT		NT	\pm
o-Xylene p- & m- Xylenes	~	~	0.00550	U	0.00570	U	0.00260 0.00530		0.00560	U	0.00570	U	0.00570	U	NT NT		NT NT		NT NT	_
p-isopropyltoluene sec-Butylbenzene	- 11	100	0.00280	U	0.00280	U	0.00260 0.00260	U	0.00280	U	0.00280 0.00280	U	0.00290 0.00290	U	NT NT		NT NT		NT NT	$\overline{}$
		-	0.00280 0.00280	U	0.00280 0.00280	U	0.00260	Ü	0.00280 0.00280	U	0.00280	U	0.00290 0.00290	U	NT		NT		NT	
tert-Butyl alcohol (TBA) tert-Butylbenzene	5.9	100	0.00280 0.00280	U	0.00280 0.00280	U	0.00260 0.00260	U	0.00280 0.00280	U	0.00280 0.00280	U	0.00290	U	NT NT		NT NT		NT NT	+
Tetrachloroethylene	5.9 1.3 0.7	19 100	0.00280 0.00280 0.00280	U	0.00280 0.00280 0.00280	U	0.00260 0.00260 0.00260	U	0.00280 0.00280 0.00280	U	0.00280 0.00280 0.00280	U	0.00290 0.00290 0.00290	U	NT NT		NT NT	_	NT NT	+
Toluene trans-1,2-Dichloroethylene	0.19	100	0.00280	U	0.00280	U		U		U	0.00280	Ü		U	NT NT		NT NT		NT MT	\perp
trans-1,3-Dichloropropylene Trichloroethylene Trichlorofluoromethane	0.47	21	0.00280 0.00280	Ü	0.00280 0.00280	U	0.00260 0.00260	U	0.00280 0.00280	U	0.00280 0.00280	Ü	0.00290 0.00290	U	NT NT		NT		NT NT	
Trichlorofluoromethane Vinyl Chloride Xylenes, Total	0.02 0.26	0.9	0.00280 0.00280 0.00830	U	0.00280 0.00280 0.00850	U	0.00260 0.00260 0.00790	U	0.00280 0.00280 0.00840	U	0.00280 0.00280 0.00850	U	0.00290 0.00290 0.00860	U	NT NT NT		NT NT NT	_	NT NT	+
Xylenes, Total Semi-Volatile Organics, 8270 - Comprehensive (mg/	0.26	100	0.00830	U	0.00850	U	0.00790	U	0.00840	U	0.00850	U	0.00860	U	NT		NT	$\overline{}$	NT	\perp
1.1-Riphenyl	~	~	NT		NT		NT		NT		NT		NT		0.0454	U	0.0448	U	0.0456	U
1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene	~	~	NT NT	1	NT NT	_	NT NT		NT NT	-	NT.	-	NT NT		0.0906 0.0454	U	0.0894 0.0448	U	0.0909 0.0456	U
1,2-Dichlorobenzene 1,2-Diphenylhydrazine (as Azobenzene)	1.1	100	NT NT		NT NT		NT NT		NT NT		NT NT		NT NT		0.0454 0.0454	U	0.0448 0.0448	U	0.0456 0.0456	U
1,3-Dichlorobenzene	2.4 1.8	49	NT NT		NT NT		NT NT		NT NT		NT.		NT NT		0.0454 0.0454	U	0.0448 0.0448	Ü	0.0456 0.0456	U
1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol	1.8	13	NT NT	1	NT NT		NT NT	1	NT NT	-	NT NT	1	NT NT		0.0454	U		U		U
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	~ ~	~	NT NT	-	NT NT		NT NT		NT NT	-	NT NT	\vdash	NT NT		0.0906 0.0454 0.0454	U	0.0448 0.0448	U	0.0456 0.0456	U
2,4-Dichlorophenol	2.50	~	NT NT		NT NT		NT NT		NT NT		NT NT		NT NT					U		U
2,4-Dimethylphenol 2,4-Dinitrophenol	~		NT NT		NT NT		NT NT		NT NT	\perp	NT NT		NT NT		0.0454 0.0906 0.0454	U	0.0448 0.0894 0.0448	U	0.0456 0.0909	U
2,4-Dinitrotoluene 2,6-Dinitrotoluene	2 2	~	NT NT	-	NT NT		NT NT		NT NT	-	NT MT	\vdash	NT NT		0.0454		0.0448	U		U
2-Chloronaphthalene	- ~	~	NT NT	1	NT NT		NT NT		NT NT		NT NT		NT NT		0.0454 0.0454 0.0454	U	0.0448 0.0448 0.0448	U	0.0456 0.0456 0.0456	U
2-Chlorophenol 2-Methylnaphthalene		~	NT NT		NT NT		NT NT		NT NT		NT NT	1	NT NT		0.0454			U		U
2-Methylphenol 2-Nitroaniline	0.33	100	NT AIT	1	NT NT		NT NT		NT NT	\vdash	NT NT	-	NT NT		0.0454	U	0.0448 0.0894 0.0448	U	0.0456 0.0909 0.0456	U
2-Nitrophenol	- No. 1	~	NT NT		NT F		NT NT		NT NT		NT		NT NT		0.0906 0.0454		0.0448	U	0.0456	U
3- & 4-Methylphenols 3,3-Dichlorobenzidine	0.33	100	NT NT		NT NT		NT NT		NT NT		NT NT		NT NT		0.0454 0.0454	U	0.0448 0.0448	U	0.0456 0.0456	U
3-Nitroaniline 4.6-Dinitro-2-methylphenol	W	~	NT NT	1	NT NT		NT NT		NT NT	1	NT NT		NT NT		0.0906	U	0.0894	U	0.0909	
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	~	~	NT		NT NT		NT		NT		NT		NT		0.0454 0.0454	U	0.0448 0.0448	Ü	0.0456 0.0456	Ü
4-Chloroaniline	- N	~	NI NT		NT NT		NT NT		NT NT		NT NT		NT NT			U	0.0448	U		U
4-Chlorophenyl phenyl ether 4-Nitroaniline	~	~	NT NT		NT NT		NT NT		NT NT	_	NT NT		NT NT		0.0454 0.0906	U U U	0.0448 0.0448 0.0894	U	0.0456 0.0909	U
4-Nitrophenol	20		NT NT		NT Arr		NT by		NT .		NT PT		NT AT		0.0906 0.0454		0.0894 0.0448	Ü	0.0909 0.0456	
Acenaphthene Acenaphthylene	20 100	100	NT NT		NT NT		NT NT		NT NT		NT NT		NT NT		0.0454 0.0454 0.0454	U	0.0448 0.0448 0.0448	U	0.0456 0.0456 0.0456	Ü
Acetophenone Aniline	~	~	NT NT		NT NT		NT NT		NT NT	_	NT NT	_	NT NT		0.0454 0.181		0.0448 0.179	U	0.0456 0.182	
Anthracene	100	100	NT NT		NT Arr		NT PT		NT POT		NT PT		NT ACT		0.181 0.0454 0.0454	U	0.179 0.0448 0.0448	U	0.182 0.0589 0.0456	n n n n
Atrazine Benzaldehyde	~	~	NT NT		NT NT		NT NT		NT NT		NT NT		NT NT		0.0454	U	0.0448	U	0.0456	U
Benzidine Benzo(a)anthracene	1	1	NT NT	-	NT NT		NT NT	\vdash	NT NT	 	NT NT	H-	NT NT		0.181 0.0905	JD D	0.179 0.186	U D	0.182 0.325	U D D
Benzo(a)pyrene Benzo(b)fluoranthene	1	1	NT NT	1	NT NT		NT PC		NT PER	1	NT PT		NT NT		0.0905 0.0949	D	0.186 0.214	D	0.325 0.310	D
Benzo(g,h,i)perylene	1 100	100	NI NT		NT NT		NT NT		NT NT		NT NT		NT NT		0.109 0.0804	D D	0.210 0.163	D	0.376 0.227	D D D
Benzo(k)fluoranthene Benzoic acid	0.8	3.9	NT NT		NT NT		NT NT	-	NT NT	 	NT NT	1	NT NT		0.0760	ID OIL	0.161	D U	0.281	D U
Benzyl alcohol	~	~	NT NT		NT NT		NT NT		NT NT		NT NT		NT NT		0.0454 0.0454	U	0.0448 0.0448	Ü	0.0456 0.0456	Ü
Bis(2-chloroethoxy)methane	~	~	NT NT		NT NT		NT NT		NT NT		NT NT		NT NT		0.0454	U	0.0448	U		U
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether	(m)	~	NT NT		NT NT		NT NT		NT NT	1	NT NT	1	NT NT		0.0454 0.0454	U	0.0448 0.0448	U	0.0456 0.0456 0.0456	U
Bis(2-ethylhexyllohthalate	14.	-	NT NT	1	NT AV		NT PC		NT PT		NT PT		NT AT		0.0454 0.131 0.0906	D	0.0448 0.0448 0.0894	Ü	0.0456 0.0909	ŭ
Caprolactam Carbazole	181		NT NT		NT NT		NT NT		NT NT		NT NT		NT NT		0.0906 0.0454 0.0978	U U D	0.0448	U U D	0.0909 0.0480 0.375	D D
Chrysene	1	3.9	NT	1	NT		NT		NT		NT		NT		0.0978	D	0.180	D	0.375	D

4 Tripp Lane Armonk, New York

Summary Laboratory Analytical Results for Soil

Sample ID York ID	NYSDEC Part 375	NYSDEC Part 375	S-1 22H0961-01		S-2 22H0961-02		5-3 22H0961-03		5-4 22H0961-04		S-5 22H0961-05		S-6 22H0961-06		Comp-1, C-1 22H0961-07		Comp-2, C-2 22H0961-08		Comp-3, C-3 22H0961-09	
York ID Sampling Date Client Matrix	Unrestricted Use Soil	Restricted Use Soil Cleanup Objectives -	8/4/2022		8/4/2022		8/4/2022		8/4/2022		8/4/2022		8/4/2022		8/4/2022		8/4/2022		8/4/2022	
Client Matrix Compound	Cleanup Objectives	Restricted Residential	Soil Result	1 0	Soil Result	0	Soil Result	0	Soil Result	0	Soil Result	0	Soil Result	0	Soil Result	0	Soil Result	1 0	Soil Result	T 0
Dibenzo(a,h)anthracene	0.22	0.33	NT.	Q	NT	Q	NT	u	NT NT	Q	NT	u	NT	u	0.0454	U	0.0522	JD JD	0.0836	JD
Dibenzofuran	0.33 7	59	NT.		NT NT	-	NT NT	-	NT.		NT		NT		0.0454	U	0.0448	- ZU	0.0456	U
Diethyl phthalate		~	NT		NT	-	NT		NT		NT		NT		0.0454	U	0.0448	ŭ	0.0456	Ü
Dimethyl phthalate	N	~	NT		NT	-	NT		NT		NT		NT		0.0454	U	0.0448	- ŭ	0.0456	U
Di-n-butyl phthalate	1201	~	NT		NT NT	-	NT		NT		NT		NT		0.0454	Ü	0.0448	Ü	0.0456	Ü
Di-n-octyl phthalate	740	- 2	NT	3	NT		NT		NT		NT		NT		0.0454	Ü	0.0448	Ü	0.0456	Ü
Fluoranthene	100	100	NT	_	NT NT	-	NT		NT		NT	9 9	NT		0.151	D	0.288	D	0.651	U D
Fluorene	30	100	NT	74	NT		NT		NT		NT	V 1	NT		0.0454	U	0.0448	Ü	0.0456	Ü
Hexachlorobenzene	0.33	1.2	NT		NT	-	NT		NT		NT		NT		0.0454	Ü	0.0448	ŭ	0.0456	ŭ
Hexachlorobutadiene	~	~	NT	The second	NT		NT		NT		NT	W 0	NT		0.0454	U	0.0448	Ü	0.0456	Ü
Hexachlorocyclopentadiene	~	~	NT	1	NT		NT		NT		NT	7	NT		0.0454	U	0.0448	U	0.0456	U
Hexachloroethane	~	-	NT		NT	-	NT		NT		NT	7	NT		0.0454	U	0.0448	Ü	0.0456	U
Indeno(1,2,3-cd)pyrene	0.5	0.5	NT		NT		NT		NT.	-	NT		NT		0.0746	JD	0.138	D	0.201	D
Isophorone	70	-	NT		NT		NT		NT		NT		NT		0.0454	U	0.0448	U	0.0456	U
Naphthalene	12	100	NT		NT		NT		NT		NT		NT		0.0454	U	0.0448	- 0	0.0456	U
Nitrobenzene	(A)	~	NT		NT		NT		NT		NT	-	NT		0.0454	U	0.0448	U	0.0456	Ü
N-Nitrosodimethylamine	(2)	~	NT		NT	-	NT		NT		NT		NT		0.0454	U	0.0448	U	0.0456	Ü
N-nitroso-di-n-propylamine	(N)	~	NT		NT		NT		NT		NT		NT		0.0454	U	0.0448	U	0.0456	U
N-Nitrosodiphenylamine	(2)		NT		NT	-	NT		NT		NT		NT		0.0454	U	0.0448	U	0.0456	U
Pentachlorophenol	0.8	6.7	NT		NT		NT		NT:		NT		NT	1	0.0454	U	0.0448	U	0.0456	U
Phenanthrene	100	100	NT		NT		NT		NT		NT		NT		0.0507	JD.	0.0922	D	0.302	D
Phenol	0.33	100	NT		NT	-	NT		NT		NT		NT		0.0454	U	0.0448	U	0.0456	U
Pyrene	100	100	NT	1	NT		NT		NT		NT		NT		0.122	D	0.255	D	0.515	D U D
Pesticides, 8081 target list (mg/kg)						_		_						•						
4,4'-DDD	0.0033	13	NT.	1	NT.	- 1	NT	- 1	NT		NT	Г	NT.	T	0.00225	D	0.00179	T 0 T	0.00180	T u
4,4'-DDE	0.0033	8.9	NT NT	+	NT NT	-	NT NT	_	NT.		NT NT	_	NT NT	_	0.00225	D	0.0114	D	0.00180	
4,4*-DDT	0.0033	7.9	NT NT	+	NT NT	-	NT NT	_	NT NT		NT NT	_	NT NT	_	0.00887	U	0.0114	U	0.00191	D U
Aldrin	0.005	0.097	NT NT	+	NT NT	-	NT NT	-	NT NT	-	NI NT	_	NI NT	—	0.00179	U	0.00179	Ü	0.00180	U
alpha-BHC	0.005	0.097	NT NT	+	NT NT	-	NT NT	_	NT.	-	NT NT	_	NT NT	_	0.00179	U	0.00179	ü	0.00180	Ü
alpha-Chlordane	0.02	4.2	NT NT	+	NT NT	-	NT NT	-	NT NT	-	NT NT	_	NT NT	_	0.00179	D	0.00179	D	0.00180	D
beta-BHC	0.036	0.36	NT.	+	NT NT	-	NT NT	-	NT NT		NT NT	_	NT NT	_	0.0492	Ü	0.00179	U	0.00180	+ -
delta-BHC	0.04	100	NT NT	-	NT NT	-	NT NT	-	NT NT		NT NT	-	NT NT		0.00179	U	0.00179	ü	0.00180	U
	0.005		NT NT		NT NT	-	NT NT	-	NT NT		NT NT	-	NT NT	-		D		0		- 0
Dieldrin Endosulfan I	2.4	0.2	NT NT		NT NT	-	NT NT	-	NT NT		NT NT		NT NT	-	0.00512 0.00179	U	0.00223 0.00179	Ü	0.00255 0.00180	D U
Endosulfan II	2.4	24	NT.	-	NT NT	-	NT NT	-	NT NT		NT NT	-	NT NT		0.00179	Ü	0.00179	ŭ	0.00180	Ü
	2.4	24	NT NT	+	NT NT	-	NT NT	-	NT NT		NT NT	_	NT NT	-	0.00179	11	0.00179	- 8	0.00180	+ %
Endosulfan sulfate Endrin		24	NT.	-	NT NT	-	NT NT	-	NT NT		NT NT	-	NT NT	-	0.00179	U	0.00179	Ü	0.00180	U
	0.014	11	NT NT		NT NT	-	NT NT	-	NT NT		NT NT	-	NT NT		0.00179		0.00179	Ü	0.00180	U
Endrin aldehyde		-	NT NT		NT NT	-	NT NT	-	NT NT		NT NT	-	NT NT		0.00179	U	0.00179	Ü	0.00180	U
Endrin ketone	0.1	- 12	NT NT	-	NI NT	-	NI NT	-	NT NT		NI NT	-	NI NT	-	0.00179		0.00179	Ü	0.00180	
gamma-BHC (Lindane)	0.1	1.3	NI NT	+	NT NT	-	NT NT	-	NT NT		NI NT		NI NT		0.00179	U D	0.00179	D	0.00180	U DP
gamma-Chlordane	0.042	2.1	NT NT	-	NT NT	-	NT NT	_	NT NT		NT NT	-	NT NT		0.0428		0.00928	Ü	0.00920	U
Heptachlor	0.042		NT NT	-	NT NT	-	NT NT	-	NT NT		NT NT	2 0	NT NT		0.00179	U	0.00179	ů	0.00180	
Heptachlor epoxide Methoxychlor		-	NT NT	-	NT NT	-	NT NT	-	NT NT		NT NT		NT NT	_	0.00179	U	0.00179	Ü	0.00180	0
Toxaphene		-	NT NT	1	NT NT	-	NT NT	-	NT NT		NT NT		NT NT	_	0.179	Ü	0.179	Ü	0.180	U
			NI.		NI	_	NI	_	NI		NI.		NI		0.179	0	0.179		0.180	_ "
Metals, Target Analyte (mg/kg)			<u> </u>	_																-
Aluminum	2	~	NT.		NT	$\overline{}$	NT		NT		NT		NT		16,100		14,000		14,900	
Antimony	**	~	NT		NT	$\overline{}$	NT	_	NT		NT		NT		3	U	2.910	U	2.870	U
Arsenic	13	16	NT		NT	_	NT		NT		NT		NT		5.320		3.370		2.770	
Barium	350	400	NT	14	NT		NT		NT		NT	2 2	NT		117		104		104	
Beryllium	7.2	72	NT	200	NT	$\overline{}$	NT	_	NT		NT	8 8	NT		0.0600	U	0.0580	U	0.0570	U
Cadmium	2.5	4.3	NT	_	NT	-	NT		NT		NT		NT	_	0.485		0.349	U	0.963	
Calcium	~	_ ~	NT	1	NT	$\overline{}$	NT	_	NT		NT		NT	-	17,700	В	9,760	В	8,630	В
Chromium	~	~	NT		NT	-	NT		NT		NT		NT		30		24		26.800	\perp
Cobalt	-		NT	+	NT	\rightarrow	NT	-	NT NT	-	NT	_	NT NT	-	11.300		10.300	+	11.200	+
Copper	50	270	NT	+	NT	-	NT	_			NT	_		_	59.100		30.200	+	32.300	_
tron		100	NT NT	_	NT NT	-	NT		NT		NT NT	_	NT NT	-	21,600		17,800	_	19,900	_
Lead	63	400	NT	+	NT NT	-	NT	-	NT	_	NT	_	NT NT	_	92.600		54.500	+	62.900	_
Magnesium	1500	2000	NT NT	+		-	NT NT		NT NT		NT NT		NT NT		11,600		7,390	_	6,660	_
Manganese	1600	2000	NT NT	+	NT NT	-	NT NT	-	NT NT		NT NT		NT NT	-	421	_	321	_	373	+
Nickel	30	310		+	NT NT	\rightarrow		\rightarrow	NT NT	_	NT NT	_	NT NT	-	17.900		13.300	+ - 1	12.300	+ -
Potassium	20	100	NT NT	-	NT NT	-	NT NT	-	NT NT	\vdash	NT NT	_	NT NT	-	2,790	B U	2,310	B U	1,420 2.870	8
Selenium	3.9	180	NT NT	+	NT NT	-	NT NT	-	NT NT		NT NT	-	NT NT	-			2.910			U
Silver	2	180	NT NT	+	NT NT	\rightarrow		-				_	NT NT	-	0.599	U	0.582	U	0.573	U
Sedium	~			+		-	NT NT	-	NT	\vdash	NT			-	59.900	U	58.200	U	57.300	U
Thallium	.~.		NT	_	NT NT	-	NT		NT	-	NT	_	NT	-	3	U	2.910	U	2.870	U
Vanadium		_	NT	+	NT NT	\rightarrow	NT	_	NT		NT		NT NT	-	39.500		34.500	+	38.900	+
Zinc	109	10000	NT	1	NT	_	NT		NT		NT		NT		103		76.200		90.700	
Mercury by 7473 (mg/kg)																				
Mercury	0.18	0.81	NT		NT.	$_{-}$	NT		NT		NT		NT		0.139		0.109		0.115	
Total Solids (%)																		-		
% Solids	- W	~	90.400	1	88.300	1	94,400	T	89.300		87.800		87.300		89.400		92,100	T	90.200	T
Polychlorinated Biphenyls (PCB) (mg/kg)						_		_				_				_		•		_
Aroclor 1016			NT.	T	NT NT	-	NT	-	NT		NT	_	NT.	T	0.0181	U	0.0180	T 0 T	0.0182	T 0
			NT NT	+	NI NT	-	NI NT	-	NT NT		NT NT	-	NI NT	-		0		- 0		
Aroclor 1221	~	-		+		-		_		\vdash		_	NT NT	-	0.0181	U	0.0180	, v	0.0182	U
Aroclor 1232	~		NT	+	NT	-	NT		NT		NT	_		-	0.0181	U	0.0180	U	0.0182	U
Aroclor 1242	~	-	NT		NT	-	NT		NT		NT		NT	-	0.0181	U	0.0180	U	0.0182	U
Aroclor 1248	~		NT NT	+	NT NT	\rightarrow	NT	-	NT		NT NT		NT	-	0.0181	U	0.0180	U	0.0182	- U
Aroclor 1254			NT NT		NT NT	-	NT NT	-	NT NT	\vdash	NT NT	0 0	NT NT	-	0.0181 0.0181	U	0.0180 0.0180	U	0.0182 0.0182	+ -
Aroclor 1260	0.1	-	NT NT	+	NT NT	-	NT NT	_	NT NT	\vdash	NT NT	_	NT NT	-	0.0181	U	0.0180	U	0.0182	U U U
Total PCBs	0.1	1	NI NI	_	NI NI	-	NI		NI	-	NI	$\overline{}$	NI		0.0181	U	0.0180	U	0.0182	
NOTES: Any Regulatory Exceedences are color coded by Reg																				

Any Regulatory Exceedences are color coded by Regulation

On the Qualifier Column with definitions as follows:

Direcults from an analysis that required a diution

Fanalysis detected or above the Nice Institute detection limit) but below the RI, [Reporting Limit] - data is estimated

Usanalyse not detected at or above the Nice Institute of the Column and the RI, analysis described and another the analysis both balas.

Erresult is estimated and cannot be excurately reported due to levels encountered or interferences

Ferresult is estimated and cannot be excurately reported due to levels encountered or interferences

Ferresult is estimated and cannot be excurately reported due to levels encountered or interferences

Ferresult is estimated and cannot be excurately reported due to levels encountered or interferences

Ferresult is estimated and cannot be excurately reported due to levels encountered or interferences

Ferresult is estimated and cannot be excurately reported due to levels encountered or interferences

Ferresult is estimated and cannot be excurately reported due to levels encountered or interferences

Ferresult is estimated and cannot be excurately reported due to levels encountered or interferences

Ferresult is estimated and cannot be excurately reported due to levels encountered or interferences

Ferresult is estimated and cannot be excurately reported due to levels encountered or interferences

Ferresult is estimated and cannot be excurately reported due to levels encountered or interferences

Ferresult is estimated and cannot be excurately reported due to levels encountered or interferences

Ferresult is estimated and cannot be excurately reported due to level encountered or interferences

Ferresult is estimated and cannot be excurately reported due to level encountered and cannot be excurately reported due to level encountered and cannot be excurately reported due to level encountered and cannot be excurately reported due to level encountered and cannot be excurately reported due to

Site Planning
Civil Engineering
Landscape Architecture
Land Surveying
Transportation Engineering

Environmental Studies Entitlements Construction Services 3D Visualization Laser Scanning

April 18, 2023

Honorable Chairman Carthy and Members of the Planning Board c/o Mr. Adam Kaufmann, AICP Town of North Castle 15 Bedford Road Armonk, New York 10504

RE: JMC Project 20044

Site Development Plan Approval

Pereira Residence

4 Tripp Lane

Town of North Castle, NY

Dear Mr. Kaufman:

At the last Planning Board meeting on February 13th, a few options were discussed to rectify the violations issued to the applicant by the Town's Building Inspector in 2020 at the above referenced property. One of which described the possibility of importing two feet of clean fill and putting a covenant on the deed of the property. These violations included the importation of fill without filing for a permit prior to the importation, fill that contained trace amounts of impurities summarized in the previously submitted soils report prepared by HES. The possibility of the removal of this fill was also discussed at this meeting. It seemed that it was the Board's intent to restore the Site to its condition prior to any improvements being made by the owner. The applicant would like no more than to rectify these issues and put this behind them but there is obviously a large cost associated with the improvements requested by the Planning Board and the Town's Engineer.

Since the last meeting, further soils testing was performed to verify that the trace amounts of impurities found in the imported fill were not present in the surrounding existing soil. No impurities were found in the virgin soil and this new report has been included with this submission.

It was witnessed by JMC, during the soils testing, that several mature trees were not removed during the work performed by the applicant. Three of these mature trees are located in areas that show fill numbers of up to 3 feet, as shown on JMC drawing C-410, titled "Cut and Fill Plan". The current conditions do in fact indicate that fill may have been imported in these areas but not to the height shown on drawing C-410. Record topographic information obtained from the Westchester County GIS website was used to establish a pre-existing conditions topographic map that was then compared to the topographic information shown on the current survey to determine the amount of fill imported to the Site, which totaled approximately 2,640 cubic yards. The accuracy of this

JMC Planning Engineering Landscape Architecture & Land Surveying, PLLC | JMC Site Development Consultants, LLC

record topographic information is unclear as the data is from 2004, per the Westchester County GIS website.

The applicant also provided JMC with receipts/manifest from several vendors showing that over the course of the last few years topsoil was imported to the Site that totaled an approximate amount of 308 cubic yards. One of these vendors was the City of White Plains and another vendor, SiteOne Landscape Supply, considered the topsoil to be screened. Copies of these receipts/manifests have been included with this submission.

Considering the above, it is the applicant's intent to import two feet of clean fill and include a covenant on the deed of the property and we look forward to discussing this matter further with the Planning Board at the next meeting.

Very Truly Yours,

IMC Planning Engineering Landscape Architecture & Land Surveying, PLLC

Rick Bohlander, PE

Rick Bohlander

Project Manager

p:\2020\20044\admin\ltkaufman 04-18-2023.docx

Technical Report

prepared for:

Hydro Environmental Solutions

2 Center Street
Croton Falls NY, 10519
Attention: Bill Canavan

Report Date: 04/05/2023

Client Project ID: 4 Tripp Lane Armonk, NY 10504

York Project (SDG) No.: 23C1504

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 04/05/2023

Client Project ID: 4 Tripp Lane Armonk, NY 10504

York Project (SDG) No.: 23C1504

Hydro Environmental Solutions

2 Center Street Croton Falls NY, 10519 Attention: Bill Canavan

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on March 27, 2023 with a temperature of 3.5 C. The project was identified as your project: 4 Tripp Lane Armonk, NY 10504.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
23C1504-01	C-4	Soil	03/24/2023	03/27/2023
23C1504-02	C-5	Soil	03/24/2023	03/27/2023
23C1504-03	C-6	Soil	03/24/2023	03/27/2023

General Notes for York Project (SDG) No.: 23C1504

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Robert Q. Bradley

blur & Jeadley

Senior Scientist / Technical Director

04/05/2023

Date:

Client Sample ID: C-4 23C1504-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 20233:00 pm03/27/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5035A

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference N	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NELAC-NY	
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NELAC-NY	
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NELAC-NY	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
	(Freon 113)							Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NELAC-NY	
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
	, ,							Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NELAC-NY	
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
	1,1 Diemorocinane	ND		-887					CTDOH-PH	I-0723,NELAC-NY10		
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
73-33-4	1,1-Dictiloroethylene	ND		ug/kg ury	5.1	0.2			СТДОН-РН	I-0723,NELAC-NY10		3 110
97.61.6	122 7:11	ND		/Iva day	2.1	6.2	1		01501111			ETD
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	5.1	6.2	1	EPA 8260C Certifications:	NEL AC NV	03/28/2023 09:00 10854,NELAC-NY12	03/28/2023 14:51	FTR
					2.0		2		NELAC-N I			
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C	NEL LONN	03/28/2023 09:00	03/28/2023 14:51	FTR
									NELAC-NY	10854,NELAC-NY12		
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	NELAC-NY	10854,NELAC-NY12	2058,NJDEP,PAE	
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NELAC-NY	
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NELAC-NY	
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NELAC-NY	
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NELAC-NY	
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NELAC-NY	
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
	1,2 Biemoropropune	112		0 0 7					CTDOH-PH	I-0723,NELAC-NY10	854,NELAC-NY	
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
100 07 0	1,5,5-11methylochzene	ND		ug ng urj		0.2			CTDOH-PH	I-0723,NELAC-NY10		
541-73-1	12 D: 11 - 1	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
341-73-1	1,3-Dichlorobenzene	ND		ug/kg ury	5.1	0.2	1		СТООН-РН	I-0723,NELAC-NY10		FIK
									CIDOII-III			nan.
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C Certifications:	CTDOLL BU	03/28/2023 09:00	03/28/2023 14:51	FTR
									СТДОН-РН	I-0723,NELAC-NY10		
123-91-1	1,4-Dioxane	ND		ug/kg dry	62	120	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	NELAC-NY	10854,NELAC-NY12	2058,NJDEP,PAE	
78-93-3	2-Butanone	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NELAC-NY	

Client Sample ID: C-4 York Sample ID: 23C1504-01

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 23C1504 4 Tripp Lane Armonk, NY 10504 Soil March 24, 2023 3:00 pm 03/27/2023

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5035A

Log-in Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference I	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
91-78-6	2-Hexanone	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH-	0723,NELAC-NY10	854,NELAC-NY	
08-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH-	0723,NELAC-NY10	854,NELAC-NY	
57-64-1	Acetone	ND		ug/kg dry	6.2	12	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH-	0723,NELAC-NY10		
07-02-8	Acrolein	ND		ug/kg dry	6.2	12	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH-	0723,NELAC-NY10		
07-13-1	Acrylonitrile	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH-	0723,NELAC-NY10	854,NELAC-NY	
1-43-2	Benzene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH-	0723,NELAC-NY10		
4-97-5	Bromochloromethane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	NELAC-NY1	10854,NELAC-NY12		
5-27-4	Bromodichloromethane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH-	0723,NELAC-NY10	854,NELAC-NY	
5-25-2	Bromoform	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH-	0723,NELAC-NY10	854,NELAC-NY	
4-83-9	Bromomethane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH-	0723,NELAC-NY10	854,NELAC-NY	
75-15-0	Carbon disulfide	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH-	0723,NELAC-NY10	854,NELAC-NY	
6-23-5	Carbon tetrachloride	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH-	0723,NELAC-NY10	854,NELAC-NY	
08-90-7	Chlorobenzene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH-	0723,NELAC-NY10	854,NELAC-NY	
75-00-3	Chloroethane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH-	0723,NELAC-NY10	854,NELAC-NY	
67-66-3	Chloroform	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH-	0723,NELAC-NY10	854,NELAC-NY	
4-87-3	Chloromethane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH-	0723,NELAC-NY10	854,NELAC-NY	
56-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH-	0723,NELAC-NY10	854,NELAC-NY	
0061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PH-	0723,NELAC-NY10	854,NELAC-NY	
10-82-7	Cyclohexane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	NELAC-NY1	10854,NELAC-NY12	2058,NJDEP,PAL	
24-48-1	Dibromochloromethane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	NELAC-NY1	10854,NELAC-NY12	2058,NJDEP,PAE	
4-95-3	Dibromomethane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	NELAC-NY1	10854,NELAC-NY12	2058,NJDEP,PAE	

ClientServices

Client Sample ID: C-4 York Sample ID: 23C1504-01

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 23C1504 4 Tripp Lane Armonk, NY 10504 Soil March 24, 2023 3:00 pm 03/27/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes: Sample Prepared by Method: EPA 5035A

Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Aethod	Date/Time Prepared	Date/Time Analyzed	Analyst
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
									NELAC-N	Y10854,NELAC-NY12		
100-41-4	Ethyl Benzene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10		
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C		03/28/2023 09:00	03/28/2023 14:51	FTR
									NELAC-N	Y10854,NELAC-NY12		
98-82-8	Isopropylbenzene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C	omp ou p	03/28/2023 09:00	03/28/2023 14:51	FTR
									CTDOH-PI	H-0723,NELAC-NY10		
79-20-9	Methyl acetate	ND		ug/kg dry	3.1	6.2	1	EPA 8260C	NEL LON	03/28/2023 09:00	03/28/2023 14:51	FTR
									NELAC-N	Y10854,NELAC-NY12		
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	3.1	6.2	1	EPA 8260C	omp ou p	03/28/2023 09:00	03/28/2023 14:51	FTR
									CTDOH-PI	H-0723,NELAC-NY10		
108-87-2	Methylcyclohexane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C	NEL LON	03/28/2023 09:00	03/28/2023 14:51	FTR
2 2 2						5276			NELAC-N	Y10854,NELAC-NY12		
75-09-2	Methylene chloride	ND		ug/kg dry	6.2	12	1	EPA 8260C	CTD OIL D	03/28/2023 09:00	03/28/2023 14:51	FTR
									CTDOH-PI	H-0723,NELAC-NY10		
104-51-8	n-Butylbenzene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C	CTDOU N	03/28/2023 09:00	03/28/2023 14:51	FTR
									CIDOH-PI	H-0723,NELAC-NY10		
103-65-1	n-Propylbenzene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C	CTDOU D	03/28/2023 09:00	03/28/2023 14:51	FTR
									CIDOH-PI	H-0723,NELAC-NY10		
95-47-6	o-Xylene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C	CTDOLL D	03/28/2023 09:00	03/28/2023 14:51	FTR
	10 minutes								СТВОП-РІ	H-0723,NELAC-NY10		
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	6.2	12	1	EPA 8260C Certifications:	CTDOLL B	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 14:51	FTR
									CIDOH-FI			
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C Certifications:	СТЪОЦ ВІ	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 14:51	FTR
					2.1				CIDOH-FI			- Former
135-98-8	sec-Butylbenzene	ND		ug/kg dry	5.1	6.2	1	EPA 8260C Certifications:	CTDOU BI	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 14:51	FTR
100 42 5	~ /			4	2.1				CIDOH-FI			EED
100-42-5	Styrene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C Certifications:	СТООН ВІ	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 14:51	FTR
75.65.0	D. I. I. I. I. I. I.) III			2.1	(2			CIDOII-II			EED
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/kg dry	3.1	6.2	1	EPA 8260C Certifications:	NEL AC-N	03/28/2023 09:00 Y10854,NELAC-NY12	03/28/2023 14:51	FTR
00.06.6	D			7	2.1	()			NEEAC-IV			EED
98-06-6	tert-Butylbenzene	ND		ug/kg dry	5.1	6.2	1	EPA 8260C Certifications:	СТООН-РІ	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 14:51	FTR
107 10 4	man I I and I a) III			2.1	6.2			CIDOII-II			PTD
127-18-4	Tetrachloroethylene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C Certifications:	СТООН-РІ	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 14:51	FTR
100.00.2	m.i			<i>n</i>	2.1	(2)	4		CIDOII-II			ETD
108-88-3	Toluene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C Certifications:	СТООН-РІ	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 14:51	FTR
156 60 5	10 D' 11 - 3 1	MB		ua/l 4-	2.1	6.2	are		C1D011-F1			ETD
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C Certifications:	СТЪОН-РІ	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 14:51	FTR
10061.02.6	12 D'11	N.			2.1	6.2	91		CIDOII-FI			Pare
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C	СТООН_ВІ	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 14:51	FTR
								Certifications:	CIDOR-PI	11-0725,INELAC-INY 10	OUT, INELAC-IN I	

Client Sample ID: C-4 York Sample ID: 23C1504-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
110-57-6	* trans-1,4-dichloro-2-butene	ND		ug/kg dry	3.1	6.2	1	EPA 8260C Certifications:	CTDOH-PF	03/28/2023 09:00 I-0723	03/28/2023 14:51	FTR
79-01-6	Trichloroethylene	ND		ug/kg dry	3.1	6.2	Ī	EPA 8260C Certifications:	CTDOH-PF	03/28/2023 09:00 I-0723,NELAC-NY10	03/28/2023 14:51 854,NELAC-NY	FTR
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	3.1	6.2	1	EPA 8260C Certifications:	CTDOH-PH	03/28/2023 09:00 I-0723,NELAC-NY10	03/28/2023 14:51 854,NELAC-NY	FTR
75-01-4	Vinyl Chloride	ND		ug/kg dry	3.1	6.2	1	EPA 8260C Certifications:	CTDOH-PH	03/28/2023 09:00 I-0723,NELAC-NY10	03/28/2023 14:51 854,NELAC-NY	FTR
1330-20-7	Xylenes, Total	ND		ug/kg dry	9.3	19	1	EPA 8260C Certifications:	CTDOH-PH	03/28/2023 09:00 I-0723,NELAC-NY10	03/28/2023 14:51 854,NELAC-NY	FTR
	Surrogate Recoveries	Result		Acce	ptance Ran	ge						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	110 %			77-125							
2037-26-5	Surrogate: SURR: Toluene-d8	96.9 %			85-120							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	96.0 %			76-130							

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3550C

Lo	g-in	Notes:	
----	------	--------	--

Sample Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		ug/kg dry	56.9	113	2	EPA 8270D Certifications:	NELAC-NY	03/31/2023 07:47 /10854,NJDEP,PADEP	04/03/2023 21:59	КН
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	113	227	2	EPA 8270D Certifications:	NELAC-NY	03/31/2023 07:47 (10854,NJDEP,PADEP	04/03/2023 21:59	KH
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	56.9	113	2	EPA 8270D Certifications:	CTDOH-PI	03/31/2023 07:47 H-0723,NELAC-NY108	04/03/2023 21:59 854,NJDEP,PAD	KH
95-50-1	1,2-Dichlorobenzene	ND	QL-02	ug/kg dry	56.9	113	2	EPA 8270D Certifications:	NELAC-NY	03/31/2023 07:47 (10854,PADEP	04/03/2023 21:59	КН
122-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND	CCVE	ug/kg dry	56.9	113	2	EPA 8270D Certifications:	NELAC-NY	03/31/2023 07:47 (10854,NJDEP,PADEP	04/03/2023 21:59	КН
541-73-1	1,3-Dichlorobenzene	ND	QL-02	ug/kg dry	56.9	113	2	EPA 8270D Certifications:	NELAC-NY	03/31/2023 07:47 Y10854,PADEP	04/03/2023 21:59	КН
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	56.9	113	2	EPA 8270D Certifications:	NELAC-NY	03/31/2023 07:47 Y10854,PADEP	04/03/2023 21:59	КН
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/kg dry	113	227	2	EPA 8270D Certifications:	NELAC-NY	03/31/2023 07:47 Y10854,NJDEP,PADEP	04/03/2023 21:59	КН
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	56.9	113	2	EPA 8270D Certifications:	CTDOH-PI	03/31/2023 07:47 I-0723,NELAC-NY108	04/03/2023 21:59 354,NJDEP,PAD	КН
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	56.9	113	2	EPA 8270D Certifications:	CTDOH-PI	03/31/2023 07:47 H-0723,NELAC-NY108	04/03/2023 21:59 854,NJDEP,PAD	КН
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	56.9	113	2	EPA 8270D Certifications:	CTDOH-PH	03/31/2023 07:47 H-0723,NELAC-NY108	04/03/2023 21:59 354,NJDEP,PAD	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices

Page 7 of 40

Client Sample ID: C-4 23C1504-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3550C

Log-in Notes:	Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference I	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
									CTDOH-PH	I-0723,NELAC-NY10	854,NJDEP,PAD	
51-28-5	2,4-Dinitrophenol	ND	CAL-E, CCVE, QL-02	ug/kg dry	113	227	2	EPA 8270D Certifications:	CTDOH-PF	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 21:59 854,NJDEP,PAD	KH
121-14-2	2,4-Dinitrotoluene	ND	CAL-E	ug/kg dry	56.9	113	2	EPA 8270D Certifications:	CTDOH-PF	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 21:59 854,NJDEP,PAD	KH
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	56.9	113	2	EPA 8270D Certifications:	CTDOH-PF	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 21:59 854,NJDEP,PAD	KH
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	56.9	113	2	EPA 8270D Certifications:	CTDOH-PH	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 21:59 854,NJDEP,PAD	КН
95-57-8	2-Chlorophenol	ND		ug/kg dry	56.9	113	2	EPA 8270D Certifications:	CTDOH-PF	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 21:59 854,NJDEP,PAD	KH
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	56.9	113	2	EPA 8270D Certifications:	CTDOH-PF	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 21:59 854,NJDEP,PAD	KH
95-48-7	2-Methylphenol	ND		ug/kg dry	56.9	113	2	EPA 8270D Certifications:	CTDOH-PF	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 21:59 854,NJDEP,PAD	КН
38-74-4	2-Nitroaniline	ND		ug/kg dry	113	227	2	EPA 8270D Certifications:	CTDOH-PF	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 21:59 854,NJDEP,PAD	KH
38-75-5	2-Nitrophenol	ND		ug/kg dry	56.9	113	2	EPA 8270D Certifications:	CTDOH-PF	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 21:59 854,NJDEP,PAD	KH
55794-96-9	3- & 4-Methylphenols	ND	QL-02	ug/kg dry	56.9	113	2	EPA 8270D Certifications:	CTDOH-PF	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 21:59 854,NJDEP,PAD	KH
91-94-1	3,3-Dichlorobenzidine	ND		ug/kg dry	56.9	113	2	EPA 8270D Certifications:	NELAC-NY	03/31/2023 07:47 /10854,NJDEP,PADE	04/03/2023 21:59	KH
99-09-2	3-Nitroaniline	ND		ug/kg dry	113	227	2	EPA 8270D Certifications:	CTDOH-PF	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 21:59 854,NJDEP,PAD	КН
534-52-1	4,6-Dinitro-2-methylphenol	ND	CAL-E, CCVE, QL-02	ug/kg dry	113	227	2	EPA 8270D Certifications:	CTDOH-PF	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 21:59 854,NJDEP,PAD	КН
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	56.9	113	2	EPA 8270D Certifications:	CTDOH-PF	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 21:59 854,NJDEP,PAD	KH
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	56.9	113	2	EPA 8270D Certifications:	CTDOH-PF	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 21:59 854,NJDEP,PAD	KH
106-47-8	4-Chloroaniline	ND		ug/kg dry	56.9	113	2	EPA 8270D Certifications:	CTDOH-PF	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 21:59 854,NJDEP,PAD	KH
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	56.9	113	2	EPA 8270D Certifications:	CTDOH-PH	03/31/2023 07:47 I-0723,NELAC-NY10		KH
100-01-6	4-Nitroaniline	ND		ug/kg dry	113	227	2	EPA 8270D		03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 21:59	КН
100-02-7	4-Nitrophenol	ND		ug/kg dry	113	227	2	EPA 8270D		03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 21:59	КН
33-32-9	Acenaphthene	ND		ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices

Client Sample ID: C-4 York Sample ID: 23C1504-01

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 23C1504 4 Tripp Lane Armonk, NY 10504 Soil March 24, 2023 3:00 pm 03/27/2023

Semi-Volatiles, 8270 - Comprehensive

Log-in Notes: Sample Prepared by Method: EPA 3550C

am			

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
208-96-8	Acenaphthylene	ND	QL-02	ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	КН
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP,PAD	
98-86-2	Acetophenone	ND		ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
								Certifications:	NELAC-NY	/10854,NJDEP,PADEI)	
62-53-3	Aniline	ND	CCVE	ug/kg dry	227	454	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
								Certifications:	NELAC-NY	Y 10854,NJDEP,PADEI		
120-12-7	Anthracene	ND	QL-02	ug/kg dry	56.9	113	2	EPA 8270D	OWD OUT DI	03/31/2023 07:47	04/03/2023 21:59	KH
							-	Certifications:	CTDOH-PF	I-0723,NELAC-NY10		0.0000000000000000000000000000000000000
1912-24-9	Atrazine	ND		ug/kg dry	56.9	113	2	EPA 8270D	NEL AC NI	03/31/2023 07:47	04/03/2023 21:59	KH
					***		_	Certifications:	NELAC-N	/10854,NJDEP,PADEI		
100-52-7	Benzaldehyde	ND		ug/kg dry	56.9	113	2	EPA 8270D	NEL AC NI	03/31/2023 07:47	04/03/2023 21:59	KH
					227			Certifications:	NELAC-N	/10854,NJDEP,PADEI		****
92-87-5	Benzidine	ND	CCVE	ug/kg dry	227	454	2	EPA 8270D Certifications:	CTDOH PI	03/31/2023 07:47 H-0723,NELAC-NY10	04/03/2023 21:59	KH
56.55.3	D	NID			56.0	112	2		CIDOII-II			1/11
56-55-3	Benzo(a)anthracene	ND		ug/kg dry	56.9	113	2	EPA 8270D Certifications:	CTDOH-PF	03/31/2023 07:47 H-0723,NELAC-NY10	04/03/2023 21:59 854 NIDEP PAD	KH
50-32-8	B (-)	ND		na/ka der	56.9	113	2	EPA 8270D	CIDOIIII	03/31/2023 07:47	04/03/2023 21:59	KH
30-32-6	Benzo(a)pyrene	ND		ug/kg dry	30.9	113	2	Certifications:	CTDOH-PE	I-0723,NELAC-NY10		KII
205-99-2	D (I-) fl tl	ND		ug/kg dry	56.9	113	2	EPA 8270D	CIDOILII	03/31/2023 07:47	04/03/2023 21:59	КН
203-99-2	Benzo(b)fluoranthene	ND		ug/kg ury	30.9	113	2	Certifications:	CTDOH-PF	H-0723,NELAC-NY10		KII
191-24-2	Panza(a h i)namilana	ND	CCVE	ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
171-24-2	Benzo(g,h,i)perylene	ND	CCVE	ug/kg ury	30.7	113	-	Certifications:	CTDOH-PH	H-0723,NELAC-NY10		KII
207-08-9	Benzo(k)fluoranthene	ND		ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
207 00 7	Denzo(k) naoramnene	ND		ug ng ur y	2013	110	-	Certifications:	CTDOH-PH	I-0723,NELAC-NY10		
65-85-0	Benzoic acid	ND	CAL-E	ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
	Benzoic dela	TID.	CHE E	-8-8-7				Certifications:	NELAC-NY	/10854,NJDEP,PADEI		
100-51-6	Benzyl alcohol	ND		ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
								Certifications:	NELAC-NY	Y10854,NJDEP,PADEI	•	
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
	, , , , , , , , , , , , , , , , , , ,							Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NJDEP,PAD	
111-91-1	Bis(2-chloroethoxy)methane	ND	CCVE	ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
	-							Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NJDEP,PAD	
111-44-4	Bis(2-chloroethyl)ether	ND	CCVE	ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP,PAD	
108-60-1	Bis(2-chloroisopropyl)ether	ND	CCVE	ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP,PAD	
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
								Certifications:	CTDOH-PI	I-0723,NELAC-NY10	854,NJDEP,PAD	
105-60-2	Caprolactam	ND		ug/kg dry	113	227	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
								Certifications:	NELAC-NY	Y 10854, NJDEP, PADEI)	
86-74-8	Carbazole	ND	QL-02	ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP,PAD	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices

Page 9 of 40

Client Sample ID: C-4 23C1504-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3550C

Log-in Notes:	Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
218-01-9	Chrysene	ND	QL-02	ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
53-70-3	Dibenzo(a,h)anthracene	ND	CCVE	ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
132-64-9	Dibenzofuran	ND		ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
								Certifications:	CTDOH-PF	H-0723,NELAC-NY10		
84-66-2	Diethyl phthalate	ND		ug/kg dry	56.9	113	2	EPA 8270D Certifications:	CTDOU BL	03/31/2023 07:47 H-0723,NELAC-NY10	04/03/2023 21:59	KH
121 11 2	D'	ND	01.02	//	56.0	112	2		CIDON-FI			1211
131-11-3	Dimethyl phthalate	ND	QL-02	ug/kg dry	56.9	113	2	EPA 8270D Certifications:	CTDOH-PF	03/31/2023 07:47 H-0723,NELAC-NY10	04/03/2023 21:59 854 NIDEP PAD	KH
84-74-2	Di-n-butyl phthalate	ND	01.02	ug/kg dry	56.9	113	2	EPA 8270D	01201111	03/31/2023 07:47	04/03/2023 21:59	КН
04-74-2	Di-n-butyl phtharate	ND	QL-02	ug/kg ury	30.9	113	2	Certifications:	CTDOH-PH	H-0723,NELAC-NY10		KII
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
117 01 0	DI-II-Octyl phthalate	ND		ug ng ur	2015	110	-	Certifications:	CTDOH-PH	H-0723,NELAC-NY10		1511
122-39-4	* Diphenylamine	ND	OL-02	ug/kg dry	113	227	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
	- · · · · · · · · · · · · · · · · · · ·		X					Certifications:				
206-44-0	Fluoranthene	ND	QL-02	ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
			-					Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP,PAD	
86-73-7	Fluorene	ND		ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
								Certifications:	NELAC-NY	Y10854,NJDEP,PADE	P	
118-74-1	Hexachlorobenzene	ND		ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP,PAD	
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
77-47-4	Hexachlorocyclopentadiene	ND	CCVE,	ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
			QL-02					Certifications:	CTDOH-PF	H-0723,NELAC-NY10		
67-72-1	Hexachloroethane	ND	QL-02	ug/kg dry	56.9	113	2	EPA 8270D	CTDOU N	03/31/2023 07:47	04/03/2023 21:59	KH
					560			Certifications:	CTDOH-PF	H-0723,NELAC-NY10		****
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	56.9	113	2	EPA 8270D Certifications:	CTDOH-PI	03/31/2023 07:47 H-0723,NELAC-NY10	04/03/2023 21:59 854 NIDEPPAD	KH
78-59-1	71	ND		us/les des	56.9	113	2	EPA 8270D	CIDOII-II	03/31/2023 07:47	04/03/2023 21:59	KH
/8-39-1	Isophorone	ND		ug/kg dry	36.9	113	2	Certifications:	CTDOH-PE	03/31/2023 07:47 H-0723,NELAC-NY10		KH
91-20-3	Naphthalene	ND		ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
71-20-3	Naphthalene	ND		ug/kg ury	30.9	113	-	Certifications:	CTDOH-PH	H-0723,NELAC-NY10		KII
98-95-3	Nitrobenzene	ND		ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
	Tuttocenzene	N.D		-8-8-9				Certifications:	CTDOH-PH	H-0723,NELAC-NY10		
62-75-9	N-Nitrosodimethylamine	ND	CCVE	ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
	,							Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP,PAD	
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
	A: 44							Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP,PAD	
06.20.6	N-Nitrosodiphenylamine	ND		ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
86-30-6	in-initiosodiphenylanine	TID										

ClientServices

Client Sample ID: C-4 23C1504-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Semi-Volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepar	red by Method: EPA 3550C											
CAS N	To. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
87-86-5	Pentachlorophenol	ND		ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
85-01-8	Phenanthrene	ND	QL-02	ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
108-95-2	Phenol	ND		ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
129-00-0	Pyrene	ND	QL-02	ug/kg dry	56.9	113	2	EPA 8270D		03/31/2023 07:47	04/03/2023 21:59	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
	Surrogate Recoveries	Result		Acce	ptance Ran	ge						
367-12-4	Surrogate: SURR: 2-Fluorophenol	27.3 %			20-108							
13127-88-3	Surrogate: SURR: Phenol-d6	26.6%			23 111							

13127-88-3 Surrogate: SURR: Phenol-d6 26.6 % 23-114 4165-60-0 Surrogate: SURR: Nitrobenzene-d5 33.1 % 22-108 321-60-8 Surrogate: SURR: 2-Fluorobiphenyl 31.7% 21-113 118-79-6 Surrogate: SURR: 49.0 % 19-110 2,4,6-Tribromophenol 1718-51-0 Surrogate: SURR: Terphenyl-d14 40.5 % 24-116

Pesticides, 8081 target list

Sample Prepared by Method: EPA 3550C

Log-in Notes: Sample Notes:

Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
4,4'-DDD	ND	ug/kg dry	2.27	5	EPA 8081B		03/28/2023 19:25	03/29/2023 22:46	ВЈ
					Certifications:	CTDOH-PH-0	0723,NELAC-NY10	854,NJDEP,PAD	
4,4'-DDE	ND	ug/kg dry	2.27	5	EPA 8081B		03/28/2023 19:25	03/29/2023 22:46	BJ
					Certifications:	CTDOH-PH-0	0723,NELAC-NY10	854,NJDEP,PAD	
4,4'-DDT	ND	ug/kg dry	2.27	5	EPA 8081B		03/28/2023 19:25	03/29/2023 22:46	BJ
					Certifications:	CTDOH-PH-0	0723,NELAC-NY10	854,NJDEP,PAD	
Aldrin	ND	ug/kg dry	2.27	5	EPA 8081B		03/28/2023 19:25	03/29/2023 22:46	ВЈ
					Certifications:	CTDOH-PH-0	0723,NELAC-NY10	854,NJDEP,PAD	
alpha-BHC	ND	ug/kg dry	2.27	5	EPA 8081B		03/28/2023 19:25	03/29/2023 22:46	BJ
•					Certifications:	CTDOH-PH-0723,NELAC-NY10854,NJDEP,PAD			
alpha-Chlordane	ND	ug/kg dry	2.27	5	EPA 8081B		03/28/2023 19:25	03/29/2023 22:46	ВЈ
r					Certifications:	NELAC-NY1	0854,NJDEP		
beta-BHC	ND	ug/kg dry	2.27	5	EPA 8081B		03/28/2023 19:25	03/29/2023 22:46	ВЈ
					Certifications:	CTDOH-PH-0	0723,NELAC-NY10	854,NJDEP,PAD	
Chlordane, total	ND	ug/kg dry	45.5	5	EPA 8081B		03/28/2023 19:25	03/29/2023 22:46	ВЈ
,					Certifications:	CTDOH-PH-0	0723,NELAC-NY10	854,NJDEP,PAD	
delta-BHC	ND	ug/kg dry	2.27	5	EPA 8081B		03/28/2023 19:25	03/29/2023 22:46	ВЈ
					Certifications:	CTDOH-PH-0	0723,NELAC-NY10	854,NJDEP,PAD	
Dieldrin	ND	ug/kg drv	2.27	5	EPA 8081B		03/28/2023 19:25	03/29/2023 22:46	ВЈ
		3 3 7			Certifications:	CTDOH-PH-0	0723,NELAC-NY10	854,NJDEP,PAD	
Endosulfan I	ND	ug/kg drv	2.27	5	EPA 8081B		03/28/2023 19:25	03/29/2023 22:46	ВЈ
Liidosuitaii i	ND	-8 48 44)	2.27						23
	4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC	4,4'-DDD ND 4,4'-DDE ND 4,4'-DDT ND Aldrin ND alpha-BHC ND alpha-Chlordane ND beta-BHC ND Chlordane, total ND delta-BHC ND Dieldrin ND	4,4'-DDD ND ug/kg dry 4,4'-DDE ND ug/kg dry 4,4'-DDT ND ug/kg dry Aldrin ND ug/kg dry alpha-BHC ND ug/kg dry alpha-Chlordane ND ug/kg dry beta-BHC ND ug/kg dry Chlordane, total ND ug/kg dry delta-BHC ND ug/kg dry Dieldrin ND ug/kg dry	4,4'-DDD ND ug/kg dry 2.27 4,4'-DDE ND ug/kg dry 2.27 4,4'-DDT ND ug/kg dry 2.27 Aldrin ND ug/kg dry 2.27 alpha-BHC ND ug/kg dry 2.27 alpha-Chlordane ND ug/kg dry 2.27 beta-BHC ND ug/kg dry 2.27 Chlordane, total ND ug/kg dry 45.5 delta-BHC ND ug/kg dry 2.27 Dieldrin ND ug/kg dry 2.27	4,4'-DDD ND ug/kg dry 2.27 5 4,4'-DDE ND ug/kg dry 2.27 5 4,4'-DDT ND ug/kg dry 2.27 5 Aldrin ND ug/kg dry 2.27 5 alpha-BHC ND ug/kg dry 2.27 5 alpha-Chlordane ND ug/kg dry 2.27 5 beta-BHC ND ug/kg dry 2.27 5 Chlordane, total ND ug/kg dry 45.5 5 delta-BHC ND ug/kg dry 2.27 5 Dieldrin ND ug/kg dry 2.27 5	4,4'-DDD ND ug/kg dry 2.27 5 EPA 8081B Certifications: 4,4'-DDE ND ug/kg dry 2.27 5 EPA 8081B Certifications: 4,4'-DDT ND ug/kg dry 2.27 5 EPA 8081B Certifications: Aldrin ND ug/kg dry 2.27 5 EPA 8081B Certifications: alpha-BHC ND ug/kg dry 2.27 5 EPA 8081B Certifications: alpha-Chlordane ND ug/kg dry 2.27 5 EPA 8081B Certifications: alpha-Chlordane ND ug/kg dry 2.27 5 EPA 8081B Certifications: beta-BHC ND ug/kg dry 2.27 5 EPA 8081B Certifications: beta-BHC ND ug/kg dry 2.27 5 EPA 8081B Certifications: beta-BHC ND ug/kg dry 2.27 5 EPA 8081B Certifications: beta-BHC ND ug/kg dry 2.27 5 EPA 8081B Certifications: beta-BHC ND ug/kg dry 2.27 5 EPA 8081B Certifications: beta-BHC ND ug/kg dry 2.27 5 EPA 8081B Certifications: beta-BHC ND ug/kg dry 2.27 5 EPA 8081B Certifications: beta-BHC ND ug/kg dry 2.27 5 EPA 8081B Certifications: beta-BHC ND ug/kg dry 2.27 5 EPA 8081B Certifications:	4,4'-DDD ND ug/kg dry 2.27 5 EPA 8081B Certifications: CTDOH-PH- 4,4'-DDT ND ug/kg dry 2.27 5 EPA 8081B Certifications: CTDOH-PH- 4,4'-DDT ND ug/kg dry 2.27 5 EPA 8081B Certifications: CTDOH-PH- Aldrin ND ug/kg dry 2.27 5 EPA 8081B Certifications: CTDOH-PH- Aldrin ND ug/kg dry 2.27 5 EPA 8081B Certifications: CTDOH-PH- alpha-BHC ND ug/kg dry 2.27 5 EPA 8081B Certifications: CTDOH-PH- alpha-Chlordane ND ug/kg dry 2.27 5 EPA 8081B Certifications: CTDOH-PH- beta-BHC ND ug/kg dry 2.27 5 EPA 8081B Certifications: CTDOH-PH- Chlordane, total ND ug/kg dry 45.5 5 EPA 8081B Certifications: CTDOH-PH- delta-BHC ND ug/kg dry 45.5 5 EPA 8081B Certifications: CTDOH-PH- Dieldrin ND ug/kg dry 2.27 5 EPA 8081B Certifications: CTDOH-PH- Dieldrin ND ug/kg dry 2.27 5 EPA 8081B Certifications: CTDOH-PH- CTDOH-PH- Dieldrin ND ug/kg dry 2.27 5 EPA 8081B Certifications: CTDOH-PH- CTDOH-PH- Dieldrin ND ug/kg dry 2.27 5 EPA 8081B Certifications: CTDOH-PH- CTDOH-PH- Dieldrin ND ug/kg dry 2.27 5 EPA 8081B Certifications: CTDOH-PH- CTDOH-PH- ENdosulfan I ND ug/kg dry 2.27 5 EPA 8081B Certifications: CTDOH-PH- CTDOH-PH- ENdosulfan I ND ug/kg dry 2.27 5 EPA 8081B Certifications: CTDOH-PH- CTDOH-PH- ENdosulfan I ND ug/kg dry 2.27 5 EPA 8081B	4,4'-DDD ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 Certifications: CTDOH-PH-0723,NELAC-NY10 4,4'-DDE ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 Certifications: CTDOH-PH-0723,NELAC-NY10 4,4'-DDT ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 Certifications: CTDOH-PH-0723,NELAC-NY10 4,4'-DDT ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 Certifications: CTDOH-PH-0723,NELAC-NY10 4,4'-DDT ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 Certifications: CTDOH-PH-0723,NELAC-NY10 4,4'-DDT ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 Certifications: CTDOH-PH-0723,NELAC-NY10 4,4'-DDT ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 Certifications: CTDOH-PH-0723,NELAC-NY10 4,4'-DDT ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 Certifications: NELAC-NY10854,NDEP 45.5 EPA 8081B 03/28/2023 19:25 Certifications: CTDOH-PH-0723,NELAC-NY10 45.5 EPA 8081B 03/28/2023 19:25 Certifications: CTDOH-PH-0723,NELAC-NY10 45.5 EPA 8081B 03/28/2023 19:25 Certifications: CTDOH-PH-0723,NELAC-NY10 46tta-BHC ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 Certifications: CTDOH-PH-0723,NELAC-NY10 46tta-BHC ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 Certifications: CTDOH-PH-0723,NELAC-NY10 46tta-BHC ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 Certifications: CTDOH-PH-0723,NELAC-NY10 46tta-BHC ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 Certifications: CTDOH-PH-0723,NELAC-NY10 46tta-BHC ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 Certifications: CTDOH-PH-0723,NELAC-NY10 46tta-BHC ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 Certifications: CTDOH-PH-0723,NELAC-NY10 46tta-BHC ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 Certifications: CTDOH-PH-0723,NELAC-NY10 46tta-BHC ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 Certifications: CTDOH-PH-0723,NELAC-NY10 46tta-BHC ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 Certifications: CTDOH-PH-0723,NELAC-NY10 46tta-BHC ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 Certifications: CTDOH-PH-0723,NELAC-NY10	4,4'-DDD ND ug/kg dry 2.27

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices

Page 11 of 40

Client Sample ID: C-4 York Sample ID: 23C1504-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

<u>Pesticides, 8081 target list</u> Sample Prepared by Method: EPA 3550C **Log-in Notes:**

Sample Notes:

Certifications: CTDOH-PH-0723,NELAC-NY10854)23 22:46 BJ)23 22:46 BJ P.P.AD
1031-07-8 Endosulfan sulfate ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 03/29/20	
	P,PAD
Certifications: CTDOH-PH-0723,NELAC-NY10854,NJD	**********
72-20-8 Endrin ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 03/29/20	D23 22:46 BJ
Certifications: CTDOH-PH-0723,NELAC-NY10854,NJD	P,PAD
7421-93-4 Endrin aldehyde ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 03/29/20	023 22:46 BJ
Certifications: CTDOH-PH-0723,NELAC-NY10854,NJD	P,PAD
53494-70-5 Endrin ketone ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 03/29/20	023 22:46 BJ
Certifications: CTDOH-PH-0723,NELAC-NY10854,NJD	P,PAD
58-89-9 gamma-BHC (Lindane) ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 03/29/20	D23 22:46 BJ
Certifications: CTDOH-PH-0723,NELAC-NY10854,NJD	P,PAD
5566-34-7 gamma-Chlordane ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 03/29/20	023 22:46 BJ
Certifications: NELAC-NY10854,NJDEP	
76-44-8 Heptachlor ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 03/29/20	023 22:46 BJ
Certifications: CTDOH-PH-0723,NELAC-NY10854,NJD	P,PAD
1024-57-3 Heptachlor epoxide ND ug/kg dry 2.27 5 EPA 8081B 03/28/2023 19:25 03/29/20)23 22:46 BJ
Certifications: CTDOH-PH-0723,NELAC-NY10854,NJD	P,PAD
72-43-5 Methoxychlor ND ug/kg dry 11.4 5 EPA 8081B 03/28/2023 19:25 03/29/20	023 22:46 BJ
Certifications: CTDOH-PH-0723,NELAC-NY10854,NJD	P,PAD
8001-35-2 Toxaphene ND ug/kg dry 115 5 EPA 8081B 03/28/2023 19:25 03/29/	023 22:46 BJ
Certifications: CTDOH-PH-0723,NELAC-NY10854,NJD	P,PAD
Surrogate Recoveries Result Acceptance Range	
2051-24-3 Surrogate: Decachlorobiphenyl 114 % 30-150	
877-09-8 Surrogate: Tetrachloro-m-xylene 98.3 % 30-150	

Polychlorinated Biphenyls (PCB)

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS N	0.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016		ND		mg/kg dry	0.0230	1	EPA 8082A Certifications:	NELAC-NY	03/28/2023 19:25 /10854,CTDOH-PH-0	03/30/2023 23:33 723,NJDEP,PAD	ВСЈ
11104-28-2	Aroclor 1221		ND		mg/kg dry	0.0230	1	EPA 8082A Certifications:	NELAC-NY	03/28/2023 19:25 /10854,CTDOH-PH-0	03/30/2023 23:33 723,NJDEP,PAD	ВСЈ
11141-16-5	Aroclor 1232		ND		mg/kg dry	0.0230	1	EPA 8082A Certifications:	NELAC-NY	03/28/2023 19:25 710854,CTDOH-PH-0	03/30/2023 23:33 723,NJDEP,PAD	BCJ
53469-21-9	Aroclor 1242		ND		mg/kg dry	0.0230	1	EPA 8082A Certifications:	NELAC-NY	03/28/2023 19:25 /10854,CTDOH-PH-0	03/30/2023 23:33 723,NJDEP,PAD	BCJ
12672-29-6	Aroclor 1248		ND		mg/kg dry	0.0230	1	EPA 8082A Certifications:	NELAC-NY	03/28/2023 19:25 /10854,CTDOH-PH-0	03/30/2023 23:33 723,NJDEP,PAD	BCJ
11097-69-1	Aroclor 1254		ND		mg/kg dry	0.0230	1	EPA 8082A Certifications:	NELAC-NY	03/28/2023 19:25 /10854,CTDOH-PH-0	03/30/2023 23:33 723,NJDEP,PAD	ВСЈ

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices Page 12 of 40

Client Sample ID: C-4 York Sample ID: 23C1504-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Polychlorinated Biphenyls (PCB)

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
11096-82-5	Aroclor 1260	ND		mg/kg dry	0.0230	1	EPA 8082A		03/28/2023 19:25	03/30/2023 23:33	ВСЈ
							Certifications:	NELAC-NY	710854,CTDOH-PH-0	723,NJDEP,PAD	
1336-36-3	* Total PCBs	ND		mg/kg dry	0.0230	1	EPA 8082A		03/28/2023 19:25	03/30/2023 23:33	BCJ
							Certifications:				
	Surrogate Recoveries	Result		Acceptar	ice Range						

877-09-8 Surrogate: Tetrachloro-m-xylene 127 % 30-140
2051-24-3 Surrogate: Decachlorobiphenyl 106 % 30-140

Metals, Target Analyte

Log-in Notes:

Sample Notes:

CAS No	0.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
429-90-5	Aluminum		19500		mg/kg dry	5.78	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY10	03/31/2023 19:33 854,NJDEP,PAD	CW
440-36-0	Antimony		ND	M-CCV 1	mg/kg dry	2.89	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY10	03/31/2023 19:33 854,NJDEP,PAD	CW
7440-38-2	Arsenic		5.68		mg/kg dry	1.73	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY108	03/31/2023 19:33 854,NJDEP,PAD	CW
440-39-3	Barium		80.7		mg/kg dry	2.89	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY108	03/31/2023 19:33 854,NJDEP,PAD	CW
440-41-7	Beryllium		0.510		mg/kg dry	0.058	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY108	03/31/2023 19:33 854,NJDEP,PAD	CW
440-43-9	Cadmium		ND		mg/kg dry	0.347	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY108	03/31/2023 19:33 854,NJDEP,PAD	CW
7440-70-2	Calcium		2930		mg/kg dry	5.78	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY108	03/31/2023 19:33 854,NJDEP,PAD	CW
440-47-3	Chromium		19.8		mg/kg dry	0.579	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY108	03/31/2023 19:33 854,NJDEP,PAD	CW
440-48-4	Cobalt		9.13		mg/kg dry	0.462	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY108	03/31/2023 19:33 854,NJDEP,PAD	CW
440-50-8	Copper		18.5		mg/kg dry	2.31	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY10	03/31/2023 19:33 854,NJDEP,PAD	CW
439-89-6	Iron		18700		mg/kg dry	28.9	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY108	03/31/2023 19:33 854,NJDEP,PAD	CW
7439-92-1	Lead		36.9		mg/kg dry	0.579	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY108	03/31/2023 19:33 854,NJDEP,PAD	CW
/439-95-4	Magnesium		3890		mg/kg dry	5.79	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY108	03/31/2023 19:33 854,NJDEP,PAD	CW
439-96-5	Manganese		601		mg/kg dry	0.579	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY108	03/31/2023 19:33 854,NJDEP,PAD	CW
440-02-0	Nickel		14.3		mg/kg dry	1.15	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY108	03/31/2023 19:33 854,NJDEP,PAD	CW
440-09-7	Potassium		1460	M-CC V1	mg/kg dry	5.79	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY108	03/31/2023 19:33 854,NJDEP,PAD	CW

Client Sample ID: C-4 York Sample ID: 23C1504-01

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 4 Tripp Lane Armonk, NY 10504 03/27/2023 23C1504 Soil March 24, 2023 3:00 pm

Metals, Target Analyte Sample Prepared by Method: EPA 3050B

Log-in Notes: Sample Notes:

CAS N	0.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference I	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7782-49-2	Selenium		ND		mg/kg dry	2.89	1	EPA 6010D Certifications:	CTDOH-PF	03/28/2023 20:54 H-0723,NELAC-NY10	03/31/2023 19:33 854,NJDEP,PAD	CW
7440-22-4	Silver		ND		mg/kg dry	0.583	I	EPA 6010D Certifications:	CTDOH-PF	03/28/2023 20:54 H-0723,NELAC-NY10	03/31/2023 19:33 854,NJDEP,PAD	CW
7440-23-5	Sodium		181	M-CC V1	mg/kg dry	57.8	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY10	03/31/2023 19:33 854,NJDEP,PAD	CW
7440-28-0	Thallium		ND		mg/kg dry	2.89	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY10	03/31/2023 19:33 854,NJDEP,PAD	CW
7440-62-2	Vanadium		35.6		mg/kg dry	1.15	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY10	03/31/2023 19:33 854,NJDEP,PAD	CW
7440-66-6	Zinc		59.6		mg/kg dry	2.88	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY10	03/31/2023 19:33 854,NJDEP,PAD	CW

Log-in Notes: Sample Notes: Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

CAS N	0.	Parameter	Result	Flag	Units	LOQ	Dilution	Reference	e Method	Prepared	Analyzed	Analyst
7439-97-6	Mercury		0.130		mg/kg dry	0.0416	1	EPA 7473		04/03/2023 09:43	04/03/2023 12:45	BML
								Certifications:	CTDOH-PI	H-0723,NJDEP,NELAC	C-NY10854,PAD	

Log-in Notes: Sample Notes: Total Solids

Sample Prepared by Method: % Solids Prep

CAS	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids		72.1		%	0.100	1	SM 2540G		04/02/2023 08:50	04/02/2023 10:41	LC
								Certifications:	CTDOH-PI	H-0723		

Sample Information

Client Sample ID: York Sample ID: 23C1504-02 York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 23C1504 4 Tripp Lane Armonk, NY 10504 Soil March 24, 2023 3:00 pm 03/27/2023

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5035A

www.YORKLAB.com

Log-in Notes:	Sample Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Mo	Date/Time ethod Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	3.0	6.0	1	EPA 8260C Certifications: C	03/28/2023 09:00 TDOH-PH-0723,NELAC-NY10	03/28/2023 15:17 854,NELAC-NY	FTR
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	3.0	6.0	1	EPA 8260C Certifications: C	03/28/2023 09:00 TDOH-PH-0723,NELAC-NY10	03/28/2023 15:17 854,NELAC-NY	FTR
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	3.0	6.0	1	EPA 8260C Certifications: C	03/28/2023 09:00 TDOH-PH-0723,NELAC-NY10	03/28/2023 15:17 854,NELAC-NY	FTR

120 RESEARCH DRIVE STRATFORD, CT 06615

(203) 325-1371

RICHMOND HILL, NY 11418

ClientServices

FAX (203) 357-0166

132-02 89th AVENUE

Page 14 of 40

Client Sample ID: C-5 23C1504-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5035A

Log-in Notes:	Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	3.0	6.0	1	EPA 8260C Certifications:	СТВОН-РН	03/28/2023 09:00 I-0723,NELAC-NY10	03/28/2023 15:17	FTR
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	3.0	6.0	ī	EPA 8260C	CIDOII-III	03/28/2023 09:00	03/28/2023 15:17	FTR
,, 00 3	1,1,2-111011010001111110	ND		ug ng ur	510	0.0		Certifications:	CTDOH-PH	I-0723,NELAC-NY10		
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	3.0	6.0	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NELAC-NY	
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	3.0	6.0	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10		
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	3.0	6.0	1	EPA 8260C Certifications:	NEL AC-NV	03/28/2023 09:00 /10854,NELAC-NY12	03/28/2023 15:17	FTR
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	3.0	6.0	1	EPA 8260C	NEEAC-IVI	03/28/2023 09:00	03/28/2023 15:17	FTR
70-10-4	1,2,3-111emoropropane	ND		ug/kg ury	5.0	0.0		Certifications:	NELAC-NY	10854,NELAC-NY12		TIK
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	3.0	6.0	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
								Certifications:	NELAC-NY	710854,NELAC-NY12	2058,NJDEP,PAL	
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	3.0	6.0	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NELAC-NY	
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	3.0	6.0	1	EPA 8260C	CTR OU DU	03/28/2023 09:00	03/28/2023 15:17	FTR
106.02.4				4 1	2.0			Certifications:	СТДОН-РН	I-0723,NELAC-NY10		CTD
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	3.0	6.0	1	EPA 8260C Certifications:	СТДОН-РН	03/28/2023 09:00 I-0723,NELAC-NY10	03/28/2023 15:17 0854.NELAC-NY	FTR
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	3.0	6.0	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
	1,2 Biemoroonzene	ND		-007				Certifications:	CTDOH-PH	I-0723,NELAC-NY10		
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	3.0	6.0	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NELAC-NY	
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	3.0	6.0	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10		
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	3.0	6.0	1	EPA 8260C Certifications:	CTDOU BU	03/28/2023 09:00 I-0723,NELAC-NY10	03/28/2023 15:17	FTR
541-73-1	1.2 Disklanskamana	ND		ug/kg dry	2.0	6.0	1	EPA 8260C	CIDOH-FH	03/28/2023 09:00	03/28/2023 15:17	FTR
341-73-1	1,3-Dichlorobenzene	ND		ug/kg ury	5.0	0.0		Certifications:	CTDOH-PH	I-0723,NELAC-NY10		TIK
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	3.0	6.0	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NELAC-NY	
123-91-1	1,4-Dioxane	ND		ug/kg dry	60	120	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
								Certifications:	NELAC-NY	10854,NELAC-NY12	2058,NJDEP,PAE	
78-93-3	2-Butanone	ND		ug/kg dry	3.0	6.0	1	EPA 8260C	CEDON DU	03/28/2023 09:00	03/28/2023 15:17	FTR
501 50 6	2.33			7 1	2.0			Certifications:	СТДОН-РН	I-0723,NELAC-NY10		EED
591-78-6	2-Hexanone	ND		ug/kg dry	3.0	6.0	1	EPA 8260C Certifications:	CTDOH-PH	03/28/2023 09:00 I-0723,NELAC-NY10	03/28/2023 15:17 0854,NELAC-NY	FTR
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	3.0	6.0	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
monoral (1999)						a more		Certifications:	CTDOH-PH	I-0723,NELAC-NY10		0.000
67-64-1	Acetone	ND		ug/kg dry	6.0	12	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
								Certifications:	CTDOIL DU	I-0723,NELAC-NY10	054 NEV 1 G NEV	

ClientServices

Client Sample ID: C-5 23C1504-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Reported to

Log-in Notes:

Sample Notes:

Date/Time

Date/Time

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5035A

CAS No	o. Parameter	Result	Flag Units	LOD/MDL	LOQ	Dilution	Reference M	1ethod	Prepared	Analyzed	Analyst
107-02-8	Acrolein	ND	ug/kg dry	6.0	12	1	EPA 8260C Certifications:	СТООН-РН	03/28/2023 09:00 -0723,NELAC-NY10	03/28/2023 15:17 854 NEL AC-NY	FTR
107-13-1	A amilanitrila	ND	ug/kg dry	3.0	6.0	ī	EPA 8260C	CIDOIIII	03/28/2023 09:00	03/28/2023 15:17	FTR
107-13-1	Acrylonitrile	ND	ug/kg ury	5.0	0.0	1		CTDOH-PH	-0723,NELAC-NY10		FIR
71-43-2	Benzene	ND	ug/kg dry	3.0	6.0	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
								CTDOH-PH	-0723,NELAC-NY10	854,NELAC-NY	
74-97-5	Bromochloromethane	ND	ug/kg dry	3.0	6.0	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
							Certifications:	NELAC-NY	10854,NELAC-NY12	2058,NJDEP,PAE	
75-27-4	Bromodichloromethane	ND	ug/kg dry	3.0	6.0	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
							Certifications:	CTDOH-PH	-0723,NELAC-NY10	854,NELAC-NY	
75-25-2	Bromoform	ND	ug/kg dry	3.0	6.0	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
							Certifications:	CTDOH-PH	-0723,NELAC-NY10	854,NELAC-NY	
74-83-9	Bromomethane	ND	ug/kg dry	3.0	6.0	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
							Certifications:	CTDOH-PH	-0723,NELAC-NY10	854,NELAC-NY	
75-15-0	Carbon disulfide	ND	ug/kg dry	3.0	6.0	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
							Certifications:	CTDOH-PH	-0723,NELAC-NY10	854,NELAC-NY	
56-23-5	Carbon tetrachloride	ND	ug/kg dry	3.0	6.0	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
							Certifications:	CTDOH-PH	-0723,NELAC-NY10	854,NELAC-NY	
108-90-7	Chlorobenzene	ND	ug/kg dry	3.0	6.0	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
							Certifications:	CTDOH-PH	-0723,NELAC-NY10	854,NELAC-NY	
75-00-3	Chloroethane	ND	ug/kg dry	3.0	6.0	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
							Certifications:	CTDOH-PH	-0723,NELAC-NY10	854,NELAC-NY	
67-66-3	Chloroform	ND	ug/kg dry	3.0	6.0	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
								CTDOH-PH	-0723,NELAC-NY10		
74-87-3	Chloromethane	ND	ug/kg dry	3.0	6.0	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
								СТДОН-РН	-0723,NELAC-NY10		
156-59-2	cis-1,2-Dichloroethylene	ND	ug/kg dry	3.0	6.0	1	EPA 8260C	omp our pur	03/28/2023 09:00	03/28/2023 15:17	FTR
								СТДОН-РН	-0723,NELAC-NY10		
10061-01-5	cis-1,3-Dichloropropylene	ND	ug/kg dry	3.0	6.0	1	EPA 8260C	CTDOU DU	03/28/2023 09:00	03/28/2023 15:17	FTR
rane na meneral	600 - 100 mm	0m20001000						СТДОН-РН	-0723,NELAC-NY10		Printle and Control
110-82-7	Cyclohexane	ND	ug/kg dry	3.0	6.0	1	EPA 8260C Certifications:	NEL AC NIV	03/28/2023 09:00 10854,NELAC-NY12	03/28/2023 15:17	FTR
				2.0				NELAC-N I			nan.
124-48-1	Dibromochloromethane	ND	ug/kg dry	3.0	6.0	1	EPA 8260C Certifications:	NEL AC NIV	03/28/2023 09:00 10854,NELAC-NY12	03/28/2023 15:17	FTR
74.05.2	D2	N.D.		2.0	6.0			IVEEAC-IVI			PTD
74-95-3	Dibromomethane	ND	ug/kg dry	3.0	6.0	1	EPA 8260C Certifications:	NELAC-NV	03/28/2023 09:00 10854,NELAC-NY12	03/28/2023 15:17 2058 NIDEP PAT	FTR
75-71-8	Di.11 1:0	ND	να/leσ -d=	2.0	6.0	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:17	FTR
13-11-8	Dichlorodifluoromethane	ND	ug/kg dry	5.0	0.0	1	EFA 8200C		03/28/2023 09:00	03/26/2023 13:17	FIK

ug/kg dry 3.0

ug/kg dry 3.0

6.0

Ethyl Benzene

Hexachlorobutadiene

100-41-4

87-68-3

ND

ND

NELAC-NY10854,NELAC-NY12058,NJDEP,PAE

CTDOH-PH-0723,NELAC-NY10854,NELAC-NY

NELAC-NY10854,NELAC-NY12058,NJDEP,PAE

ClientServices

Certifications:

EPA 8260C

Certifications:

EPA 8260C

Certifications:

FTR

FTR

Client Sample ID: C-5 23C1504-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5035A

<u>Log-in Notes:</u>	Sample Notes:

23 09:00 LAC-NY12 23 09:00 .AC-NY108 23 09:00 LAC-NY12 23 09:00 .AC-NY108 23 09:00	03/28/2023 15: 0854,NELAC-NY 03/28/2023 15: 12058,NJDEP,PAI 03/28/2023 15: 0854,NELAC-NY 03/28/2023 15: 12058,NJDEP,PAI 03/28/2023 15:	:17 FTR :17 FTR :17 FTR
23 09:00 LAC-NY12 23 09:00 .AC-NY108 23 09:00 LAC-NY12 23 09:00 .AC-NY108 23 09:00	03/28/2023 15: 12058,NJDEP,PAE 03/28/2023 15: 0854,NELAC-NY 03/28/2023 15: 12058,NJDEP,PAE 03/28/2023 15:	:17 FTR :17 FTR :17 FTR
LAC-NY12 23 09:00 LAC-NY103 23 09:00 LAC-NY12 23 09:00 LAC-NY103 23 09:00	12058,NJDEP,PAE 03/28/2023 15: 0854,NELAC-NY 03/28/2023 15: 12058,NJDEP,PAE 03/28/2023 15:	:17 FTR :17 FTR :17 FTR
23 09:00 AC-NY108 23 09:00 LAC-NY12 23 09:00 AC-NY108 23 09:00	03/28/2023 15: 0854,NELAC-NY 03/28/2023 15: 12058,NJDEP,PAE 03/28/2023 15:	:17 FTR :17 FTR :17 FTR
23 09:00 LAC-NY12 23 09:00 LAC-NY108 23 09:00	0854,NELAC-NY 03/28/2023 15: 12058,NJDEP,PAE 03/28/2023 15:	:17 FTR
23 09:00 LAC-NY12 23 09:00 LAC-NY103 23 09:00	03/28/2023 15: 12058,NJDEP,PAE 03/28/2023 15:	:17 FTR
LAC-NY12 23 09:00 LAC-NY108 23 09:00	12058,NJDEP,PAE 03/28/2023 15:	:17 FTR
AC-NY108 23 09:00		
23 09:00	OOSANIEL AC NIV	
	0854,NELAC-NY	
AC-NY10	03/28/2023 15:	:17 FTR
	0854,NELAC-NY	
23 09:00	03/28/2023 15:	:17 FTR
AC-NY10	0854,NELAC-NY	
23 09:00	03/28/2023 15:	:17 FTR
AC-NY10	0854,NELAC-NY	
23 09:00	03/28/2023 15:	:17 FTR
AC-NY10	0854,NELAC-NY	
23 09:00	03/28/2023 15:	:17 FTR
AC-NY10	0854,NELAC-NY	
23 09:00	03/28/2023 15:	:17 FTR
AC-NY10	0854,NELAC-NY	
23 09:00	03/28/2023 15:	
AC-NY108	0854,NELAC-NY	
	03/28/2023 15:	
23 09:00	03/20/2023 13.	TIK
23 09:00	02/28/2022 15.	:17 FTR
	03/28/2023 13:	TIN
23 09:00	03/28/2023 13: 0854,NELAC-NY	
23 09:00		
000 000 000 000 000 000 000	023 09:00 ELAC-NY 023 09:00 ILAC-NYI 023 09:00	ELAC-NY12058,NJDEP,PAE 2023 09:00 03/28/2023 15: LAC-NY10854,NELAC-NY 2023 09:00 03/28/2023 15:

Client Sample ID: C-5 23C1504-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-01-4	Vinyl Chloride	ND		ug/kg dry	3.0	6.0	1	EPA 8260C Certifications:	CTDOH-PI	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:17 854,NELAC-NY	FTR
1330-20-7	Xylenes, Total	ND		ug/kg dry	9.1	18	1	EPA 8260C Certifications:	CTDOH-PI	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:17 854,NELAC-NY	FTR
	Surrogate Recoveries	Result		Acce	ptance Ran	ge						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	106 %			77-125							
2037-26-5	Surrogate: SURR: Toluene-d8	91.9 %			85-120							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	91.5 %			76-130							

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
2-52-4	1,1-Biphenyl	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	NELAC-N	Y 10854,NJDEP,PADEF	•	
5-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	99.0	198	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	NELAC-N	Y 10854,NJDEP,PADEF	•	
20-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
5-50-1	1,2-Dichlorobenzene	ND	QL-02	ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	NELAC-N	Y10854,PADEP		
22-66-7	1,2-Diphenylhydrazine (as	ND	CCVE	ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
	Azobenzene)							Certifications:	NELAC-N	Y 10854,NJDEP,PADEF		
41-73-1	1,3-Dichlorobenzene	ND	QL-02	ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	NELAC-N	Y10854,PADEP		
06-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	NELAC-N	Y10854,PADEP		
8-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/kg dry	99.0	198	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	NELAC-N	Y10854,NJDEP,PADEF	•	
5-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
8-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
20-83-2	2,4-Dichlorophenol	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
	•							Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
05-67-9	2,4-Dimethylphenol	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
	1							Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
1-28-5	2,4-Dinitrophenol	ND	CAL-E,	ug/kg dry	99.0	198	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
	•		CCVE, QL-02					Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
21-14-2	2,4-Dinitrotoluene	ND	CAL-E	ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
		-						Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	

120 RESEARCH DRIVE

www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices (

Page 18 of 40

Client Sample ID: C-5 23C1504-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3550C

Log-in Notes:	Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10		
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP,PAD	
95-57-8	2-Chlorophenol	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP,PAD	
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP,PAD	
95-48-7	2-Methylphenol	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP,PAD	
88-74-4	2-Nitroaniline	ND		ug/kg dry	99.0	198	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP,PAD	
88-75-5	2-Nitrophenol	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP,PAD	
65794-96-9	3- & 4-Methylphenols	ND	QL-02	ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP,PAD	
91-94-1	3,3-Dichlorobenzidine	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	NELAC-NY	/10854,NJDEP,PADEI	•	
99-09-2	3-Nitroaniline	ND		ug/kg dry	99.0	198	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NJDEP,PAD	
534-52-1	4,6-Dinitro-2-methylphenol	ND	CAL-E,	ug/kg dry	99.0	198	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
			CCVE,					Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP,PAD	
			QL-02									
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP,PAD	
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NJDEP,PAD	
106-47-8	4-Chloroaniline	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NJDEP,PAD	
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NJDEP,PAD	
100-01-6	4-Nitroaniline	ND		ug/kg dry	99.0	198	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NJDEP,PAD	
100-02-7	4-Nitrophenol	ND		ug/kg dry	99.0	198	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NJDEP,PAD	
83-32-9	Acenaphthene	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP,PAD	
208-96-8	Acenaphthylene	ND	QL-02	ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP,PAD	
98-86-2	Acetophenone	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	NELAC-NY	710854,NJDEP,PADEI	•	
62-53-3	Aniline	ND	CCVE	ug/kg dry	198	396	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	NELAC-NY			

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices

Page 19 of 40

Client Sample ID: C-5 23C1504-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3550C

T 1 - NI - 4	C INI
Log-in Notes:	Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120-12-7	Anthracene	ND	QL-02	ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
1912-24-9	Atrazine	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	NELAC-N	Y 10854, NJDEP, PADEF	2	
100-52-7	Benzaldehyde	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	NELAC-N	Y 10854, NJDEP, PADEF	2	
92-87-5	Benzidine	ND	CCVE	ug/kg dry	198	396	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,PADEP	
56-55-3	Benzo(a)anthracene	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	854,NJDEP,PAD	
50-32-8	Benzo(a)pyrene	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
205-99-2	Benzo(b)fluoranthene	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
191-24-2	Benzo(g,h,i)perylene	ND	CCVE	ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
207-08-9	Benzo(k)fluoranthene	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
65-85-0	Benzoic acid	ND	CAL-E	ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	NELAC-N	Y 10854,NJDEP,PADEF	9	
100-51-6	Benzyl alcohol	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
	soupercloses • Control Colores Augusta							Certifications:	NELAC-N	Y 10854,NJDEP,PADEF	P	
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
	J. 1							Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
111-91-1	Bis(2-chloroethoxy)methane	ND	CCVE	ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
	(Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
111-44-4	Bis(2-chloroethyl)ether	ND	CCVE	ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
	2.10(2 0.11.01.01.1.1)							Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
108-60-1	Bis(2-chloroisopropyl)ether	ND	CCVE	ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
	Dis(2 emercisepropyr)emer	1,2	00.12					Certifications:	CTDOH-PH	H-0723,NELAC-NY10		
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
	Bis(2 ettiyinexy))pinnatate	ND		-887				Certifications:	CTDOH-PI	H-0723,NELAC-NY10		
105-60-2	Caprolactam	ND		ug/kg dry	99.0	198	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
103 00 2	Caprolactani	ND		ug ng m	33.0	170	-	Certifications:	NELAC-N	Y10854,NJDEP,PADEF		****
86-74-8	Carbazole	ND	OI -02	ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
00 71 0	Carbazoic	ND	QL-02	ug/ng ur)		,,,,	-	Certifications:	CTDOH-PH	H-0723,NELAC-NY10		1611
218-01-9	Chrysene	ND	01.02	ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
210-01-9	Cinysene	ND	QL-02	aging dry	17.0	JJ.0	-	Certifications:	CTDOH-PI	1-0723,NELAC-NY10		KII
53-70-3	Dihanza(a h)antheasana	ND	COVE	ng/ka dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
22-10-3	Dibenzo(a,h)anthracene	ND	CCVE	ug/kg dry	77.0	JJ.0	2	Certifications:	CTDOH-PF	H-0723,NELAC-NY10		KII
132-64-9	Dil	ND		na/ka d	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
132-04-9	Dibenzofuran	ND		ug/kg dry	49.0	99.U	4	Certifications:	CTDOH-PI	03/31/2023 07:47 H-0723,NELAC-NY10		ΝH
								certifications.	CIDOII-FI	25,11LDAC-11110	or mountino	

Client Sample ID: C-5 23C1504-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3550C

Log-in Notes:	Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
4-66-2	Diethyl phthalate	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
									TDOH-PH	I-0723,NELAC-NY10		
31-11-3	Dimethyl phthalate	ND	QL-02	ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications: C	TDOH-PH	I-0723,NELAC-NY10	854,NJDEP,PAD	
4-74-2	Di-n-butyl phthalate	ND	QL-02	ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications: C	TDOH-PH	I-0723,NELAC-NY10	854,NJDEP,PAD	
17-84-0	Di-n-octyl phthalate	ND		ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
									TDOH-PF	I-0723,NELAC-NY10		
22-39-4	* Diphenylamine	ND	QL-02	ug/kg dry	99.0	198	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:				
206-44-0	Fluoranthene	ND	QL-02	ug/kg dry	49.6	99.0	2	EPA 8270D	TRALL BY	03/31/2023 07:47	04/03/2023 22:28	KH
						nerone			TDOH-PE	I-0723,NELAC-NY10		
86-73-7	Fluorene	ND		ug/kg dry	49.6	99.0	2	EPA 8270D	IEL ACAN	03/31/2023 07:47	04/03/2023 22:28	KH
						20.2	-		NELAC-N)	/10854,NJDEP,PADE		
18-74-1	Hexachlorobenzene	ND		ug/kg dry	49.6	99.0	2	EPA 8270D	TDOLL DI	03/31/2023 07:47	04/03/2023 22:28	KH
									TDOH-PF	I-0723,NELAC-NY10		
7-68-3	Hexachlorobutadiene	ND		ug/kg dry	49.6	99.0	2	EPA 8270D	TDOLL DI	03/31/2023 07:47	04/03/2023 22:28	KH
							_		TDOH-PE	I-0723,NELAC-NY10		
7-47-4	Hexachlorocyclopentadiene	ND	CCVE, QL-02	ug/kg dry	49.6	99.0	2	EPA 8270D	TDOLL DI	03/31/2023 07:47	04/03/2023 22:28	KH
					10.5	22.0			TDOH-PF	I-0723,NELAC-NY10		
7-72-1	Hexachloroethane	ND	QL-02	ug/kg dry	49.6	99.0	2	EPA 8270D	TDOLL DI	03/31/2023 07:47	04/03/2023 22:28	KH
		1000000					_		проп-гг	I-0723,NELAC-NY10		
93-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	49.6	99.0	2	EPA 8270D Certifications: C	TDOU DU	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 22:28	KH
					10.6	22.0			TDOH-FF			
8-59-1	Isophorone	ND		ug/kg dry	49.6	99.0	2	EPA 8270D Certifications: C	TDOU DL	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 22:28	KH
					40.6	00.0	2		проп-гг			
1-20-3	Naphthalene	ND		ug/kg dry	49.6	99.0	2	EPA 8270D Certifications: C	TDOU DE	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 22:28	KH
0.05.3	. ***			4	40.6	00.0	2		TDOH-FF			1211
8-95-3	Nitrobenzene	ND		ug/kg dry	49.6	99.0	2	EPA 8270D Certifications: C	TDOU DL	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 22:28	KH
2.75.0	NYNY: P. J. L.	3.10	COVE		40.6	00.0	2		TDOII-II			1/11
2-75-9	N-Nitrosodimethylamine	ND	CCVE	ug/kg dry	49.6	99.0	2	EPA 8270D Certifications: C	TDOH PE	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 22:28	KH
21.64.7		3.75		7 1	40.6	00.0	2		TDOII-II	03/31/2023 07:47	04/03/2023 22:28	1711
21-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	49.6	99.0	2	EPA 8270D Certifications: C	TDOH-PF	03/31/2023 07:47 I-0723,NELAC-NY10		KH
. 20 .				7	10.6	00.0	2		TDOIPT			****
6-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	49.6	99.0	2	EPA 8270D Certifications: C	трон-рі	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 22:28 854 NIDEP PAD	KH
7.06.5		3.75		<i>n</i>	40.6	00.0	2		TDOII-II			1/11
7-86-5	Pentachlorophenol	ND		ug/kg dry	49.6	99.0	2	EPA 8270D Certifications: C	TDOH-PF	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 22:28 854 NIDEP PAD	KH
		3.75	07.00		10.6	00.0	2		TDOIPT			1711
5-01-8	Phenanthrene	ND	QL-02	ug/kg dry	49.6	99.0	2	EPA 8270D Certifications: C	трон-ы	03/31/2023 07:47 I-0723,NELAC-NY10	04/03/2023 22:28 854 NIDEP PAD	KH
00.05.2	N - 1				40.6	00.0	~		TDOU-LE			****
08-95-2	Phenol	ND		ug/kg dry	49.6	99.0	2	EPA 8270D	TDOU DI	03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications: C	TDOH-PE	I-0723,NELAC-NY10	654,NJDEP,PAD	

Client Sample ID: C-5 23C1504-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
129-00-0	Pyrene	ND	QL-02	ug/kg dry	49.6	99.0	2	EPA 8270D		03/31/2023 07:47	04/03/2023 22:28	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
	Surrogate Recoveries	Result	Acceptance Range									
367-12-4	Surrogate: SURR: 2-Fluorophenol	49.0 %			20-108							
13127-88-3	Surrogate: SURR: Phenol-d6	46.6 %			23-114							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	53.8 %			22-108							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	53.8 %			21-113							
118-79-6	Surrogate: SURR:	77.0 %			19-110							
	2,4,6-Tribromophenol											
1718-51-0	Surrogate: SURR: Terphenyl-d14	66.2 %			24-116							

Pesticides, 8081 target list

Sample Prepared by Method: EPA 3550C

Log-in Notes:	Sample Notes:
Log-in Notes:	Sample Notes:

CAS No	o. Par	rameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
2-54-8	4,4'-DDD		ND		ug/kg dry	2.00	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	ВЈ
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
2-55-9	4,4'-DDE		ND		ug/kg dry	2.00	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	BJ
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
0-29-3	4,4'-DDT		ND		ug/kg dry	2.00	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	ВЈ
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
09-00-2	Aldrin		ND		ug/kg dry	2.00	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	ВЈ
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
19-84-6	alpha-BHC		ND		ug/kg dry	2.00	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	ВЈ
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
103-71-9	alpha-Chlordane		ND		ug/kg dry	2.00	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	ВЈ
	anpina cinciaanie		1.2					Certifications:	NELAC-N	Y10854,NJDEP		
19-85-7	beta-BHC		ND		ug/kg dry	2.00	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	ВЈ
	beta-BHC							Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
7-74-9	Chlordane, total		ND		ug/kg dry	40.1	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	ВЈ
	emoraune, total		112					Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
19-86-8	delta-BHC		ND		ug/kg dry	2.00	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	ВЈ
	delia Biic		T.D		3 3 7			Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
0-57-1	Dieldrin		ND		ug/kg dry	2.00	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	ВЈ
	Dictariii		ND					Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
59-98-8	Endosulfan I		ND		ug/kg dry	2.00	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	ВЈ
57 70 0	Liidosullali I		ND		ag ag ar y	2100		Certifications:	CTDOH-PI	H-0723,NELAC-NY10		50
3213-65-9	Endosulfan II		ND		ug/kg dry	2.00	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	ВЈ
3213 03 7	Liidosullali II		ND		ag ag ary	2.00		Certifications:	CTDOH-PI	H-0723,NELAC-NY10		В
031-07-8	Endosulfan sulfate		ND		ug/kg dry	2.00	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	ВЈ
55.010	Lindosultan suitate		ND		-5-55 W.J	2.00	J	Certifications:	CTDOH-PI	H-0723,NELAC-NY10		53
2-20-8	Endrin		ND		ug/kg dry	2.00	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	ВЈ
2-20-0	EHUFIN		ND		ug/kg ury	2.00	5	Certifications:	CTDOU N	H-0723,NELAC-NY10		DJ

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices

Page 22 of 40

<u>Client Sample ID:</u> C-5 <u>York Sample ID:</u> 23C1504-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

<u>Pesticides, 8081 target list</u> Sample Prepared by Method: EPA 3550C **Log-in Notes:**

Sample Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7421-93-4	Endrin aldehyde	ND		ug/kg dry	2.00	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	ВЈ
							Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
53494-70-5	Endrin ketone	ND		ug/kg dry	2.00	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	BJ
							Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	2.00	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	BJ
							Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
5566-34-7	gamma-Chlordane	ND		ug/kg dry	2.00	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	BJ
							Certifications:	NELAC-N	Y10854,NJDEP		
76-44-8	Heptachlor	ND		ug/kg dry	2.00	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	BJ
							Certifications:	CTDOH-PI	H-0723,NELAC-NY10854,NJDEP,PAD 03/28/2023 19:25 03/29/2023 23:04 H-0723,NELAC-NY10854,NJDEP,PAD 03/28/2023 19:25 03/29/2023 23:04 Y10854,NJDEP 03/28/2023 19:25 03/29/2023 23:04 H-0723,NELAC-NY10854,NJDEP,PAD 03/28/2023 19:25 03/29/2023 23:04 H-0723,NELAC-NY10854,NJDEP,PAD 03/28/2023 19:25 03/29/2023 23:04		
1024-57-3	Heptachlor epoxide	ND		ug/kg dry	2.00	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	BJ
							Certifications:	CTDOH-PI	H-0723,NELAC-NY10		
72-43-5	Methoxychlor	ND		ug/kg dry	10.0	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	BJ
							Certifications:	CTDOH-PI	PH-0723,NELAC-NY10854,NJDEP,PAD 03/28/2023 19:25 03/29/2023 23:04 NY10854,NJDEP 03/28/2023 19:25 03/29/2023 23:04 PH-0723,NELAC-NY10854,NJDEP,PAD 03/28/2023 19:25 03/29/2023 23:04 PH-0723,NELAC-NY10854,NJDEP,PAD 03/28/2023 19:25 03/29/2023 23:04 PH-0723,NELAC-NY10854,NJDEP,PAD		
8001-35-2	Toxaphene	ND		ug/kg dry	101	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:04	BJ
							Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
	Surrogate Recoveries	Result		Acceptan	ce Range						
2051-24-3	Surrogate: Decachlorobiphenyl	115 %		30-	150						

Polychlorinated Biphenyls (PCB)

Surrogate: Tetrachloro-m-xylene

ample Prepared by Method: EPA 3550C

877-09-8

Log-in Notes:

30-150

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
2674-11-2	Aroclor 1016	ND		mg/kg dry	0.0202	1	EPA 8082A Certifications:	NELAC-N	03/28/2023 19:25 Y10854,CTDOH-PH-0	03/31/2023 00:40 723,NJDEP,PAD	BCJ
1104-28-2	Aroclor 1221	ND		mg/kg dry	0.0202	1	EPA 8082A Certifications:		03/28/2023 19:25 Y10854,CTDOH-PH-0	03/31/2023 00:40	ВСЈ
1141-16-5	Aroclor 1232	ND		mg/kg dry	0.0202	1	EPA 8082A Certifications:		03/28/2023 19:25 Y10854,CTDOH-PH-0	03/31/2023 00:40	BCJ
3469-21-9	Aroclor 1242	ND		mg/kg dry	0.0202	I	EPA 8082A Certifications:		03/28/2023 19:25 Y10854,CTDOH-PH-0	03/31/2023 00:40	BCJ
2672-29-6	Aroclor 1248	ND		mg/kg dry	0.0202	1	EPA 8082A Certifications:	NELAC-N	03/28/2023 19:25 Y10854,CTDOH-PH-0	03/31/2023 00:40 723,NJDEP,PAD	BCJ
097-69-1	Aroclor 1254	ND		mg/kg dry	0.0202	1	EPA 8082A Certifications:	NELAC-N	03/28/2023 19:25 Y10854,CTDOH-PH-0	03/31/2023 00:40 723,NJDEP,PAD	BCJ
096-82-5	Aroclor 1260	ND		mg/kg dry	0.0202	1	EPA 8082A Certifications:	NELAC-N	03/28/2023 19:25 Y10854,CTDOH-PH-0	03/31/2023 00:40 723,NJDEP,PAD	BCJ
336-36-3	* Total PCBs	ND		mg/kg dry	0.0202	1	EPA 8082A Certifications:		03/28/2023 19:25	03/31/2023 00:40	BCJ
	Surrogate Recoveries	Result		Acceptance R	ange						
77-09-8	Surrogate: Tetrachloro-m-xylene	104 %		30-140							
051-24-3	Surrogate: Decachlorobiphenyl	84.0 %		30-140							

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

94.7 %

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices

Page 23 of 40

Client Sample ID: C-5 23C1504-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Metals, Target Analyte

Sample Prepared by Method: EPA 3050B

Log-in Notes:	Sample Notes:

CAS N	o. Paran	neter Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum	16200		mg/kg dry	5.09	1	EPA 6010D Certifications:	CTDOU BL	03/28/2023 20:54 I-0723,NELAC-NY10	03/31/2023 19:36	CW
7440-36-0	Antimony	ND	M-CCV	mg/kg dry	2.55	1	EPA 6010D	CTDOH-PF	03/28/2023 20:54	03/31/2023 19:36	CW
110 30 0	Anumony	ND	1	mg ng ur)	2.00	•	Certifications:	CTDOH-PH	I-0723,NELAC-NY10		0.11
7440-38-2	Arsenic	6.82		mg/kg dry	1.53	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 I-0723,NELAC-NY10	03/31/2023 19:36 854,NJDEP,PAD	CW
7440-39-3	Barium	101		mg/kg dry	2.54	1	EPA 6010D Certifications:	CTDOH-PH	03/28/2023 20:54 I-0723,NELAC-NY10	03/31/2023 19:36 854,NJDEP,PAD	CW
7440-41-7	Beryllium	0.395		mg/kg dry	0.051	1	EPA 6010D Certifications:	CTDOH-PH	03/28/2023 20:54 I-0723,NELAC-NY10	03/31/2023 19:36 854,NJDEP,PAD	CW
7440-43-9	Cadmium	ND		mg/kg dry	0.306	1	EPA 6010D Certifications:	CTDOH-PF	03/28/2023 20:54 I-0723,NELAC-NY10	03/31/2023 19:36 854.NJDEP.PAD	CW
7440-70-2	Calcium	2140		mg/kg dry	5.09	1	EPA 6010D Certifications:		03/28/2023 20:54 I-0723,NELAC-NY10	03/31/2023 19:36	CW
7440-47-3	Chromium	21.1		mg/kg dry	0.510	1	EPA 6010D Certifications:		03/28/2023 20:54 I-0723,NELAC-NY10	03/31/2023 19:36	CW
7440-48-4	Cobalt	11.4		mg/kg dry	0.407	1	EPA 6010D Certifications:		03/28/2023 20:54 I-0723,NELAC-NY10	03/31/2023 19:36	CW
7440-50-8	Copper	20.8		mg/kg dry	2.04	1	EPA 6010D Certifications:		03/28/2023 20:54 I-0723,NELAC-NY10	03/31/2023 19:36	CW
7439-89-6	Iron	18800		mg/kg dry	25.5	1	EPA 6010D Certifications:		03/28/2023 20:54 I-0723,NELAC-NY10	03/31/2023 19:36	CW
7439-92-1	Lead	27.5		mg/kg dry	0.510	1	EPA 6010D Certifications:		03/28/2023 20:54 I-0723,NELAC-NY10	03/31/2023 19:36	CW
7439-95-4	Magnesium	4120		mg/kg dry	5.10	1	EPA 6010D Certifications:		03/28/2023 20:54 I-0723,NELAC-NY10	03/31/2023 19:36	CW
7439-96-5	Manganese	390		mg/kg dry	0.510	1	EPA 6010D Certifications:		03/28/2023 20:54 I-0723,NELAC-NY10	03/31/2023 19:36	CW
7440-02-0	Nickel	15.7		mg/kg dry	1.01	1	EPA 6010D Certifications:		03/28/2023 20:54 I-0723,NELAC-NY10	03/31/2023 19:36	CW
7440-09-7	Potassium	1860	M-CC V1	mg/kg dry	5.10	1	EPA 6010D Certifications:		03/28/2023 20:54 I-0723,NELAC-NY10	03/31/2023 19:36	CW
7782-49-2	Selenium	ND	**	mg/kg dry	2.55	1	EPA 6010D Certifications:		03/28/2023 20:54 I-0723,NELAC-NY10	03/31/2023 19:36	CW
7440-22-4	Silver	ND		mg/kg dry	0.513	1	EPA 6010D		03/28/2023 20:54	03/31/2023 19:36	CW
7440-23-5	Sodium	131		mg/kg dry	50.9	1	Certifications: EPA 6010D		03/28/2023 20:54	03/31/2023 19:36	CW
7440-28-0	Thallium	ND	V1	mg/kg dry	2.55	1	Certifications: EPA 6010D	CTDOH-PF	03/28/2023 20:54	03/31/2023 19:36	CW
							Certifications:	CTDOH-PH	I-0723,NELAC-NY10		
7440-62-2	Vanadium	35.0		mg/kg dry	1.01	1	EPA 6010D Certifications:	CTDOH-PH	03/28/2023 20:54 I-0723,NELAC-NY10	03/31/2023 19:36 854,NJDEP,PAD	CW
7440-66-6	Zinc	55.0		mg/kg dry	2.54	1	EPA 6010D Certifications:	CTDOH-PF	03/28/2023 20:54 I-0723,NELAC-NY10	03/31/2023 19:36 854,NJDEP,PAD	CW

<u>Client Sample ID:</u> C-5 <u>York Sample ID:</u> 23C1504-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Mercury by 7473 <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA 7473 soil

Reported to Date/Time Date/Time Dilution CAS No. **Parameter** Result Flag Units LOO Reference Method Prepared Analyzed Analyst 04/03/2023 13:19 7439-97-6 0.0397 mg/kg dry 04/03/2023 09:43 Mercury CTDOH-PH-0723,NJDEP,NELAC-NY10854,PAD Certifications:

<u>Total Solids</u> <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: % Solids Prep

Date/Time Reported to Date/Time Dilution Result Units Reference Method CAS No. **Parameter** Flag LOQ Prepared Analyzed Analyst solids * % Solids 81.8 SM 2540G 04/02/2023 08:50 04/02/2023 10:41 CTDOH-PH-0723 Certifications:

Sample Information

Client Sample ID: C-6 York Sample ID: 23C1504-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes: Sample Notes:

Sample Prepared by Method: EPA 5035A

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	CTDOH-PI	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:44 854,NELAC-NY	FTR
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	CTDOH-PI	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:44 854,NELAC-NY	FTR
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	CTDOH-PI	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:44 854,NELAC-NY	FTR
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	CTDOH-PI	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:44 854,NELAC-NY	FTR
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	CTDOH-PI	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:44 854,NELAC-NY	FTR
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	CTDOH-PI	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:44 854,NELAC-NY	FTR
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	CTDOH-PI	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:44 854,NELAC-NY	FTR
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	NELAC-N	03/28/2023 09:00 Y10854,NELAC-NY12	03/28/2023 15:44 2058,NJDEP,PAE	FTR
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	NELAC-N	03/28/2023 09:00 Y10854,NELAC-NY12	03/28/2023 15:44 2058,NJDEP	FTR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	NELAC-N	03/28/2023 09:00 Y10854,NELAC-NY12	03/28/2023 15:44 2058,NJDEP,PAE	FTR
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.2	4.4	Ī	EPA 8260C Certifications:	CTDOH-PI	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:44 854,NELAC-NY	FTR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices (

Page 25 of 40

Client Sample ID: C-6 23C1504-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared	d by Method: EPA 5035A	-										
CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NELAC-NY	
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NELAC-NY	
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	0854,NELAC-NY	
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	0854,NELAC-NY	
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	9854,NELAC-NY	
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	0854,NELAC-NY	
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	9854,NELAC-NY	
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	0854,NELAC-NY	
123-91-1	1,4-Dioxane	ND		ug/kg dry	44	88	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	NELAC-N	Y10854,NELAC-NY1	2058,NJDEP,PAE	
78-93-3	2-Butanone	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NELAC-NY	
591-78-6	2-Hexanone	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NELAC-NY	
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NELAC-NY	
67-64-1	Acetone	ND		ug/kg dry	4.4	8.8	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NELAC-NY	
107-02-8	Acrolein	ND		ug/kg dry	4.4	8.8	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	0854,NELAC-NY	
107-13-1	Acrylonitrile	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	9854,NELAC-NY	
71-43-2	Benzene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	0854,NELAC-NY	
74-97-5	Bromochloromethane	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	NELAC-N	Y10854,NELAC-NY1	2058,NJDEP,PAE	
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NELAC-NY	
75-25-2	Bromoform	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	0854,NELAC-NY	
74-83-9	Bromomethane	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	0854,NELAC-NY	
75-15-0	Carbon disulfide	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NELAC-NY	

Client Sample ID: C-6 23C1504-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference I	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10		
108-90-7	Chlorobenzene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	CTDOU BL	03/28/2023 09:00 I-0723,NELAC-NY10	03/28/2023 15:44	FTR
75-00-3	CIL	MD		va/ka dari	2.2	4.4	1	EPA 8260C	CIDOH-FF	03/28/2023 09:00	03/28/2023 15:44	FTR
15-00-3	Chloroethane	ND		ug/kg dry	2.2	4.4	1	Certifications:	CTDOH-PH	03/28/2023 09:00 I-0723,NELAC-NY10		FIK
67-66-3	Chloroform	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NELAC-NY	
74-87-3	Chloromethane	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NELAC-NY	
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
									CTDOH-PF	I-0723,NELAC-NY10		
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C	CEDOU N	03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PE	I-0723,NELAC-NY10		
110-82-7	Cyclohexane	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	NEL AC-NY	03/28/2023 09:00 /10854,NELAC-NY12	03/28/2023 15:44	FTR
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.2	4.4	1	EPA 8260C	TILLZIC IV	03/28/2023 09:00	03/28/2023 15:44	FTR
124-40-1	Dioromocmoromemane	ND		ug/kg ury	2.2	7.7			NELAC-NY	710854,NELAC-NY12		TIK
74-95-3	Dibromomethane	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
									NELAC-NY	/10854,NELAC-NY12	2058,NJDEP,PAE	
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	NELAC-NY	/10854,NELAC-NY12	2058,NJDEP,PAE	
00-41-4	Ethyl Benzene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NELAC-NY	
37-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
				10		0.2			NELAC-NY	/10854,NELAC-NY12		
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	CTDOH-PF	03/28/2023 09:00 I-0723,NELAC-NY10	03/28/2023 15:44	FTR
79-20-9	Mathyl agatata	ND		ug/kg dry	2.2	4.4	1	EPA 8260C	CIDOII-II	03/28/2023 09:00	03/28/2023 15:44	FTR
9-20-9	Methyl acetate	ND		ug/kg tily	2.2	7.7			NELAC-NY	710854,NELAC-NY12		TIK
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NELAC-NY	
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	NELAC-NY	/10854,NELAC-NY12	2058,NJDEP,PAE	
75-09-2	Methylene chloride	ND		ug/kg dry	4.4	8.8	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NELAC-NY	
04-51-8	n-Butylbenzene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C		03/28/2023 09:00	03/28/2023 15:44	FTR
								Certifications:	CTDOH-PF	I-0723,NELAC-NY10		nmn
03-65-1	n-Propylbenzene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	CTDOH-PL	03/28/2023 09:00 I-0723,NELAC-NY10	03/28/2023 15:44 854 NEL AC-NY	FTR
05-47-6	o Vulono	ND		ug/kg dry	2.2	4.4	1	EPA 8260C	CIDOH-II	03/28/2023 09:00	03/28/2023 15:44	FTR
, J- 4 / =0	o-Xylene	ND		ug/kg ury	2.2	7.7	1		CTDOH-PH	03/28/2023 09:00 I-0723,NELAC-NY10		TIK
											,	

ClientServices

<u>Client Sample ID:</u> C-6 <u>York Sample ID:</u> 23C1504-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5035A

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	4.4	8.8	1	EPA 8260C Certifications:	CTDOH-PI	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:44 854,NELAC-NY	FTR
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.2	4.4	Ī	EPA 8260C Certifications:	CTDOH-PI	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:44 854,NELAC-NY	FTR
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:		03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:44	FTR
100-42-5	Styrene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:		03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:44	FTR
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	NELAC-N	03/28/2023 09:00 Y10854,NELAC-NY12	03/28/2023 15:44 2058,NJDEP,PAE	FTR
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:		03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:44	FTR
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:		03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:44	FTR
108-88-3	Toluene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	CTDOH-PI	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:44 854,NELAC-NY	FTR
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	CTDOH-PI	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:44 854,NELAC-NY	FTR
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	CTDOH-PI	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:44 854,NELAC-NY	FTR
110-57-6	* trans-1,4-dichloro-2-butene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	CTDOH-PI	03/28/2023 09:00 H-0723	03/28/2023 15:44	FTR
79-01-6	Trichloroethylene	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	CTDOH-PI	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:44 854,NELAC-NY	FTR
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	CTDOH-PI	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:44 854,NELAC-NY	FTR
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.2	4.4	1	EPA 8260C Certifications:	CTDOH-PI	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:44 854,NELAC-NY	FTR
1330-20-7	Xylenes, Total	ND		ug/kg dry	6.6	13	1	EPA 8260C Certifications:	CTDOH-PI	03/28/2023 09:00 H-0723,NELAC-NY10	03/28/2023 15:44 854,NELAC-NY	FTR
	Surrogate Recoveries	Result		Acce	ptance Ran	ge						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	109 %			77-125							
2037-26-5	Surrogate: SURR: Toluene-d8	95.3 %			85-120							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	92.5 %			76-130							

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3550C

Log-in Notes: Sample Notes:

CAS	S No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl		ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
									Certifications:	NELAC-NY	Y 10854,NJDEP,PADEI	•	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices

Page 28 of 40

Client Sample ID: C-6 23C1504-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3550C

Log-in Notes:	Sample Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	98.8	197	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
				May Vice		10-000-10	2001	Certifications:	NELAC-N	Y 10854,NJDEP,PADEI		
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D Certifications:	CTDOU N	04/04/2023 13:41	04/05/2023 11:30	KH
					10.5	20.0			CTDOH-PI	H-0723,NELAC-NY10		
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D Certifications:	NELAC-N	04/04/2023 13:41 Y10854,PADEP	04/05/2023 11:30	KH
122-66-7	1,2-Diphenylhydrazine (as	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
122-00-7	Azobenzene)	ND		ug ng ur y	15.5	50.0	~	Certifications:	NELAC-N	Y10854,NJDEP,PADEI		KII
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
	-,-							Certifications:	NELAC-N	Y10854,PADEP		
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	NELAC-N	Y10854,PADEP		
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/kg dry	98.8	197	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	NELAC-N	Y 10854,NJDEP,PADEI	P	
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	98.8	197	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
95-57-8	2-Chlorophenol	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
95-48-7	2-Methylphenol	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
88-74-4	2-Nitroaniline	ND		ug/kg dry	98.8	197	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10		
88-75-5	2-Nitrophenol	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10		
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	

Client Sample ID: C-6 23C1504-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3550C

Log-in Notes:	Sample Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference 1	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
91-94-1	3,3-Dichlorobenzidine	ND		ug/kg dry	49.5	98.8	2	EPA 8270D	NEL AC N	04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	NELAC-N	Y10854,NJDEP,PADE		2222
99-09-2	3-Nitroaniline	ND		ug/kg dry	98.8	197	2	EPA 8270D Certifications:	CTDOH-PI	04/04/2023 13:41 H-0723,NELAC-NY10	04/05/2023 11:30	KH
524 52 1	A C D C C C C C C C C C C C C C C C C C	N.D.			00.0	107	2		CIDOH-FI			1711
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	98.8	197	2	EPA 8270D Certifications:	CTDOH-PI	04/04/2023 13:41 H-0723,NELAC-NY10	04/05/2023 11:30 854,NJDEP,PAD	KH
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
	4 Bromophenyi pilenyi ether	TTD		-667				Certifications:	CTDOH-PI	H-0723,NELAC-NY10		
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
	· cinore o mempipaener	1.12		00,				Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
106-47-8	4-Chloroaniline	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
100-01-6	4-Nitroaniline	ND		ug/kg dry	98.8	197	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
100-02-7	4-Nitrophenol	ND		ug/kg dry	98.8	197	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
	•							Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
83-32-9	Acenaphthene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
	•							Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
208-96-8	Acenaphthylene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
98-86-2	Acetophenone	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	NELAC-N	Y10854,NJDEP,PADE	P	
62-53-3	Aniline	ND		ug/kg dry	198	396	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	NELAC-N	Y10854,NJDEP,PADE	P	
120-12-7	Anthracene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
1912-24-9	Atrazine	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	NELAC-N	Y10854,NJDEP,PADE	P	
100-52-7	Benzaldehyde	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	NELAC-N	Y10854,NJDEP,PADE	P	
92-87-5	Benzidine	ND		ug/kg dry	198	396	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,PADEP	
56-55-3	Benzo(a)anthracene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
50-32-8	Benzo(a)pyrene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
205-99-2	Benzo(b)fluoranthene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
	Benzo(g,h,i)perylene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
191-24-2	Delizo(g,ii,i)peryiene	NB		-00						200000000000000000000000000000000000000		

ClientServices

Client Sample ID: C-6 23C1504-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3550C

Log-in Notes:	Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
207-08-9	Benzo(k)fluoranthene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	КН
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
65-85-0	Benzoic acid	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	NELAC-N	Y 10854, NJDEP, PADEI	2	
100-51-6	Benzyl alcohol	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	NELAC-N	Y 10854,NJDEP,PADEI	2	
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10		
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	854,NJDEP,PAD	
105-60-2	Caprolactam	ND		ug/kg dry	98.8	197	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	NELAC-N	Y 10854,NJDEP,PADEI		
86-74-8	Carbazole	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10		
218-01-9	Chrysene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10		
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10		
132-64-9	Dibenzofuran	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10		
84-66-2	Diethyl phthalate	ND		ug/kg dry	49.5	98.8	2	EPA 8270D	OFF OU DU	04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CIDOH-PI	I-0723,NELAC-NY10		
131-11-3	Dimethyl phthalate	ND		ug/kg dry	49.5	98.8	2	EPA 8270D	CED OH D	04/04/2023 13:41	04/05/2023 11:30	KH
		000000000				raiana		Certifications:	CIDOH-PI	H-0723,NELAC-NY10		
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	49.5	98.8	2	EPA 8270D Certifications:	CTDOU D	04/04/2023 13:41 H-0723,NELAC-NY10	04/05/2023 11:30	KH
					10.5	00.0	2		CIDON-FI			****
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	49.5	98.8	2	EPA 8270D Certifications:	CTDOH BI	04/04/2023 13:41 H-0723,NELAC-NY10	04/05/2023 11:30	KH
100 00 4	ini.			0 1	00.0	107	2		CIDOH-FI			****
122-39-4	* Diphenylamine	ND		ug/kg dry	98.8	197	2	EPA 8270D Certifications:		04/04/2023 13:41	04/05/2023 11:30	KH
206 44 0					10.5	00.0	2			04/04/0002 12 41	04/05/2023 11 20	****
206-44-0	Fluoranthene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D Certifications:	CTDOH BI	04/04/2023 13:41	04/05/2023 11:30	KH
07.72.7	El.			/1. 1	40.5	00.0	2		CIDOH-PI	1-0723,NELAC-NY10		7277
86-73-7	Fluorene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D Certifications:	NEL AC NO	04/04/2023 13:41 Y10854,NJDEP,PADEI	04/05/2023 11:30	KH
110.74.1	W - 11 - 1	ND			40.5	00.0	2		NELAC-N			1711
118-74-1	Hexachlorobenzene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D Certifications:	CTDOH P	04/04/2023 13:41 H-0723,NELAC-NY10	04/05/2023 11:30	KH
								Certifications.	CIDOH-PI	1-0723,NELAC-N110	oo-, NJDEF,FAD	

Client Sample ID: C-6 York Sample ID: 23C1504-03

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 23C1504 4 Tripp Lane Armonk, NY 10504 March 24, 2023 3:00 pm 03/27/2023 Soil

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	9854,NJDEP,PAD	
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10		
67-72-1	Hexachloroethane	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10		
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10		
78-59-1	Isophorone	ND		ug/kg dry	49.5	98.8	2	EPA 8270D	OWD OLL D	04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10		
91-20-3	Naphthalene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D		04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10		
98-95-3	Nitrobenzene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D	OWN OLL D	04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10		
62-75-9	N-Nitrosodimethylamine	ND		ug/kg dry	49.5	98.8	2	EPA 8270D	CEROU N	04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10		
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	49.5	98.8	2	EPA 8270D	CTPOIL N	04/04/2023 13:41	04/05/2023 11:30	KH
								Certifications:	CIDOH-PI	H-0723,NELAC-NY10		
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	49.5	98.8	2	EPA 8270D Certifications:	CTDOU N	04/04/2023 13:41	04/05/2023 11:30	KH
		v. 30000							CIDOH-PI	H-0723,NELAC-NY10		
87-86-5	Pentachlorophenol	ND		ug/kg dry	49.5	98.8	2	EPA 8270D	CTPOIL N	04/04/2023 13:41	04/05/2023 11:30	KH
							_	Certifications:	CIDOH-PI	H-0723,NELAC-NY10		
85-01-8	Phenanthrene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D Certifications:	CTDOU D	04/04/2023 13:41 H-0723,NELAC-NY10	04/05/2023 11:30	KH
100.05.0				9 1	40.5	00.0	2		CIDOH-FI			****
108-95-2	Phenol	ND		ug/kg dry	49.5	98.8	2	EPA 8270D Certifications:	СТРОИ В	04/04/2023 13:41 H-0723,NELAC-NY10	04/05/2023 11:30	KH
120.00.0				<i>H</i> - 1	10.5	98.8	2		CIDOII-II	04/04/2023 13:41	04/05/2023 11:30	KH
129-00-0	Pyrene	ND		ug/kg dry	49.5	98.8	2	EPA 8270D Certifications:	CTDOH-PI	04/04/2023 13:41 H-0723,NELAC-NY10		KH
	Surrogate Recoveries	Result		1 000	ptance Ran	oro.				,,	,	
367-12-4	e e			Acce	•	ge						
	Surrogate: SURR: 2-Fluorophenol	36.0 %			20-108							
13127-88-3	Surrogate: SURR: Phenol-d6	46.9 %			23-114							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	61.2 %			22-108							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	83.4 %			21-113							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	67.0 %			19-110							

Pesticides, 8081 target list

Surrogate: SURR: Terphenyl-d14

1718-51-0

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS N	0.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference I	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD		ND		ug/kg dry	1.95	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:22	ВЈ
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NJDEP,PAD	

24-116

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

84.8 %

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices

Page 32 of 40

Client Sample ID: C-6 York Sample ID: 23C1504-03

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 23C1504 4 Tripp Lane Armonk, NY 10504 Soil March 24, 2023 3:00 pm 03/27/2023

Pesticides, 8081 target list

Sample Prepared by Method: EPA 3550C

mple Notes:
,

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-55-9	4,4'-DDE	ND		ug/kg dry	1.95	5	EPA 8081B		03/28/2023 19:25	03/29/2023 23:22	ВЈ
50-29-3	4,4'-DDT	ND		ug/kg dry	1.95	5	Certifications: EPA 8081B		03/28/2023 19:25	03/29/2023 23:22	ВЈ
309-00-2	Aldrin	ND		ug/kg dry	1.95	5	Certifications: EPA 8081B Certifications:		I-0723,NELAC-NY10 03/28/2023 19:25 I-0723,NELAC-NY10	03/29/2023 23:22	ВЈ
319-84-6	alpha-BHC	ND		ug/kg dry	1.95	5	EPA 8081B Certifications:		03/28/2023 19:25 I-0723,NELAC-NY10	03/29/2023 23:22	ВЈ
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.95	5	EPA 8081B Certifications:	NELAC-NY	03/28/2023 19:25 /10854,NJDEP	03/29/2023 23:22	ВЈ
319-85-7	beta-BHC	ND		ug/kg dry	1.95	5	EPA 8081B Certifications:	CTDOH-PF	03/28/2023 19:25 I-0723,NELAC-NY10	03/29/2023 23:22 0854,NJDEP,PAD	ВЈ
57-74-9	Chlordane, total	ND		ug/kg dry	39.0	5	EPA 8081B Certifications:	CTDOH-PF	03/28/2023 19:25 I-0723,NELAC-NY10	03/29/2023 23:22 0854,NJDEP,PAD	ВЈ
319-86-8	delta-BHC	ND		ug/kg dry	1.95	5	EPA 8081B Certifications:	CTDOH-PH	03/28/2023 19:25 H-0723,NELAC-NY10	03/29/2023 23:22 0854,NJDEP,PAD	ВЈ
60-57-1	Dieldrin	ND		ug/kg dry	1.95	5	EPA 8081B Certifications:	CTDOH-PH	03/28/2023 19:25 I-0723,NELAC-NY10	03/29/2023 23:22 0854,NJDEP,PAD	ВЈ
959-98-8	Endosulfan I	ND		ug/kg dry	1.95	5	EPA 8081B Certifications:	CTDOH-PF	03/28/2023 19:25 I-0723,NELAC-NY10	03/29/2023 23:22 0854,NJDEP,PAD	ВЈ
33213-65-9	Endosulfan II	ND		ug/kg dry	1.95	5	EPA 8081B Certifications:	CTDOH-PF	03/28/2023 19:25 I-0723,NELAC-NY10	03/29/2023 23:22 0854	ВЈ
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.95	5	EPA 8081B Certifications:	CTDOH-PF	03/28/2023 19:25 I-0723,NELAC-NY10	03/29/2023 23:22 0854,NJDEP,PAD	ВЈ
72-20-8	Endrin	ND		ug/kg dry	1.95	5	EPA 8081B Certifications:	CTDOH-PH	03/28/2023 19:25 I-0723,NELAC-NY10	03/29/2023 23:22 0854,NJDEP,PAD	ВЈ
7421-93-4	Endrin aldehyde	ND		ug/kg dry	1.95	5	EPA 8081B Certifications:	CTDOH-PH	03/28/2023 19:25 I-0723,NELAC-NY10	03/29/2023 23:22 0854,NJDEP,PAD	ВЈ
53494-70-5	Endrin ketone	ND		ug/kg dry	1.95	5	EPA 8081B Certifications:	CTDOH-PH	03/28/2023 19:25 I-0723,NELAC-NY10	03/29/2023 23:22 0854,NJDEP,PAD	ВЈ
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.95	5	EPA 8081B Certifications:	CTDOH-PH	03/28/2023 19:25 I-0723,NELAC-NY10	03/29/2023 23:22 0854,NJDEP,PAD	ВЈ
5566-34-7	gamma-Chlordane	ND		ug/kg dry	1.95	5	EPA 8081B Certifications:	NELAC-NY	03/28/2023 19:25 710854,NJDEP	03/29/2023 23:22	ВЈ
76-44-8	Heptachlor	ND		ug/kg dry	1.95	5	EPA 8081B Certifications:	CTDOH-PH	03/28/2023 19:25 H-0723,NELAC-NY10	03/29/2023 23:22 0854,NJDEP,PAD	ВЈ
1024-57-3	Heptachlor epoxide	ND		ug/kg dry	1.95	5	EPA 8081B Certifications:	CTDOH-PH	03/28/2023 19:25 I-0723,NELAC-NY10	03/29/2023 23:22 0854,NJDEP,PAD	ВЈ
72-43-5	Methoxychlor	ND		ug/kg dry	9.75	5	EPA 8081B Certifications:	CTDOH-PI	03/28/2023 19:25 I-0723,NELAC-NY10	03/29/2023 23:22 0854,NJDEP,PAD	ВЈ
8001-35-2	Toxaphene	ND		ug/kg dry	98.6	5	EPA 8081B Certifications:	CTDOH-PH	03/28/2023 19:25 I-0723,NELAC-NY10	03/29/2023 23:22 0854,NJDEP,PAD	ВЈ
	Surrogate Recoveries	Result		Acceptar	ice Range						

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices

Page 33 of 40

Client Sample ID: C-6 York Sample ID: 23C1504-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

Pesticides, 8081 target list

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3550C

CAS No	. Parameter	Result	Flag	Units		Reported to	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
2051-24-3	Surrogate: Decachlorobiphenyl	108 %			30-150						

877-09-8 Surrogate: Tetrachloro-m-xylene 84.8 % 30-150

Polychlorinated Biphenyls (PCB)

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3550C

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016	ND		mg/kg dry	0.0197	1	EPA 8082A Certifications:	NEL AC NO	03/28/2023 19:25 Y10854,CTDOH-PH-0	03/31/2023 00:54	ВСЈ
11104-28-2	Aroclor 1221	ND		mg/kg dry	0.0197	1	EPA 8082A Certifications:		03/28/2023 19:25 Y10854,CTDOH-PH-0	03/31/2023 00:54	ВСЈ
11141-16-5	Aroclor 1232	ND		mg/kg dry	0.0197	1	EPA 8082A Certifications:		03/28/2023 19:25 Y10854,CTDOH-PH-0	03/31/2023 00:54	ВСЈ
53469-21-9	Aroclor 1242	ND		mg/kg dry	0.0197	1	EPA 8082A Certifications:	NELAC-N	03/28/2023 19:25 Y10854,CTDOH-PH-0	03/31/2023 00:54 723,NJDEP,PAD	BCJ
12672-29-6	Aroclor 1248	ND		mg/kg dry	0.0197	1	EPA 8082A Certifications:	NELAC-N	03/28/2023 19:25 Y10854,CTDOH-PH-0	03/31/2023 00:54 723,NJDEP,PAD	BCJ
11097-69-1	Aroclor 1254	ND		mg/kg dry	0.0197	Ī	EPA 8082A Certifications:	NELAC-N	03/28/2023 19:25 Y10854,CTDOH-PH-0	03/31/2023 00:54 723,NJDEP,PAD	BCJ
11096-82-5	Aroclor 1260	ND		mg/kg dry	0.0197	Ī	EPA 8082A Certifications:	NELAC-N	03/28/2023 19:25 Y10854,CTDOH-PH-0	03/31/2023 00:54 723,NJDEP,PAD	BCJ
1336-36-3	* Total PCBs	ND		mg/kg dry	0.0197	1	EPA 8082A Certifications:		03/28/2023 19:25	03/31/2023 00:54	BCJ
	Surrogate Recoveries	Result		Acceptance	e Range						
877-09-8	Surrogate: Tetrachloro-m-xylene	90.5 %		30-1	40						
2051-24-3	Surrogate: Decachlorobiphenyl	83.5 %		30-1	40						

Metals, Target Analyte

Log-in Notes:

Sample Notes:

CAS No	0.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum		13100		mg/kg dry	4.95	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY10	03/31/2023 19:38 854,NJDEP,PAD	CW
7440-36-0	Antimony		ND	M-CCV 1	mg/kg dry	2.48	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY10	03/31/2023 19:38 854,NJDEP,PAD	CW
7440-38-2	Arsenic		3.22		mg/kg dry	1.49	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY10	03/31/2023 19:38 854,NJDEP,PAD	CW
7440-39-3	Barium		73.8		mg/kg dry	2.47	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY10	03/31/2023 19:38 854,NJDEP,PAD	CW
7440-41-7	Beryllium		0.288		mg/kg dry	0.050	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY10	03/31/2023 19:38 854,NJDEP,PAD	CW
7440-43-9	Cadmium		ND		mg/kg dry	0.297	1	EPA 6010D Certifications:	CTDOH-PI	03/28/2023 20:54 H-0723,NELAC-NY10	03/31/2023 19:38 854,NJDEP,PAD	CW

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices

Client Sample ID: C-6 York Sample ID: 23C1504-03

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 23C1504 4 Tripp Lane Armonk, NY 10504 Soil March 24, 2023 3:00 pm 03/27/2023

Metals, Target Analyte

Cobalt

Sample Prepared by Method: EPA 7473 soil

7440-48-4

Log-in Notes:

0.396

Sample Notes:

03/28/2023 20:54

CTDOH-PH-0723,NELAC-NY10854,NJDEP,PAD

CTDOH-PH-0723.NELAC-NY10854.NJDEP.PAD

CTDOH-PH-0723,NJDEP,NELAC-NY10854,PAD

EPA 6010D

Certifications:

Certifications:

Certifications:

CW

03/31/2023 19:38

Sample Prepare	ed by Method: EPA 3050B										
CAS No	o. Par	ameter Result	Flag	Units	Reported to LOQ	Dilution	Reference I	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-70-2	Calcium	3460		mg/kg dry	4.96	1	EPA 6010D		03/28/2023 20:54	03/31/2023 19:38	CW
							Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NJDEP,PAD	
7440-47-3	Chromium	17.2		mg/kg dry	0.496	1	EPA 6010D		03/28/2023 20:54	03/31/2023 19:38	CW
							Certifications:	CTDOH-PH	I-0723,NELAC-NY10	854,NJDEP,PAD	

7440-50-8 1.98 EPA 6010D 03/28/2023 20:54 03/31/2023 19:38 Copper 24.0 mg/kg dry CTDOH-PH-0723,NELAC-NY10854,NJDEP,PAD Certifications: EPA 6010D 03/28/2023 20:54 03/31/2023 19:38 7439-89-6 21800 mg/kg dry 24.8 Iron Certifications CTDOH-PH-0723 NELAC-NY10854 NIDEP PAD 7439-92-1 0.496 EPA 6010D 03/28/2023 20:54 03/31/2023 19:38 36.2 mg/kg dry Lead Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PAD

mg/kg dry

9.51

EPA 6010D 03/28/2023 20:54 03/31/2023 19:38 7439-95-4 4.96 Magnesium 6220 mg/kg dry Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PAD 03/28/2023 20:54 EPA 6010D 03/31/2023 19:38 7439-96-5 Manganese 576 mg/kg dry 0.496 Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PAD 7440-02-0 mg/kg dry 0.987 EPA 6010D 03/28/2023 20:54 03/31/2023 19:38 Nickel 18.7

Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PAD 7440-09-7 4.96 EPA 6010D 03/28/2023 20:54 03/31/2023 19:38 Potassium 1420 M-CC mg/kg dry V1Certifications: CTDOH-PH-0723, NELAC-NY10854, NJDEP, PAD 03/28/2023 20:54 7782-49-2 2.48 EPA 6010D 03/31/2023 19:38 Selenium ND mg/kg dry

7440-22-4 0.499 EPA 6010D 03/28/2023 20:54 03/31/2023 19:38 Silver mg/kg dry ND Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PAD 7440-23-5 49.6 EPA 6010D 03/28/2023 20:54 03/31/2023 19:38 Sodium 335 M-CC mg/kg dry CTDOH-PH-0723.NELAC-NY10854.NJDEP.PAD Certifications: 03/28/2023 20:54 03/31/2023 19:38 7440-28-0 Thallium ND mg/kg dry 2.48 EPA 6010D

CTDOH-PH-0723.NELAC-NY10854.NJDEP.PAD Certifications: 03/28/2023 20:54 03/31/2023 19:38 7440-62-2 0.987 EPA 6010D Vanadium 29.7 mg/kg dry Certifications: CTDOH-PH-0723, NELAC-NY10854, NJDEP, PAD 7440-66-6 EPA 6010D 2.47 Zinc 57.8 mg/kg dry Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PAD

Log-in Notes: Sample Notes: Mercury by 7473

Reported to Date/Time Date/Time Dilution Reference Method CAS No. **Parameter** Result Flag Units Analyzed Analyst Prepared 04/03/2023 09:43 04/03/2023 13:26 7439-97-6 Mercury ND mg/kg dry 0.0357 EPA 7473 BML

Log-in Notes: Sample Notes: Total Solids

Sample Prepared by Method: % Solids Prep Date/Time Date/Time Reported to Dilution CAS No. Parameter Units LOO Reference Method Analyzed Result Flag Prepared Analyst 04/02/2023 08:50 solids * % Solids % 0.100 SM 2540G 04/02/2023 10:41 84 1

LC Certifications: CTDOH-PH-0723 120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE **RICHMOND HILL, NY 11418**

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166

ClientServices Page 35 of 40

Client Sample ID: C-6 York Sample ID: 23C1504-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C15044 Tripp Lane Armonk, NY 10504SoilMarch 24, 2023 3:00 pm03/27/2023

120 RESEARCH DRIVE
www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices Page 36 of 40

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container	
23C1504-01	C-4	40mL Vial with Stir Bar-Cool 4° C	
23C1504-02	C-5	40mL Vial with Stir Bar-Cool 4° C	
23C1504-03	C-6	40mL Vial with Stir Bar-Cool 4° C	

Sample and Data Qualifiers Relating to This Work Order

QM-05	The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data are acceptable.
QL-02	This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.
M-CCV1	The recovery for this element in the Continuing Calibration Verification (CCV) exceeded 110% of the expected value. Positive detections may be biased high.
J	Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.
CCVE	The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% Difference for average Rf or >20% Drift for quadratic fit).
CAL-E	The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration (average Rf>20%)
	Definitions and Other Explanations
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices
 Page 38 of 40

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices

YORK

York Analytical Laboratories, Inc. 132-02 89th Ave 120 Research Drive Stratford, CT 06615

clientservices@yorklab.com

Queens, NY 11418 www.yorklab.com

Field Chain-of-Custody Record

2361504 YORK Project No.

NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document. This document serves as your written authorization for YORK to proceed with the analyses requested below. Your standard binds you to YORK's Standard Terms & Conditions.

Jo

Page

Container Description **Turn-Around Time** YORK Reg. Comp. Compared to the following Regulation(s): (please fill in) Special Instruction 35 Standard (5-7 Day) RUSH - Three Day RUSH - Next Day RUSH - Four Day RUSH - Two Day Field Filtered Lab to Filter RBS, Pertridot 802 Standard Excel EDD NJDEP SRP HazSite 10509 EQuIS (Standard) NYSDEC EQUIS ZnAc YOUR Project Number YOUR Project Name Report / EDD Type (circle selections) 4 Tripp Lane 2 Preservation: (check all that apply) NaOH TAL Mela 15. Samples Refinguished by / Compan Analysis Requested CT RCP DQA/DUE 4 mon 12 NJDEP Reduced H2SO4 Deliverables YOUR PO#: NJDKQP CT RCP FULL HNO3 Other: Imcolle, com NY ASP A Package NY ASP B Package MeOH X Rocal Summary Report 10504 Ascorbic Acid QA Report 2694-206 Bohlander Invoice To: Balker 5 를 모 JAG PLL 1000 Date/Time Sampled Samples From Armank 124/1202 Pennsylvania 021 Connecticut New Jersey 10/10 New York 12/ 162/5 Labels, not that it matters Other DW - drinking water GW - groundwater Matrix Codes Sample Matrix WW - wastewater Other 0-0 Report To: Please print clearly and legibly. All information must be complete. Samples will not be logged in and the turn-around-time clock will not begin until any questions by YORK are resolved. Samples Collected by: (print your name above and sign below) has two phoenix N 6115 Rertar Sample Identification - Street, Cooper Hydro Environmenta 0152-962 YOUR Information lauso 19c K Center - /11/b: - /1/-Comments 9-7 Page 40 of 40

Temp. Received at Lab

14:30

3/27/23

Man

nales Received in LAB by

ished by / Compan

4 Tripp Lane Armonk, New York

Summary of Laboratory Analytical Results for Soil

Sample ID 81/CDCC044.337 C-4 C-5 C-6								
York ID Sampling Date	NYSDEC Part 375 Unrestricted Use Soil	NYSDEC Part 375 Restricted Use Soil Cleanup Objectives -	23C1504-01 3/24/2023		23C1504-02 3/24/2023		23C1504-03 3/24/2023	
Client Matrix Compound	Cleanup Objectives	Restricted Residential	Soil Result	Q	Soil Result	Q	Soil Result	Q
Volatile Organics, 8260 - Comprehensive (mg/kg) 1,1,1,2-Tetrachloroethane	~	~	0.00310	U	0.00300	U	0.00220	U
1,1,1-Trichloroethane	0.68	100	0.00310	U	0.00300	U	0.00220	U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	~	~ ~	0.00310 0.00310	U	0.00300 0.00300	U	0.00220 0.00220	U
1,1,2-Trichloroethane	~	~	0.00310	U	0.00300	U	0.00220	U
1,1-Dichloroethane	0.27	26	0.00310	U	0.00300	U	0.00220	U
1,1-Dichloroethylene 1,2,3-Trichlorobenzene	0.33	100	0.00310 0.00310	U	0.00300 0.00300	U	0.00220 0.00220	U
1,2,3-Trichloropropane	~	~	0.00310	U	0.00300	U	0.00220	U
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	3.6	~ 52	0.00310 0.00310	U	0.00300 0.00300	U	0.00220 0.00220	U
1,2-Dibromo-3-chloropropane	~	~	0.00310	U	0.00300	U	0.00220	U
1,2-Dibromoethane	~	~	0.00310	U	0.00300	U	0.00220	U
1,2-Dichlorobenzene 1,2-Dichloroethane	1.1 0.02	100 3.1	0.00310 0.00310	U	0.00300 0.00300	U	0.00220 0.00220	U U
1,2-Dichloropropane	~	~	0.00310	U	0.00300	U	0.00220	U
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	8.4 2.4	52 49	0.00310 0.00310	U	0.00300 0.00300	U	0.00220 0.00220	U
1,4-Dichlorobenzene	1.8	13	0.00310	U	0.00300	U	0.00220	U
1,4-Dioxane	0.1	13	0.0620	U	0.0600	U	0.0440	U
2-Butanone 2-Hexanone	0.12	100	0.00310 0.00310	U	0.00300 0.00300	U	0.00220 0.00220	U
4-Methyl-2-pentanone	~	~	0.00310	U	0.00300	U	0.00220	Ü
Acetone	0.05	100	0.00620	U	0.00600	U	0.00440	U
Acrolein Acrylonitrile	~	~ ~	0.00620 0.00310	U	0.00600 0.00300	U	0.00440 0.00220	U
Benzene	0.06	4.8	0.00310	U	0.00300	U	0.00220	U
Bromochloromethane Bromodichloromethane	~	~ ~	0.00310 0.00310	U	0.00300 0.00300	U	0.00220 0.00220	U
Bromoform	~	~	0.00310	U	0.00300	U	0.00220	U
Bromomethane	~ ~	~ ~	0.00310	U	0.00300	U	0.00220	U
Carbon disulfide Carbon tetrachloride	0.76	2.4	0.00310 0.00310	U	0.00300 0.00300	U	0.00220 0.00220	U U
Chlorobenzene	1.1	100	0.00310	U	0.00300	U	0.00220	U
Chloroethane	~	~	0.00310	U	0.00300	U	0.00220	U
Chloroform Chloromethane	0.37 ~	49 ~	0.00310 0.00310	U	0.00300 0.00300	U	0.00220 0.00220	U U
cis-1,2-Dichloroethylene	0.25	100	0.00310	U	0.00300	U	0.00220	U
cis-1,3-Dichloropropylene Cyclohexane	~	~ ~	0.00310 0.00310	U	0.00300 0.00300	U	0.00220 0.00220	U
Dibromochloromethane	~	~	0.00310	Ü	0.00300	Ü	0.00220	Ü
Dibromomethane	~ ~	~ ~	0.00310	U	0.00300	U	0.00220	U
Dichlorodifluoromethane Ethyl Benzene	1	41	0.00310 0.00310	U	0.00300 0.00300	U	0.00220 0.00220	U
Hexachlorobutadiene	~	2	0.00310	U	0.00300	U	0.00220	U
Isopropylbenzene Methyl acetate	~ ~	~	0.00310 0.00310	U	0.00300 0.00300	U	0.00220 0.00220	U
Methyl tert-butyl ether (MTBE)	0.93	100	0.00310	U	0.00300	U	0.00220	U
Methylcyclohexane	~	~	0.00310	U	0.00300	U	0.00220	U
Methylene chloride n-Butylbenzene	0.05 12	100 100	0.00620 0.00310	U	0.00600 0.00300	U	0.00440 0.00220	U
n-Propylbenzene	3.9	100	0.00310	U	0.00300	U	0.00220	U
o-Xylene	~ ~	~	0.00310 0.00620	U	0.00300 0.00600	U	0.00220 0.00440	U
p- & m- Xylenes p-Isopropyltoluene	~	~	0.00820	U	0.00300	U	0.00220	U U
sec-Butylbenzene	11	100	0.00310	U	0.00300	U	0.00220	U
Styrene tert-Butyl alcohol (TBA)	~	~	0.00310 0.00310	U	0.00300 0.00300	U	0.00220 0.00220	U
tert-Butylbenzene	5.9	100	0.00310	U	0.00300	U	0.00220	U
Tetrachloroethylene	1.3	19	0.00310	U	0.00300	U	0.00220	U
Toluene trans-1,2-Dichloroethylene	0.7 0.19	100 100	0.00310 0.00310	U	0.00300 0.00300	U	0.00220 0.00220	U U
trans-1,3-Dichloropropylene	~	~	0.00310	U	0.00300	U	0.00220	U
trans-1,4-dichloro-2-butene Trichloroethylene	0.47	~ 21	0.00310 0.00310	U	0.00300 0.00300	U	0.00220 0.00220	U
Trichlorofluoromethane	~	~	0.00310	U	0.00300	U	0.00220	U
Vinyl Chloride	0.02	0.9	0.00310	U	0.00300	U	0.00220	U
Xylenes, Total Semi-Volatiles, 8270 - Comprehensive (mg/kg)	0.26	100	0.00930	U	0.00910	U	0.00660	U
1,1-Biphenyl	~	~	0.0569	U	0.0496	U	0.0495	U
1,2,4,5-Tetrachlorobenzene	~ ~	~	0.113	U	0.0990	U	0.0988	U
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	1.1	100	0.0569 0.0569	U	0.0496 0.0496	U	0.0495 0.0495	U U
1,2-Diphenylhydrazine (as Azobenzene)	~	~	0.0569	U	0.0496	U	0.0495	U
1,3-Dichlorobenzene 1.4-Dichlorobenzene	2.4 1.8	49 13	0.0569 0.0569	U	0.0496 0.0496	U	0.0495 0.0495	U
2,3,4,6-Tetrachlorophenol	~	~	0.113	U	0.0990	U	0.0988	U
2,4,5-Trichlorophenol	~ ~	~	0.0569 0.0569	U	0.0496 0.0496	U	0.0495 0.0495	U
2,4,6-Trichlorophenol 2,4-Dichlorophenol	2	~	0.0569 0.0569	U	0.0496 0.0496	U	0.0495 0.0495	U
2,4-Dimethylphenol	~	~	0.0569	Ü	0.0496	U	0.0495	U
2,4-Dinitrophenol 2,4-Dinitrotoluene	~ ~	~ ~	0.113 0.0569	U	0.0990 0.0496	U	0.0988 0.0495	U
2,6-Dinitrotoluene	~	~	0.0569	U	0.0496	U	0.0495	U
2-Chloronaphthalene	ũ	~ ~	0.0569	U	0.0496	U	0.0495	U
2-Chlorophenol 2-Methylnaphthalene	~	~	0.0569 0.0569	U	0.0496 0.0496	U	0.0495 0.0495	U U
2-Methylphenol	0.33	100	0.0569	U	0.0496	U	0.0495	U
2-Nitroaniline 2-Nitrophenol	~ ~	~	0.113 0.0569	U	0.0990 0.0496	U	0.0988 0.0495	U
2-Nitrophenol 3- & 4-Methylphenols	0.33	100	0.0569 0.0569	U	0.0496 0.0496	U	0.0495 0.0495	U
3,3-Dichlorobenzidine	~	~	0.0569	U	0.0496	U	0.0495	U
3-Nitroaniline 4,6-Dinitro-2-methylphenol	~ ~	~	0.113 0.113	U	0.0990 0.0990	U	0.0988	U
4-Bromophenyl phenyl ether	~	~	0.0569	U	0.0496	U	0.0495	U
4-Chloro-3-methylphenol	~ ~	~	0.0569	U	0.0496	U	0.0495	U
4-Chloroaniline 4-Chlorophenyl phenyl ether	~ ~	~	0.0569 0.0569	U	0.0496 0.0496	U	0.0495 0.0495	U U
4-Nitroaniline	~	~	0.113	U	0.0990	U	0.0988	U
4-Nitrophenol	~ 20	100	0.113	U	0.0990	U	0.0988	U
Acenaphthene Acenaphthylene	20 100	100	0.0569 0.0569	U	0.0496 0.0496	U	0.0495 0.0495	U
Acetophenone	~	~	0.0569	U	0.0496	U	0.0495	U
Aniline Anthracene	100	100	0.227 0.0569	U	0.198 0.0496	U	0.198 0.0495	U U
Atrazine	~	~	0.0569	U	0.0496	U	0.0495	U
Benzaldehyde	~ ~	~	0.0569	U	0.0496	U	0.0495	U
Benzidine Benzo(a)anthracene	1	1	0.227 0.0569	U	0.198 0.0496	U	0.198 0.0495	U U
A CONTRACTOR OF CONTRACTOR								-

4 Tripp Lane Armonk, New York

Summary of Laboratory Analytical Results for Soil

Month Mont	Sample ID			C-4		C-5		C-6	
Campaign	York ID			23C1504-01		23C1504-02		23C1504-03	
			Cleanup Objectives -						
Second Property	Compound		Restricted Residential	Result		Result		Result	
Remody, Liphopher (1982) 1982 1983 198			1						
Remark and	Benzo(g,h,i)perylene							0.0495	U
Restrict Part Par			3.9						
			~						
Mile			~						
Mile		~	~						
Big Company			~				U	0.0495	U
Control	Bis(2-chloroisopropyl)ether		~		U	0.0496			U
Calebook									
Common		~	~						
Second Content			2.0						
Demonstration									
Common C		7	59						
See Angle principate	Diethyl phthalate		~						
Security physical			~						
Date			~						
Recember 100		~	Ĩ.						
Page		100	100						
Reachinesteremore									
Reacylorogrospendednee		0.33							
		~	~	0.0569	U	0.0496	U	0.0495	U
Second Color			~						
Section			~						
Marchane 12		0.5	0.5						
Noticember 0.0569		12	100						
Askinomatentylumines		~	~	0.0569	U		U		U
Nestroon of proproplemine			~		U		U	0.0495	U
Pental Principle 0.8			~						
Premartures									
Present									
Premission 100									
Processor Substrates in regulary									
4.4-DOD									
As-DOT		0.0033	13	0.00227	U	0.00200	U	0.00195	U
Afrin									
Spins-Brifc 0.022									
John-Chickraine 0.094									
Secta Birch 0.036									
Chlordane, total									
delite Bill C		~	~						
Endoulfin		0.04	100				U		
Endosulfin									
Endosulfiss sulfate 2.4 24 0.00227 U 0.00200 U 0.00195 U									
Endrin elderhyde									
Endrin alebayde									
Endrin kentone		~	~						
Samma-Chordane		~	~						
Impachor 0.042	gamma-BHC (Lindane)	0.1	1.3	0.00227	U	0.00200	U	0.00195	U
Inspitation reposite		~	~						
Methosychlor		0.042	2.1						
Tozaphene		~	~						
Martis Target Analyte (me/ke)									
Aluminum Antininum Artininum Artinin				01220		01202		010300	
Arsenic 13		~	~	19,500		16,200		13,100	
Barlum	Antimony			2.890	U	2.550	U	2.480	U
Beryllium									
Cadmium 2.5 4,3 0.347 U 0.306 U 0.297 U Calcium - - 2,930 2,140 3,460 17.200 Chromium - - 19,800 21,100 17.200 17.200 Cobalt - - 9,130 11,400 9,510 24 Copper 50 270 18,500 20,800 24 1 Icon - - 18,700 18,800 27,500 36,200 1 Icad 63 400 36,600 27,500 36,200 1 Magnesium - - 3,890 4,120 6,220 1 Marganese 1600 2000 601 390 15,700 18,700 18,700 1 1,700 18,700 18,700 1,700 18,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1									
Calcium					(0)		U		Į.
Chromium			~				J		, v
Cooper 50 270 18.500 28.800 2.4 2.4 1.5 2.5 1.5 2.5			~						
Iron			~						
Lead 63 400 36.900 27.500 36.200 Magnesium - - 3.890 4,120 6.220 Marganese 1600 2000 601 390 576 Nckel 30 310 14.300 15.700 18.700 Potasisim - - 1,460 1,860 1,420 Silver 3.9 180 2,280 U 2,550 U 2,480 U Silver 2 180 0,583 U 0,513 U 0,499 U Solfum - - - 181 131 335 U 1780 U 2,480 U 1,480 U 2,550 U 2,480 U 2,500 U 2,580 U 2,480 U 0,093 U 2,480 U 2			270						
Magnesium " " " " " " " " " " " " " " " " " " "			400						
Manganese 1600 2000 601 390 576 Nickel 30 310 14.300 15.700 18.700 Potassium - - 1,460 1,860 1,420 Silver 3.9 180 2,890 U 2,550 U 2,480 U Silver 2 180 0,583 U 0,513 U 0,499 U Sodium - - 1,860 0 33 U 0,499 U Vanadium - - 2,890 U 2,550 U 2,480 U Vanadium - - 2,890 U 2,550 U 2,480 U Vanadium - - 2,890 U 2,550 U 2,480 U Vanadium - 109 1,000 55 5 57,800 U Wercury 0,18 0,81 0,130 0,0397 0,03		63	400						
Nickel 30 310 14.300 15.700 18.700 17.700 18.700 Potassium 1.460 1.860 1.860 1.820 1.200 1.800		1600	2000						
Potassium									
Selenium 3.9 180 2.890 U 2.550 U 2.480 U U 2.550 U 2.480 U Solium 2 180 0.583 U 0.513 U 0.499 U Solium 2 2 2.890 U 2.550 U 2.480 U 3.550 U 2.480 U 2.550 U 2		~	~						
Silver 2	Selenium			2.890		2.550		2.480	
Thallium	Silver	2	180	0.583		0.513	U	0.499	
Vanadium ~ 35,600 35 29,700 Zinc 109 1000 \$9,600 \$5 \$7,800 Mercury 0.18 0.81 0.130 0.0397 0.0357 U Total Solids (%) ***********************************		~	~						
109 10000 39.600 55 27.800	Inallium		~		U		U		U
Mercury 0.18			10000						
Mercury 0.18 0.81 0.130 0.0397 0.0357 U		105	10000	33.000		J3		37.000	
Total Solids (%)		0.18	0.81	0.130		0.0397		0.0357	U
Solids			1						
Polychioriated liphenyls (PCB) (mg/kg)	% Solids	~	~	72.100		81.800		84.100	
Aroclor 1221			16						
Aroclor 1322		~	~						
Arcelor 1242 0.0230 U 0.0202 U 0.0137 U Arcelor 1248 0.0230 U 0.0202 U 0.0137 U 0.0300 U 0.0202 U 0.0137 U 0.0300 U 0.0202 U 0.0137 U 0.0300 U 0.0202 U 0.0307 U 0.0300 U 0.0202 U 0.0307 U 0.0300 U 0.0202 U 0.0300 U 0.030		~	~						
Aroclor 1248			~						
Aroclor 1254 ~	Aroclor 1248		~						
0.1 1 0.0230 U 0.0202 U 0.0197 U 0.0197 U	Aroclor 1254	~	~	0.0230	U	0.0202	U	0.0197	U
			~						
	Total PCBs EXCEEDS NYSDEC STANDARDS		1	0.0230	U	0.0202	U	0.0197	U

NOTES:
Any Regulatory Exceedences are color coded by Regulation

Any Regulatory Exceedences are color Couse by regulatory

Q is the Qualifier Column with definitions as follows:

Dersual its from an analysis that required a dilution

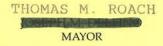
Janalyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

Jeanalyte of detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

Beanalyte found in the analysis batch blank

Beanalyte found in the analysis batch blank

E-result is estimated and cannot be accurately reported due to levels encountered or interferences


P-this flag is used for pesticide and PCB (Arocior) target compounds when there is a % difference for detected concentrations that exceed method dictated limits between the two GC columns used for analysis

NT=this indicates the analyte was not a target for this sample

"wthis indicates that no regulatory limit has been established for this analyte

DEPARTMENT OF PURCHASE 202 WESTCHESTER AVENUE • WHITE PLAINS, NEW YORK 10601 (914) 422-1267 • FAX: (914) 422-1263

BILL OF SALE ◀

GREGORY V. POWELL COMMISSIONER

	was sold as obsolete-surplus City material/equipment, pursuant to State General Municipal Law Section 103 and the Charter of the York.
SALE DATE:	July 1, 2015

ITEM DESCRIPTION:

SALE AMOUNT:

NAME AND ADDRESS OF PURCHASER:

NOTE:

Purchaser must remove all materials from yard within one (1) month of sale. Materials not removed are forfeited without refund.

REGULAR HOURS: 8 AM to 3:15 PM • SUMMER HOURS (5/1 - 9/15): 7AM to 2:30 PM NO LOADING BETWEEN 11:45 AM to 12:30 PM

GREGORY V. POWELL Commissioner of Purchase

DEPARTMENT OF PURCHASE 202 WESTCHESTER AVENUE • WHITE PLAINS, NEW YORK 10601 (914) 422-1267 • FAX: (914) 422-1263

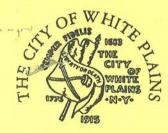
JOSEPH M. DELFINO MAYOR

▶ BILL OF SALE ◆

GREGORY V. POWELI COMMISSIONER

The item described below was sold as obsolete-surplus City material/equipment, pursuant to the provisions of New York State General Municipal Law Section 103 and the Charter of the City of White Plains, New York.

SALE	DATE: 3/11/	16	
Tall and		4-1	
ITEM	DESCRIPTION: Top S	011	
, L	1 50 ya	1	Q \$12.00
	AMOUNT: s 600	50%	
		4	
120	AND ADDRESS Gala	VV	Contracting
		Tr	pp lane
	an	nonl	10504 BOOM


NOTE:

Purchaser must remove all materials from yard within one (1) month of sale. Materials not removed are forfeited without refund.

REGULAR HOURS: 8 AM to 3:15 PM • SUMMER HOURS (5/1 - 9/15): 7AM to 2:30 PM, NO LOADING BETWEEN 11:45 AM to 12:30 PM

GREGORY V. POWELL Commissioner of Purchase

"THE BIRTHPLACE OF THE STATE OF NEW YORK"

DEPARTMENT OF PURCHASE 202 WESTCHESTER AVENUE • WHITE PLAINS, NEW YORK 10601 (914) 422-1267 • FAX: (914) 422-1263

THOMAS M. ROACH

▶ BILL OF SALE ◄

GREGORY V. POWELL COMMISSIONER

The item described below was sold as obsolete-surplus City material/equipment, pursuant to the provisions of New York State General Municipal Law Section 103 and the Charter of the City of White Plains, New York.

SALE DATE:	May 11, 2016
ITEM DESCRIPTION:	Top soil
	20 yards @ \$15.00 per gd
SALE AMOUNT:	\$ 300,00
NAME AND ADDRESS OF PURCHASER:	Galaxy Conforting
	4 100 1
	almonto No

NOTE:

Purchaser must remove all materials from yard within one (1) month of sale. Materials not removed are forfeited without refund.

REGULAR HOURS: 8 AM to 3:15 PM • SUMMER HOURS (5/1 - 9/15): 7AM to 2:30 PM NO LOADING BETWEEN 11:45 AM to 12:30 PM

GREGORY V. POWELL

Commissioner of Purchase

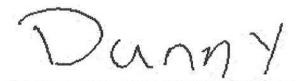
Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered Order#		PO# It	rvoiced	Invoice#	
04/26/2016	8850209	94 0	4/26/2016	75418209	
Printed	Requested for	Ship Via	Customer Contact	Sales Associate	
02/28/2023		Customer Pick up	ANNA.	Dustin Stark	

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979


Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

LN	Item#	Description	Ordered	Shipped	Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	4	4	0	43.000 / EA	172.00
	lease remit payment to: teOne Landscape Supply, LLC			- 15	ubtotal: ales Tax		\$172.00 \$10.92
24	24110 NETWORK PLACE CHICAGO, IL 60673-1241			Freight: Total:			\$0.00 \$182.92
Ter	rms: NET 30 DAYS				otal Payr	nent:	\$0.00
Par	y by 05/26/2016			A	mount D	ue:	\$182.92

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#	
04/26/2016	88505606	7-1	04/26/2016	75421142	

Printed	Requested for	Ship Via	Customer Contact	Sales Associate
02/28/2023	à la	Customer Pick up	DAVID .	Mark Porter

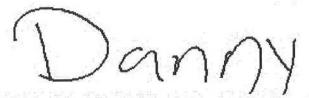
Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonik, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300



LN	Item#	Description	Qty Ordered	Qty Shipped	Qity Open	Net Price	Ext. Price
1	SCREENED- TOPSOIL	Screened Top Soil Bulk	4	4	0	43.000 / EA	172.00
2	92951	Belgium Block Jumbo 10 in. x 7 in. x 4 in. per pc.	40	40	0	3.350 / EA	134.00

Please remit payment to: SiteOne Landscape Supply, LLC 24110 NETWORK PLACE CHICAGO, IL 60673-1241

Terms: NET 30 DAYS Pay by 05/26/2016

St	ubtotal:	\$306.00
Sa	eles Tax:	\$19.43
Fr	eight:	\$0.00
To	otal:	\$325.43
To	tal Payment:	\$0.00
Δr	nount Due:	\$325.43

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365. Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#
05/02/2016	88613000	Ty Barrier	05/02/2016	75506945

Printed Requested for Ship Via Customer Contact Sales Associate
02/28/2023 Customer Pick up DAVID . Mark Porter

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

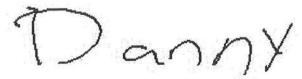
For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

IN	Item#	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	4	4	0	43.000 / EA	172.00
				S	ubtotal:		\$172.00

Please remit payment to: SiteOne Landscape Supply, LLC 24110 NETWORK PLACE CHICAGO, IL 60673-1241

Terms: NET 30 DAYS Pay by 06/01/2016

 Subtotal:
 \$172.00


 Sales Tax:
 \$10.92

 Freight:
 \$0.00

 Total:
 \$182.92

 Total Payment:
 \$0.00

 Amount Due:
 \$182.92

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

I MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

 Ordered
 Order#
 PO#
 Invoiced
 Invoice#

 05/03/2016
 88635214
 05/03/2016
 75525086

Printed Requested for Ship Via Customer Contact Sales Associate
02/28/2023 Customer Pick up DAVID Dustin Stark

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

LN	Item#	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	4	4	0	43.000 / EA	172.00
Sr 24	ease remit payment to: teOne Landscape Supply, LLC 110 NETWORK PLACE HICAGO, IL 60673-1241			S F	ubtotal: ales Tax reight: otal:		\$172.00 \$10.92 \$0.00 \$182.92
Ter	ms: NET 30 DAYS			T	otal Payr	ment:	\$0.00
Pay	y by 06/02/2016			A	mount D	ue:	\$182.92

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	P0#	Invoiced	Invoice#
05/07/2016	88736088		05/07/2016	75612142

Customer Contact | Sales Associate Requested for Ship Via Printed Carlos Perez Customer Pick up DAVID 02/28/2023

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK NY 10504 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHÉMTŘEC Day or Night- 1 (800) 424-9300

LN	Item#	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1	SCREENED- TOPSOIL	Screened Top Soil Bulk	4	4	0	43,000 / EA	172.00
2	93818-NLA	Kentucky Blue 3-Way Seed 50#	1	1	0	151.990 / EA	151.99
3	94124-NLA	MU STRAW BALE	1 1	-1	0	12.850 / EA	12.85
4	62428-224	Buxus Sempervirens American Boxwood 24 in. Height Ball and Burlap	6	6	0	68.850 / EA	413.10

Please remit payment to: SiteOne Landscape Supply, LLC 24110 NETWORK PLACE CHICAGO, IL 60673-1241

Terms: NET 30 DAYS Pay by 06/06/2016

Subtotal:	5749.94
Sales Tax:	\$47.62
Freight:	\$0.00
Total:	\$797.56
Total Payment:	\$0.00
Amount Due:	\$797.56

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

unn'l

SiteOne Landscape Supply does not offer a warranty, expressed or implied, on the purchase of plant products, which are sold "AS IS". All plant products sold by SiteOne are true to variety and size within recognized industry specifications and are in good health at the time of delivery. Please notify your SiteOne branch of any concerns within 24 hours of receipt of products.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

02/28/2023

Ordered	Order#	PO#	Invoiced	Invoice#
06/11/2016	89466805	11.7	06/11/2016	76219197

Customer Pick up |DAVID

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

LN	Item#	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	4	4	0	43.000 / EA	172.00
Si 24	lease remit payment to: iteOne Landscape Supply, LLC 1110 NETWORK PLACE HICAGO, IL 60673-1241			S F	ubtotal: ales Tax reight: otal:		\$172.00 \$10.92 \$0.00 \$182.92
Ter	rms: NET 30 DAYS			T	otal Payr	nent:	\$0.00
Pag	y by 07/11/2016			A	mount D	ue:	\$182.92

Jeremiah Conboy

· ... M /

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO# II	nvoiced	Invoice#
06/11/2016	8946828	38 0	6/11/2016	76220473
Printed	Requested for	Ship Via	Customer Contact	Sales Associate
02/28/2023	Committee of the Commit	Customer Pick up	DAVID .	Jeremiah Conboy

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

Amount Due:

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

\$182.92

LN	Item#	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	4	4	0	43.000 / EA	172.00
			W-2-1-1-1-1-WWW	S	ubtotal:		\$172.00
	lease remit payment to: teOne Landscape Supply, LLC			S	ales Tax		\$10.92
	110 NETWORK PLACE			F	reight:		\$0.00
C	HICAGO, IL 60673-1241			Т	otal:		\$182.92
Ter	rms: NET 30 DAYS			Т	otal Pavr	nent:	\$0.00

Danny

CUSTOMER SIGNATURE:

Pay by 07/11/2016

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#
06/13/2016	89475059	THE STATE OF	06/13/2016	76225874

Printed	Requested for	Ship Via	Customer Contact	Sales Associate
02/28/2023		Customer Pick up	DAVID.	Dustin Stark

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

Amount Due:

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

\$182.92

LN	ltem#	Description	Ordered	Shipped	Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	4	4	0	43.000 / EA	172.00
-				S	ubtotal:		\$172.00
	ease remit payment to: eOne Landscape Supply, LLC			S	ales Tax		\$10.92
	110 NETWORK PLACE			F	reight:		\$0.00
CH	HCAGO, IL 60673-1241			Т	otal:		\$182.92
Ter	ms: NET 30 DAYS			Т	otal Payr	ment:	\$0.00

Danny

CUSTOMER SIGNATURE:

Pay by 07/13/2016

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#
08/26/2016	90863445	1,051	08/26/2016	77352681

Printed Requested for Ship Via Customer Contact Sales Associate 02/28/2023 Customer Pick up DAVID. Ricardo Roberts

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night-1 (800) 424-9300

LN	Item#	Description	Ordered	Shipped	Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	4	4	0	43.000 / EA	172.00
Sr 24	Please remit payment to: SiteOne Landscape Supply, LLC 24110 NETWORK PLACE CHICAGO, IL 60673-1241			S	ubtotal: ales Tax reight: otal:		\$172.00 \$10.92 \$0.00 \$182.92
Ter	ms: NET 30 DAYS			Т	otal Payr	nent:	\$0.00
Pay	by 09/25/2016			A	mount D	ue:	\$182.92

Danny

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

02/28/2023

Ordered	Order#	PO#	Invoiced	Invoice#
08/26/2016	90869296	-12:14	08/26/2016	77357561
Printed	Requested for IShir	n Via	Customer Cor	ntact Salles Associate

Customer Pick up DAVID

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

Amount Due:

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

\$182.92

LN	Item#	Description	Ordered	Qty Shipped	Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	4	4	0	43.000 / EA	172.00
	Please remit payment to: SiteOne Landscape Supply, LLC			\$172.00 \$10.92			
24	110 NETWORK PLACE HICAGO, IL 60673-1241			F	ales Tax reight: otal:		\$0.00 \$182.92
Ter	ms: NET 30 DAYS				otal Payr	ment:	\$0.00

Mark Porter

Danny

CUSTOMER SIGNATURE:

Pay by 09/25/2016

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

I MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#
08/26/2016	90875782	1 - 1 - 1	08/26/2016	77362999

Requested for Ship Via Customer Contact | Sales Associate Printed ANNA Mark Porter 02/28/2023 Customer Pick up

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

\$0.00

LN	Item#	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	8	8	0	43.000 / EA	344.00
	ease remit payment to: teOne Landscape Supply, LLC			100	ubtotal: ales Tax		\$344.00 \$21.84
24	110 NETWORK PLACE HICAGO, IL 60673-1241				reight: otal:		\$0.00 \$365.84

Terms: NET 30 DAYS Pay by 09/25/2016

Total Payment: Amount Due: \$365.84

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365. Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

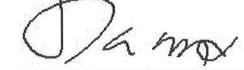
Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#
08/27/2016	90886274		08/27/2016	77372313

Printed Requested for Ship Via Customer Contact Sales Associate 02/28/2023 Customer Pick up ANNA Mark Porter

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979


Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

LN	Item#	Description	Ordered	Shipped	Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	4	4	0	43.000 / EA	172.00
	lease remit payment to: teOne Landscape Supply, LLC			1	ubtotal: ales Tax		\$172.00 \$10.92
24	1110 NETWORK PLACE				reight:		\$0.00
	HICAGO, IL 60673-1241			T	otal:		\$182.92
Ter	ms: NET 30 DAYS			T	otal Payr	ment:	\$0.00
Pay	y by 09/26/2016			А	mount D	ue:	\$182.92

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#
08/27/2016	90884622	2	08/27/2016	77370866

Printed Requested for Ship Via Customer Contact Sales Associate 02/28/2023 Customer Pick up DAVID Ricardo Roberts

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

Amount Due:

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

\$182.92

LN	Item#	Description	Ordered	Shipped	Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	4	4	0	43.000 / EA	172.00
DL	ease remit payment to:			S	ubtotal:		\$172.00
	teOne Landscape Supply, LLC			S	ales Tax		\$10.92
24	110 NETWORK PLACE			F	reight:		\$0.00
	HCAGO, IL 60673-1241			T	otal:		\$182.92
Ter	ms: NET 30 DAYS			T	otal Pavr	nent:	\$0.00

Danny

CUSTOMER SIGNATURE:

Pay by 09/26/2016

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, selfer makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365. Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

02/28/2023

Ordered	Order#	PO#	Invoiced	Invoice#
09/15/2016	91196387		09/15/2016	77617797
Printed	Requested for Ship	Via	Customer Co	ntact Salles Associate

Customer Pick up IDAVID

Sold To:

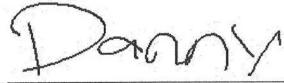
GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

111		1111	1111	1111
1111	18111		101	ш
			188	
	ши		188	ш
	THE ST OF	M 11 H	1111	818


LN	Item#	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	2.1	1	0	43.000 / EA	43.00
2	20-65-250	LESCO Liberty Seed Mixture 50 lb. Seed Lat: 1	1	1	0	88.850 / EA	88.85

Mark Porter

Please remit payment to: SiteOne Landscape Supply, LLC 24110 NETWORK PLACE CHICAGO, IL 60673-1241

Terms: NET 30 DAYS Pay by 10/15/2016

Subtotal:	\$131.85
Sales Tax:	\$8.37
Freight:	\$0.00
Total:	\$140.22
Total Payment:	\$0.00
Amount Due:	\$140.22

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered Order# PO# Invoiced Invoice# 09/27/2016 91424017 09/27/2016 77801198

Printed	Requested for	Ship Via	Customer Contact	Sales Associate
02/28/2023	9	Customer Pick up	DAVID.	Ricardo Roberts

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

LN	Item#	Description	Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	4.	4	0	43.000 / EA	172.00
Please remit payment to: SiteOne Landscape Supply, LLC 24110 NETWORK PLACE			Subtotal: Sales Tax:			\$172.00 \$10.92 \$0.00	
	HICAGO, IL 60673-1241				reight: otal:		\$182.92
Ter	ms: NET 30 DAYS			T	otal Payr	nent:	\$0.00
Pay	by 10/27/2016			A	mount D	ue:	\$182.92

Dany

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a binef survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365. Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

02/28/2023

Ordered	Order#	PO#	Invoiced	Invoice#
09/27/2016	91413659	1	09/27/2016	77792868
Printed	Requested for Ship	Via	Customer Contact	Sales Associate

Customer Pick up

ANNA

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

LN	Item#	Description	Ordered	Shipped	Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	4	4	0	43.000 / EA	172.00
Si	ease remit payment to: teOne Landscape Supply, LLC			S	ubtotal: ales Tax	×	\$172.00 \$10.92
	H110 NETWORK PLACE HICAGO, IL 60673-1241				reight: otal:		\$0.00 \$182.92
Ter	ms: NET 30 DAYS			T	otal Payr	nent:	\$0.00
Pay	y by 10/27/2016			A	mount D	ue:	\$182.92

Ricardo Roberts

JE DANNY

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered Order# PO# Invoiced Invoice# 10/05/2016 91577091 10/05/2016 77925578

Printed Requested for Ship Via Customer Contact Sales Associate
02/28/2023 Customer Pick up DAVID. Ricardo Roberts

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

LN	Item#	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	4	4	0	43.000 / EA	172.00
Si 24	lease remit payment to: teOne Landscape Supply, LLC 1110 NETWORK PLACE HICAGO, IL 60673-1241			S Fi	ubtotal: ales Tax reight: otal:	1	\$172.00 \$10.92 \$0.00 \$182.92
-1020	ms: NET 30 DAYS				otal Payr	ment:	\$0.00
Pag	y by 11/04/2016			A	mount D	ue:	\$182.92

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered Order# PO# Invoiced Invoice# 10/29/2016 92005947 10/29/2016 78273539

Printed Requested for Ship Via Customer Contact Sales Associate 02/28/2023 Customer Pick up DAVID. Ricardo Roberts

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

LN	Item#	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	1	4	0	43.000 / EA	172.00
776				S	ubtotal:		\$172.00
	ease remit payment to: teOne Landscape Supply, LLC			S	ales Tax		\$10.92
	110 NETWORK PLACE			F	reight:		\$0.00
CH	HICAGO, IL 60673-1241			T	otal:		\$182.92
Ter	ms: NET 30 DAYS			T	otal Payr	nent:	\$0.00
Pay	by 11/28/2016			A	mount D	ue:	\$182.92

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365. Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	P0#	Invoiced	Invoice#
11/08/2010	921461	07.	11/08/2016	78385805
Printed	Requested for	Ship Via	Customer Contact	Sales Associate
02/28/202	3	Customer Pick up	DAVID .	Denton Donaldson

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

LN	Item#	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	4	4	0	43,000 / EA	172.00
	ease remit payment to: teOne Landscape Supply, LLC				ubtotal: ales Tax:		\$172.00 \$10.92
24	110 NETWORK PLACE HICAGO, IL 60673-1241				reight: otal:		\$0.00 \$182.92
Ten	ms: NET 30 DAYS				otal Payn	nent:	\$0.00
Pay	by 12/08/2016			A	mount Di	ue:	\$182.92

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#
11/08/2016	92150571	1.	11/08/2016	78389364

Printed	Requested for	Ship Via	Customer Contact	Sales Associate	
02/28/2023		Customer Pick up	Carlos Afonso	Mark Porter	

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

LN	Item#	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1	SCREENED- TOPSOIL	Screened Top Soil Bulk	4	4	0	43.000 / EA	172.00
2	30-62-950	LESCO Double Eagle Seed Blend 50 lb. Seed Lot: 1	2	2	0	84.470 / EA	168.94
3	083830	LESCO Mulch Master Shredded Straw 12 in. x 17 in. x 30 in.	2	2	0	13.320 / EA	26.64

Please remit payment to: SiteOne Landscape Supply, LLC 24110 NETWORK PLACE CHICAGO, IL 60673-1241

Terms: NET 30 DAYS Pay by 12/08/2016

Subtotal:	\$367.58
Sales Tax:	\$23.34
Freight:	\$0.00
Total:	\$390.92
Total Payment:	\$0.00
Amount Due:	\$390.92

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% aff your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#
11/21/2016	92338795	1 -1-	11/21/2016	78541795

Printed Requested for Ship Via Customer Contact Sales Associate 02/28/2023 Customer Pick up danny Dustin Stark

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

LN	Item#	Description	Qty Ordered	Shipped	Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	4	4	0	43.000 / EA	172.00
	lease remit payment to: teOne Landscape Supply, LLC				ubtotal: ales Tax		\$172.00 \$10.92
24	H110 NETWORK PLACE HICAGO, IL 60673-1241			F	reight:		\$0.00
111111	ms: NET 30 DAYS				otal:		\$182.92
	by 12/21/2016			37	otal Payr mount D	1 117.00	\$182.92

Dann's

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365. Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#
11/22/2016	92356451	The state of	11/22/2016	78556273

Printed Requested for Ship Via Customer Contact Sales Associate
02/28/2023 Customer Pick up danny Ricardo Roberts

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

LN	Item#	Description	Ordered	Shipped	Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	2	2	0	43.000 / EA	86.00
Si 24	ease remit payment to: teOne Landscape Supply, LLC 110 NETWORK PLACE HICAGO, IL 60673-1241			S F	ubtotal: ales Tax reight: otal:		\$86.00 \$5.46 \$0.00 \$91.46
	ms: NET 30 DAYS				otal Payr	nent:	\$0.00
Pay	by 12/22/2016			A	mount D	ue:	\$91.46

Dann Y

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use proving code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

11/22/2016

PO# Invoiced Invoice# Order# Ordered 78556252 92356421 11/22/2016

Printed	Requested for	Ship Via	Customer Contact	Sales Associate
02/28/2023	4	Customer Pick up	danny .	Ricardo Roberts

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

Amount Due:

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

\$91.46

LN	Item#	Description	Ordered	Shipped	Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	2	2	0	43.000 / EA	86.00
DI	ease remit payment to:			S	ubtotal:		\$86.00
	teOne Landscape Supply, LLC			S	ales Tax		\$5.46
24	110 NETWORK PLACE			F	reight:		\$0.00
Cl	HICAGO, IL 60673-1241			Т	otal:		\$91.46
Ter	ms: NET 30 DAYS			T	otal Payr	nent:	\$0.00

CUSTOMER SIGNATURE:

Pay by 12/22/2016

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365. Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#
04/08/2017	93988847		04/08/2017	79814308

Printed Requested for Ship Via Customer Contact Sales Associate 02/28/2023 Customer Pick up Carlos Afonso Jose Aguirre

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 TRIPP LANE ARMONK, NY 10504 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

LN	Item#	Description	Ordered	Shipped	Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	9	9	0	43.000 / EA	387.00
Si 24	ease remit payment to: teOne Landscape Supply, LLC 110 NETWORK PLACE HICAGO, IL 60673-1241		0) 0)	S F	ubtotal: ales Tax reight: otal:		\$387.00 \$24.57 \$0.00 \$411.57
11	ms: NET 30 DAYS			r ² T	otal Payr	nent:	\$0.00
Pay	y by 05/08/2017			A	mount D	ue:	\$411.57

Comy. July

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#
05/27/2017	95139661	100	05/27/2017	80747841

Printed Requested for Ship Via Customer Contact Sales Associate
02/28/2023 Customer Pick up shawn nanhoo Jose Aguirre

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

LN Item#	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1 SCREENED-TOPSOIL	Screened Top Soil Bulk	2	2	0	43.000 / EA	86.00
Please remit payment to: SiteOne Landscape Supply, LLC 24110 NETWORK PLACE CHICAGO, IL 60673-1241			S Fi	ubtotal: ales Tax: reight: otal:		\$86.00 \$5.46 \$0.00 \$91.46
Terms: NET 30 DAYS				otal Payn		\$0.00
Pay by 06/26/2017			A	mount Di	ue:	\$91.46

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

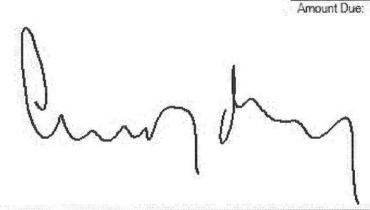
Ordered	Order#	PO#	Invoiced	Invoice#
05/27/2017	95142593	7	05/27/2017	80750386

Customer Contact | Sales Associate Requested for Ship Via Printed Carlos Afonso Lancelott Brown 02/28/2023 Customer Pick up

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:


GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

\$182.92

LN	Item#	Description	Ordered	Shipped	Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	4	4	0	43.000 / EA	172.00
	Please remit payment to: SiteOne Landscape Supply, LLC			\$172.00 \$10.92			
24	110 NETWORK PLACE HICAGO, IL 60673-1241			F	ales Tax: reight: otal:		\$0.00 \$182.92
Ter	ms: NET 30 DAYS				otal Payr	nent;	\$0.00

CUSTOMER SIGNATURE:

Pay by 06/26/2017

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365. Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered Order# PO# Invoiced Invoice# 06/03/2017 95276438 06/03/2017 80860248

Printed Requested for Ship Via Customer Contact Sales Associate
02/28/2023 Customer Pick up Carlos Afonso Jose Aguirre

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

LN	Item#	Description	Ordered	Shipped	Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk		4	0	43.000 / EA	172.00
730		2	3078.00	S	ubtotal:		\$172.00
5	ease remit payment to: teOne Landscape Supply, LLC			S	ales Tax		\$10.92
24	24110 NETWORK PLACE				\$0.00		
CI	HICAGO, IL 60673-1241			T	otal:		\$182.92
-	NET 30 DAYC					HATCH THE	00.00

Terms: NET 30 DAYS Pay by 07/03/2017 Freight: \$0.00
Total: \$182.92
Total Payment: \$0.00
Amount Due: \$182.92

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at <u>siteone.com</u>

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Order#

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered

031-3249

nvoiced

00/02/2017

U0/U3/ZU1/	302730	14 10	JIUJIZUTI	00002403
Printed	Requested for	Ship Via	Customer Contact	Sales Associate
02/28/2023		Customer Pick up	shawn nanhoo	Ricardo Roberts

PO#

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

LN	Item#	Description	Ordered	Shipped	Open	Net Price	Ext. Price
-1	SCREENED-TOPSOIL	Screened Top Soil Bulk		4	0	43.000 / EA	172.00
Sr	ease remit payment to: teOne Landscape Supply, LLC 110 NETWORK PLACE			S	ubtotal: ales Tax reight:		\$172.00 \$10.92 \$0.00
	HICAGO, IL 60673-1241				otal:		\$182.92
Ter	ms: NET 30 DAYS			- T	otal Payr	ment:	\$0.00
Pay	by 07/03/2017			A	mount D	ue:	\$182.92

Invoice#

00062496

032//

CUSTOMER

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365. Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered Order# PO# Invoiced Invoice# 06/03/2017 95282317 06/03/2017 80865440

Printed Requested for Ship Via Customer Contact Sales Associate
02/28/2023 Customer Pick up shawn nanhoo Lancelott Brown

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Amount Due:

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

\$182.92

LN	Item#	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	4	4	0	43.000 / EA	172.00
Di	ease remit payment to:			S	ubtotal:		\$172.00
	teOne Landscape Supply, LLC	Sales Tax:				\$10.92	
24	110 NETWORK PLACE			F	reight:		\$0.00
C	HICAGO, IL 60673-1241			T	otal:		\$182.92
Ter	ms: NET 30 DAYS			T	otal Payo	nent:	\$0.00

6-11

CUSTOMER SIGNATURE:

Pay by 07/03/2017

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#
06/03/2017	95274359		06/03/2017	80858439

Printed Requested for Ship Via Customer Contact Sales Associate 02/28/2023 Customer Pick up shawn nanhoo Lancelott Brown

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

LN	Item#	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	3	3	0	43.000 / EA	129.00
Si 24	lease remit payment to: teOne Landscape Supply, LLC 1110 NETWORK PLACE HICAGO, IL 60673-1241			S F	ubtotal: ales Tax reight: otal:		\$129.00 \$8.19 \$0.00 \$137.19
	rms: NET 30 DAYS			_T	otal Payr	nent:	\$0.00
Par	y by 07/03/2017			A	mount D	ue:	\$137.19

82/L

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, selfer makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365. Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

02/28/2023

Ordered		Order#	PO#	Invoiced	li li	nvaice#
06/10/201	17	95439225		06/10/2017	8	0992266
Printed	Re	quested for Ship	Via	Customer Cor	ntact	Sales Associate

shawn nanhoo

Customer Pick up

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

LN	Item#	Description	Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
	SCREENED-TOPSOIL	Screened Top Soil Bulk	4	4	0	43.000 / EA	172.00
3	lease remit payment to: iteOne Landscape Supply, LLC 4110 NETWORK PLACE			S	ubtotal: ales Tax		\$172.00 \$10.92
Č	HICAGO, IL 60673-1241				reight: otal:		\$0.00 \$182.92
Tε	rms: NET 30 DAYS			T	otal Payr	nent:	\$0.00
Pa	y by 07/10/2017			A	mount D	ue:	\$182.92

Lancelott Brown

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365. Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

02/28/2023

Ordered		Order#	PO#	Invoiced	Invoice#
06/16/20	17	95589193		06/16/2017	81115016
Printed	Re	quested for Ship) Via	Customer Cor	ntact Sales Associate

Customer Pick up Ishawn nanhoo

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

LN	ltem#	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	4	4	0	43.000 / EA	172.00
р	lease remit navment to:			S	ubtotal:		\$172.00

Jose Aguirre

SiteOne Landscape Supply, LLC 24110 NETWORK PLACE CHICAGO, IL 60673-1241

Terms: NET 30 DAYS Pay by 07/16/2017

 Subtotal:
 \$172.00

 Sales Tax:
 \$10.92

 Freight:
 \$0.00

 Total:
 \$182.92

 Total Payment:
 \$0.00

 Amount Due:
 \$182.92

THE

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#
04/13/2018	T0868489		04/13/2018	85158197

Customer Contact | Sales Associate Requested for Ship Via Printed Ricardo Roberts Customer Pick up | shawn nanhoo 03/17/2023

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

TT0868489Barcode

IN	litem #	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1	CR75100100NN	Poly Pipe 3/4 in. x 100 ft. Non-NSF 100 lb. (Priced per ft.)	200	200	0	0.154 / FT	30.80
2	SCREENED- TOPSOIL	Screened Top Soil Bulk	8	8	0	43.000 / EA	344.00

Please remit payment to: SiteOne Landscape Supply, LLC 24110 NETWORK PLACE CHICAGO, IL 60673-1241

Terms: NET 30 DAYS Pay by 05/13/2018

\$374.80 Subtotal: \$23.80 Sales Tax: \$0.00 Freight: \$398.60 Total: \$0.00 Total Payment. \$398.60 Amount Due:

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#
04/13/2018	T0872078	12	04/13/2018	85161203

Printed Requested for Ship Via Customer Contact Sales Associate 02/28/2023 Customer Pick up shawn nanhoo Jose Aguirre

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

[T0872078Barcode]

LN	Item#	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	8	8	0	43.000 / EA	344.00
Si 24	Please remit payment to: SiteOne Landscape Supply, LLC 24110 NETWORK PLACE CHICAGO, IL 60673-1241			S	ubtotal: ales Tax reight: otal:		\$344.00 \$21.84 \$0.00 \$365.84
Ter	ms: NET 30 DAYS y by 05/13/2018			T	otal Payr mount D	Charles and the second	\$0.00 \$365.84

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#
04/14/2018	T0880048		04/14/2018	85167964

Customer Contact | Sales Associate Printed Requested for Ship Via Ricardo Roberts Customer Pick up Ishawn nanhoo 03/17/2023

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHÉMTŘEC Day or Night- 1 (800) 424-9300

TT0880048Barcodel

IN	lhem #	Description	Qty Ordered	Qty Shipped	Qity Open	Net Price	Ext. Price
1	CR1300100NN	Poly Pipe 1 in. x 300 ft. Non-NSF 100 lb. (Priced per ft.)	300	300	0	0.214 / FT	64.20
2	EHF1295-010-D	Imitrol Super Blue Flex Pipe 1/2 in. x 100 ft. (Priced per ft.)	100	100	0	0.199/FT	19.90
3	PGP0425	Hunter PGP Ultra Adjustable Rotor 4 in. Riser with 2.5 Nozzle	20	20	0	15.483 / EA	309.66
4	1026	3/4 Mpt X Funny Pipe Elbow Global	50	-50	0	0.265 / EA	13.25
5	SCREENED- TOPSOIL	Screened Top Soil Bulk	8	8	0	43.000 / EA	344.00

Please remit payment to: SiteOne Landscape Supply, LLC

24110 NETWORK PLACE CHICAGO, IL 60673-1241

Terms: NET 30 DAYS Pay by 05/14/2018

\$751.01 Subtotal \$47.69 Sales Tax: Freight: \$0.00 \$798.70 Total: \$0.00 Total Payment \$798.70 Amount Due:

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#
04/28/2018	T1226972		04/28/2018	85445236

Printed Requested for Ship Via Customer Contact Sales Associate
02/28/2023 Customer Pick up shawn nanhoo Dustin Stark

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

[T1226972Barcode]

LN	Item#	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
MONOGRAM		Screened Top Soil Bulk	7	7	0	43.000 / EA	301.00
	The state of the s	Kentucky Bluegrass Sod 60 in. x 24 in. Roll	10	10	0	6.300 / EA	63.00

Please remit payment to: SiteOne Landscape Supply, LLC 24110 NETWORK PLACE CHICAGO, IL 60673-1241

Terms: NET 30 DAYS Pay by 05/28/2018

 Subtotal:
 \$364.00

 Sales Tax:
 \$23.11

 Freight:
 \$0.00

 Total:
 \$387.11

 Total Payment:
 \$0.00

 Amount Due:
 \$387.11

pol

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#
05/11/2018	T1619190		05/11/2018	85765626

Printed Requested for Ship Via Customer Contact Sales Associate
02/28/2023 Customer Pick up shawn nanhoo Michael Tanuis

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

[T1619190Barcode]

\$301.00

\$0.00

LN	Item#	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	- 7	. 7	0	43.000 / EA	301.00

 Sales Tax:
 \$19.11

 Freight:
 \$0.00

 Total:
 \$320.11

 Total Payment:
 \$320.11

Amount Due:

Subtotal:

PAYMENT: Check# 271

\$320.11

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge:

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

02/28/2023

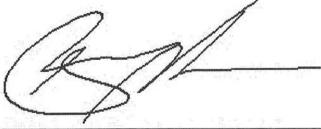
Ordered	Order#	PO#	Invoiced	Invoice#
05/12/2018	T1635832		05/12/2018	85779939
Printed IRe	quested for Ship	Via	Customer Conta	act Sales Associate

Customer Pick up shawn nanhoo

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:


GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

[T1635832Barcode]

LN Item#		San	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1 SCREE	NED-TOP	SOIL	Screened Top Soil Bulk	6	6	0	43.000 / EA	258.00
PAYMENT:	PAYMENT: Visa \$274.38 Acct# 9340 Auth# 04449G			S F T	ubtotal: ales Tax reight: otal:		\$258.00 \$16.38 \$0.00 \$274.38	
					C	otal Payr mount Di		\$274.38

Denton Donaldson

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#
07/17/2018	T3235388		07/17/2018	87103596

Customer Contact | Sales Associate Requested for Ship Via Printed Antonio Barragan Customer Pick up | shawn nanhoo 03/17/2023

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

[T3235388Barcode]

LN	Heero #	Description	Qty Ordered	Qty Shipped	Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	5	5	0	43.000 / EA	215.00
Si 24	ease remit payment to: teOne Landscape Supply, LLC 110 NETWORK PLACE HICAGO, IL 60673-1241	,42		S F	ubtotal: ales Tax reight: otal:		\$215.00 \$13.65 \$0.00 \$228.65
	ms: NET 30 DAYS	2		11242222	otal Payr	Additional international and the second	\$0.00
Par	y by 08/16/2018			A	mount D	ue:	\$228.65

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#
07/20/2018	T33266	14	07/20/2018	87178138
Printed	Requested for	Ship Via	Customer Contact	Sales Associate
03/17/2023		Customer Pick up	shawn nanhoo	Antonio Barragan

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

[T3326614Barcode]

LN	Item#	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price	
1	1 SCREENED-TOPSOIL	Screened Top Soil Bulk	2	2	0	43.000 / EA	86.00	
PI Si 24	lease remit payment to: teOne Landscape Supply, LLC 1110 NETWORK PLACE HICAGO, IL 60673-1241			S Fi	ubtotal: ales Tax reight: otal:		\$86.00 \$5.46 \$0.00 \$91.46	
Ter	rms: NET 30 DAYS				otal Payr	ment:	\$0.00	
Pag	y by 08/19/2018			A	mount D	ue:	\$91.46	

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 Kina St Greenwich, CT 06831-3245 W: (203)531-7352

03/17/2023

Ordered	09/07/2018 T4323048	Order#	PO#	Invoiced	Invoice#
09/07/201	8	T4323048		09/07/2018	87987196
Deintard	IDay	weeted for Shin	Via	Customer Cont	act Sales Associate

Customer Pick up IDAVID Denton Donaldson Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHÉMTREC Day or Night- 1 (800) 424-9300

[T4323048Barcode]

131 Berry #	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1 SCREENED-TOPSOIL	Screened Top Soil Bulk	12	7	0	43.000 / EA	301.00
Please remit payment to: SiteOne Landscape Supply, LLC 24110 NETWORK PLACE CHICAGO, IL 60673-1241			S	ubtotal: ales Tax reight: otal:	amento e	\$301.00 \$19.11 \$0.00 \$320.11
Terms: NET 30 DAYS			Ţ	otal Payr	ment:	\$0.00
Pay by 10/07/2018			Α	mount D	ue:	\$320.11

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#
08/10/2019	93699903-001		08/10/2019	93699903-001

Printed Requested for Ship Via Customer Contact Sales Associate 03/17/2023 Customer Pick up danny . Ricardo Roberts

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

IN	Item #	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1	SCREENED-TOPSOIL	Screened Top Soil Bulk	6	6	0	43.000 / EA	258.00
P	ease remit payment to:			S	ubtotal:		\$258.00 \$16.38
Si 24	teOne Landscape Supply, LLC 1110 NETWORK PLACE			s F	ales Tax reight:		\$0.00
C	HICAGO, IL 60673-1241			Т	otal:		\$274.38
Ter	ms: NET 30 DAYS			T	otal Payr	ment:	\$0.00
Pay	y by 09/09/2019			A	mount D	ue:	\$274.38

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

MFitzpatrick@SiteOne.com

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

Stronger Together

Greenwich CT #636 1081 King St Greenwich, CT 06831-3245 W: (203)531-7352

Ordered	Order#	PO#	Invoiced	Invoice#
05/02/2020	99179897-001		05/02/2020	99179897-001

Printed Requested for Ship Via Customer Contact Sales Associate
03/17/2023 Customer Pick up Secundino . Antonio Barragan

Sold To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

Ship To:

GALAXY CONTRACTING INC (#1230557) 4 Tripp Ln Armonk, NY 10504-2520 W: (914)391-6979

For Chemical Emergency Spill, Leak, Fire, Exposure, or Accident Emergency Response Assistance, call: CHEMTREC Day or Night- 1 (800) 424-9300

I N Itom #	to for	Description	Qty Ordered	Qty Shipped	Qty Open	Net Price	Ext. Price
1 SCREE	NED-TOPSOIL	Screened Top Soil Bulk	3	3	0	43.323 / EA	129.97
PAYMENT:	Visa Acct#: Auth#	\$138.22 07905C		S F	ubtotal: ales Tax reight: otal:		\$129.97 \$8.25 \$0.00 \$138.22
	Aid: Application Label:	A0000000031010 Visa Credit		<u>T</u>	otal Payr mount D	7,535, 1, at 177	\$138.22 \$0.00

CUSTOMER SIGNATURE:

SiteOne Landscape Supply warrants that all products conform to the description on the label. Because conditions of use, which are of critical importance are beyond our control, seller makes no warranty, expressed or implied, concerning the use of these products. No employee of the company is authorized to make any warranty or representation, expressed or implied, concerning our products. Always follow directions and carefully observe all precautions on the label or manufacturer's instructions. Products used contrary to directions may cause serious plant or personal injury. Buyer assumes all risk of use of handling whether in accordance with direction or not and accepts the products sold to them by this company on these conditions.

Note: Returns subject to 25% restock charge.

MATTHEW FITZPATRICK | Area Business Manager

| MFitzpatrick@SiteOne.com

SECONOR

We are 100% committed to your success. Please do not hesitate to contact me directly at the number above or scan the QR code to take a brief survey about your experience today.

Check out the SiteOne.com

Shop our Catalog, Get Pricing, and Place an Order 24/7/365.

Visit today at siteone.com.

Get 5% off your first order up to \$500 off when you use promo code WELCOME at checkout.

									7	
NAME	6	ale	axy.					DATE	420	
ADDRESS	3							SOLD	BY	
CASH	C. O	. D.	CHARGE	PAID ON ACCT.	MDSE. RET	. PAID OUT	No	18	4845	7
QUAN					ION		PE	CE	AMOU	
	1		Duan	os Top	Soil					
	2		1	. /				- 6		
	3									
6-1	4									
	5					4			1	
	6		are V						-	
	7			. (WALL	CINI				
	8			2,12		91.				
	9				HYEL					
	10		1 1		N. S.				Marie II	
	11				10.11		1 38			
	12		-1-1			+ (1)				
1 194	13		100	31.0	1411					
	14		il the		181					
	15									
	16			1			U TOPE			
- 30	17	-		F >		7				
- X V	18									
	19					A STATE OF THE PARTY OF THE PAR				
	20				in the second					
	21			100			72			
CUSTOMI		ORDE	ER NO.	RECEIV	VED BY:			10		
	⇒(111) 7 (11									

2107787

CU	STOMER OR	DER NO.	DEPARTM	ENT	1 ~	DATE	122
NA	MEGA	HATAI					
AD	DRESS			51			
CIT	Y,STATE,ZIP						
	SOLD BY	CASH C.O.	D. CHARGE	ON ACCT.	MDSE. RETD.	PAID OU	T SHIP DATE
	QUANTITY	DI	ESCRIPTION		PI	RICE	AMOUNT
1	j.	1					
2	1	1 10	nC	7			
3	07	1)	501	<u></u>		4-6	
4					B = 1.70		
5						19/19	
6							
7		1//					
8		. (/	11		الله الله		
9		7	1-				
10				- Y	·	e e	
11	±4 () = ()			Excess	- 12		
12							
13							
14							
15							
16		ZEDGEL AND)			-	
17		LANDSCAPE	and the second	201			
18	- 1	Cottage Stre	et	*			
19	Port	Chester, NY	10573	- I day			
20		Carl day of				AX	
HE	CEIVED BY					OTAL	

DDRESS	H	HAVET	1011	LAI	4		SOLD	BY BY	
CASH	C. O. D.	CHARGE	PAID ON ACCT	. MDSE. RET	PAID OUT	No	031	1075	3
				EFFAYN EE			alee	AM⊕l	***************************************
QUAN									
	1	- H		u - 0					+
	2		3/4		7.7	41	11	=1	1
151	3	211	21/11/	211	1 -	7	1)	5-7	
6	5	7.0	MARCH	1/10				7	
	6		1471	N In Th			4		
	7	700				- 1	44	50	
	8	1							
	9		7	1				4	3
	10		C. Carrier	-					
	11			4 40			8		
	12							3381	
	13	- 17 - 54						The second	
	14	2 2 2					95		
	15						- 1		
N.E.	16			*	14		0		
101 1	17		The state of the s						
L made	18								
734	19		NA THE					- 10	
	20					1			
UE in	21								
-	22		CI AA IC	7 1					
CU		∠EDG	ELAND						

Site Planning
Civil Engineering
Landscape Architecture
Land Surveying
Transportation Engineering

Environmental Studies
Entitlements
Construction Services
3D Visualization
Laser Scanning

September 11, 2023

Honorable Chairman Carthy and Members of the Planning Board Town of North Castle 15 Bedford Road Armonk, New York 10504

RE: JMC Project 20044

4 Tripp Lane Zoning Compliance

4 Tripp Lane

Town of North Castle, New York

Response to Kellard Sessions and Town of North Castle Planning Department Comments

Chairman Carthy and Members of the Planning Board:

This letter has been prepared to address comments in correspondence received from Kellard Sessions, dated November 22, 2022, and the Town's Planning Department staff report dated October 13, 2022.

The soil issue was discussed at the last Planning Board meeting, and it was determined that the proposed mitigation of the soil should be finalized prior to addressing the remaining comments/concerns.

To assist in your review of the revised documents, we are pleased to provide the following, which restates the comments from the above referenced memorandums, followed by our responses:

Kellard Sessions Memorandum to the Town of North Castle Planning Board, dated November 22, 2022:

General Comments

The comments below reflect the original review comments from the October 9, 2020, memorandum and the revised comments are outlined below in bold.

Comment No. 1

The applicant has provided a Gross Land Coverage Plan to demonstrate compliance with the maximum permitted gross land coverage for the zoning district. The plan indicates the removal of an existing sport court and a portion of the existing drive, both completed without permits, to reduce the land coverage, as necessary, to comply. We note, however, that the plan appears to require the addition of two areas of existing coverage, currently not accounted for; (1) the northernmost portion of the Boulder wall along the eastern property line appears to exceed 4 feet in height, and (2) the

JMC Planning Engineering Landscape Architecture & Land Surveying, PLLC | JMC Site Development Consultants, LLC

plan makes reference to a concrete patio north of the shed building. Although not shown on the plan, based on review of available Westchester County aerial mapping, the patio appears to exist. The plan shall be revised to include these additional coverage areas and the calculations adjusted accordingly so a determination can be made as to whether the total allowable coverage has been exceeded.

It is noted that the applicant has included all portions of the boulder wall greater than four (4) feet in height into the coverage calculations. Additionally, the applicant has provided photo of the previously existing concrete patio north of the existing shed. The square footage of the existing shed should be provided to determine if it will be considered an accessory structure for zoning compliance.

Response No. 1

The vinyl shed is approximately 170 square feet. The side yard setback for a principal building is 20 feet, therefore the setback for the shed would be 10 feet. As shown on the plans, the shed is 15 feet away from the side yard property line. A reference to the Town's code has been included below for reference.

(g) Except for stables, one-story accessory buildings, less than 800 square feet in area, may be located not nearer to any side or rear lot line than 1/2 the distance established in the foregoing schedule for principal buildings in the respective districts, but not nearer to any street than the required front yard setback distances.

Comment No. 2

The applicant will need to demonstrate to the Planning Board the levels of disturbances associated with the tree removal, filling and grading, construction of additional structures, walks, walls, patios, etc. This office will require an engineered site plan and comparative plan analysis using available historical Westchester County aerial mapping and GIS topography. This plan shall be used as the baseline to establish the various disturbances and the associated mitigation that will be required.

It is noted that the applicant has provided engineered site plans in efforts to establish a baseline plan to compare the disturbances that have occurred to the site. Comments to the specific areas of disturbance are further addressed throughout the memo.

Response No. 2

All comments regarding the specific areas of disturbance will be addressed later in the comment response letter.

Comment No. 3

The applicant shall provide floor plans and elevations for the proposed additions to the existing residence, the pool cabana, and the shed. The plans shall clarify whether any services or utilities including water, sewer and electric are provided at the cabana and / or the shed.

It is indicated on the plans that the proposed cabana has a BBQ/kitchen area. Please revisit the plans to include any services or utilities provided for these improvements.

A site investigation was performed by JMC on December 20, 2022, and the photos that were taken during this investigation have been included with this submission on JMC Drawing P-1. There appears to be no water or gas service to the BBQ area as there are no sinks and a portable propane grill appears to be what is used to BBQ in this area. Outlets to accommodate electric services were identified but no wiring was seen going to these outlets. The string lights seem to get power from outlets associated with the pool equipment via an extension cord.

Comment No. 4

The applicant will be required to provide confirmation from the Westchester County Health Department (WCHD) that the improvements and expansions to the residence and cabana do not require upgrades or modifications to the on-site wastewater treatment system.

It is noted that the applicant has begun discussions with the WCHD and that all correspondence will be provided to this office for review.

Response No. 4

The WCHD approved septic plans along with the approved Remediation Approval Application have been included with this submission.

Comment No. 5

The plan shall illustrate and dimension all minimum required yard setbacks.

The applicant has provided zoning setback dimensions on plans. Additionally, the applicant shall provide a Bulk Zoning Table and list any variances that may be required for the accessory structures.

Response No. 5

The Table of Land Use (Bulk Zoning Table) shown on JMC drawing C-000 has been updated to outline all variances to the Town's Code that will be required because of the work performed.

Comment No. 6

As part of an ongoing application with the adjacent property to the east, it was discovered that a locally regulated wetland exists at the rear of the site. The applicant will be required to investigate this wetland system to identify the boundary and associated 100 foot wetland buffer. Based on review of available Westchester County aerial mapping, it appears that this system is potentially connected to or continues through the subject property (prior to placement of fill) to a system on the west side of the property. The wetland boundary shall be field located and established with sequentially number flags for confirmation by the Town Wetland Consultant. Prior disturbances are likely to have occurred within the regulated buffer. If so, a local Wetland Permit will be required, and the applicant will be required to prepare a wetland mitigation plan in accordance with Chapter 340, Wetlands and

Watercourse Protection of the Town Code. The plan will require referral to the Conservation Board for recommendation of approval. Please notify this office once the wetland boundary has been established in the field.

The applicant shall indicate all site and neighboring wetlands and watercourses on the preexisting conditions plan.

Response No. 6

Survey information was obtained from the Town of North Castle's Planning Board website that included the extents of the town regulated wetland located on the adjacent property. This was the only information available as there is no historical information on this town regulated wetland. This wetland was delineated on April 18, 2022, by Ecological Solutions, LLC. The wetland buffer and the approximate amount of previous disturbance within this buffer are now shown on JMC Drawing C-110.

JMC met with a representative from Kellard Sessions on December 20, 2022, on site to investigate any potential wetlands and if a wetland mitigation plan would need to be prepared to mitigate the disturbances to either the wetland or wetland buffer area. It was determined that the wetlands in question were limited to the adjacent 2 Tripp Lane property and that there was in fact work performed within this wetland's buffer area at a total of 7,775 sf as shown on JMC drawing C-110.

Comment No. 7

The Wetland Mitigation Plan, if necessary, shall illustrate and quantifying the previous disturbance areas to the wetland and/or wetland buffer. The plan shall include a summary table that quantifies the total wetland and wetland buffer area on site, total disturbance areas within each, and total pervious and impervious cover pre and post development. Mitigation shall be provided at a ratio of 2:1 minimum.

As previously mentioned, the applicant shall indicate all site and neighboring wetlands and watercourses on the pre-existing conditions plan. The plan currently indicates approximately 7,775 sf of disturbance within the wetland buffer. The applicant shall provide an updated wetland/wetland buffer disturbance area and required 2:1 mitigation based on the updated wetland delineation and available aerial mapping. The plan shall include a detailed mitigation table quantifying disturbances and land cover (pervious/impervious) within the wetland and wetland buffer and the mitigation provided.

Response No. 7

It is understood by the client that both wetland mitigation and tree removal mitigation will be required. An area totaling approximately 15,550 sf was identified as the wetland buffer disturbance mitigation area and is located in the back portion of the property where the majority of the trees that were removed were once located. The mitigation area includes tree replacement that includes shade trees at 3" caliper, understory and flowering trees at 8' -10' height, and sapling trees planted with a meadow mix within this mitigation area. The applicant is also proposing to remove the Japanese barberry and invasive species within the remaining wetland buffer area. See response in Comment No. 8 for additional information.

Comment No. 8

The applicant has cleared a significant number of trees on the property. The quantity, size and species are not known. As required by Chapter 308, Trees of the Town Code, the applicant will be required to provide a tree restoration plan to mitigate the unapproved removal of existing vegetation. The Planning Board will need to determine whether the restoration plan is ultimately appropriate for the level of disturbance.

It is noted that the applicant has used a neighboring property to establish a tree sample area to base the tree mitigation calculations for the previous removal of all regulated trees. It is noted that the applicant is identifying all trees greater than eight (8) inches in diameter and all trees greater than 24 inches in diameter from the 5,000 s.f. tree sample area. The applicant has proposed tree mitigation for consideration by the Planning Board.

The applicant shall use the information gathered from the tree sample area and prorate the mitigation based on a comparison of caliper inches removed versus caliper inches provided. Please update the tree mitigation calculations as needed.

Response No. 8

A sample area of an adjacent 5,000 s.f. was completed by JMC and established that there might have been approximately 1,200 inches of trees removed from the applicant's site based on this field data. We would also like to point out that there may have been invasive species such as Norway Maples that should not be counted towards the replacement value.

The standard tree planted is generally 3" in caliper. Trying to reach the 1,200-inch replacement value would necessitate the applicant installing (400) trees. The site physically could not accommodate that many trees. The applicant is proposing the following measures for mitigation:

- 1) Installation of (29) 3" caliper native shade trees = 87 caliper inches
- 2) Installation of (23) 8' 10' native understory and flowering trees @ approx. 1.5 caliper = 34.5 caliper inches
- 3) Installation of (50) tubelings (native canopy and understory mix of trees TBD) approx. $\frac{1}{2}$ Cal. Inches each = 25 caliper inches

This would total approximately 146.5 caliper inches which is short of the 400 caliper inches for mitigation. However, it is important to note that the applicant has proposed the concentration of the plantings in the wetland buffer area, combined with the 16,000 s.f. of wetland meadow proposed in this buffer along with the invasive species removal in the buffer area. We believe that this combined approach would serve to better align with the spirit of the mitigation and environmental improvements, instead of just a numeric approach of meeting caliper inches of tree replacement.

We have attached the Tree Mitigation Plan for your consideration.

Comment No. 9

The applicant imported an unknown quantity of fill to regrade the rear yard. The baseline plan noted in Comment #2 above will be used as the basis for determination of the approximate quantity of fill imported to the site. The applicant shall prepare a cut/fill calculation and will be required to demonstrate compliance with Chapter 161, Filling and Grading of the Town Code, specifically as a relates to the soil source, import quantity and compliance with 6 NYCRR part 360. At a minimum, the applicant will be required to provide certification that the soil meets the Unrestricted Soil Use Group for residential sites. The applicant will be required to complete soil sampling and testing in accordance with New York State Department of Environmental Conservation (NYSDEC) protocol and provide a soils analysis report certified by a NYS Certified Laboratory and Soils Scientist or Engineer to demonstrate that the material imported to the site is suitable.

The applicant shall overlay the survey topography onto the GIS topography to determine the appropriate cut and fill volumes established between pre-existing conditions and existing conditions.

The fill sampling and testing was reviewed by the Town's Environmental Consultant. It was recommended that based on some of the low-level contamination present, that the fill remain in place. However, a demarcation layer (orange fence or geotextile membrane) be placed above the fill section and a minimum six (6) inch layer of topsoil be placed atop the demarcation layer to cap the material. The applicant shall review the recommendations provided in the report and revise the plans to include appropriate notes and details to include the recommendations.

Response No. 9

As was discussed at the last Planning Board meeting, the homeowner and JMC recently met on site and dug eleven additional test pits to determine the approximate limit of the imported fill. The fill layer was easily identified (grayish soil) which can be seen in certain holes in the pictures included in this submission. With the measurements taken, JMC was able to create a drawing to approximate a volume of fill that was imported to the Site, which is also included in this submission.

Comment No. 10

The property is served by an on-site wastewater treatment system. The plan shall illustrate the location of the existing septic field and tanks based on available WCHD as-builts and record data. It is assumed that the imported fill material and regrading activities that occurred at the rear of the property was also placed above the existing septic field, potentially compromising its function. The applicant will be required to provide a determination, confirmed by the WCHD, that the septic system continues to operate as intended. Any upgrades or modifications that may become necessary will need to be illustrated on the plan and approved by the Westchester County Health Department.

As previously mentioned, the applicant has begun discussion with the WCDH and will forward all correspondence to this office for review. Additionally, it should be noted that if the existing septic field trenches are to remain, a plan shall be provided to protect the existing septic fields during the removal of the portion of existing asphalt driveway.

The WCHD approved septic plans along with the approved Remediation Approval Application have been included with this submission.

Comment No. 11

The applicant has developed several improvements and altered the land cover characteristics for the site which has resulted in an increase in impervious surface and an associated increase in stormwater runoff. As required by Chapter 267, Stormwater Management of the Town Code, the applicant shall prepare a Stormwater Pollution Prevention Plan, inclusive of stormwater mitigation and attenuation measures, to mitigate stormwater runoff through the 100-year, 24-hour storm event. For the purpose of the analysis, the baseline map noted above shall be used to establish pre-developed conditions and a comparative analysis to the current site conditions shall be prepared.

The applicant has provided a Stormwater Management report. The applicant shall revise said report and clarify if the existing court and portion of the existing asphalt driveway to be removed are included in the stormwater mitigation calculations, as it appears they have been included. Additionally, there are differing references to the amount of Stormtech units being provided. Please clarify and resubmit for review.

Response No. 11

The basketball court and the portion of the driveway that are both to be removed are no longer included in the stormwater calculations. The amount of Stormtech units has been coordinated between all drawings and documents.

Comment No. 12

The plan shall clearly illustrate the location of any existing drainage systems, conveyance systems and connections. Any connections that may exist, to this storm system located in Tripp Lane, will require approval by the Town Highway Department.

Comment addressed.

Response No. 12

Comment addressed.

Comment No. 13

As part of the stormwater mitigation system design, the applicant will be required to perform deep and soil percolation testing in the vicinity of any proposed stormwater mitigation practices. The soil testing shall be witnessed by the Town Engineer. Please contact this office to schedule the required soil testing.

Comment addressed.

Comment addressed.

Comment No. 14

The applicant will be required to provide certification for the proper construction and stability of all retaining walls greater than or equal to 4 feet in height. Details of their construction shall be provided on the plan.

The applicant has provided a retaining wall plan and back up calculations in certifying the stability of the existing walls. It is noted that the applicant is to reconstruct a portion of the stone wall on the east side of the property. Design and details for this construction has been provided.

Response No. 14

Comment Addressed.

Comment No. 15

The plan shall clearly illustrate and identify the various fences located throughout the site, indicating their height and material. Fence details shall be provided on the plan.

The plans call for a six (6) foot high black vinyl coated chain link fence; however, the two (2) fence details provided are for proposed fence of 5 feet 3 inches and 5 feet 2 inches. Please coordinate between the plan and details.

Additionally, the plan shall indicate a pool enclosure that complies with NYS Building Code.

Response No. 15

The fence labels shown on JMC Drawing C-110 have been coordinated with details #10 and #11 shown on JMC Drawing C-901. A fence surrounding the pool area (including a gate) is now shown on the Site Plans and a detail of the fence and gate has been included on JMC Drawing C-900 as Detail #5.

Comment No. 16

Driveway piers and a gate has been installed at the front property line. The Town requires that gates be set back a minimum of 20 feet from the right of way to permit adequate area for a vehicle to pull off the road as well as to account for potential future road widening. The piers and gate shall be relocated accordingly, and appropriate details of their construction included on the plans.

It is noted that a waiver is requested by the applicant.

The client awaits a decision on the requested waiver.

Comment No. 17

The driveway curb cut is greater than 18 feet in width which is the maximum permitted by the Town Highway Department. The plan shall be revised to demonstrate compliance and include all details necessary for work and restoration within the Town Right of Way.

It is noted that a waiver is requested by the applicant.

Response No. 17

The client awaits a decision on the requested waiver.

Town of North Castle Planning Department Staff Report, dated October 13, 2022:

Procedural Comments

Comment No. 1

The Proposed Action would be classified as a Type II Action pursuant to the State Environmental Quality Review Act (SEQRA).

Response No. 1

So noted.

Comment No. 2

A neighbor notification meeting regarding the proposed amendment will need to be scheduled.

Response No. 2

The applicant will coordinate with the Planning Board regarding an appropriate time to schedule the neighbor notification meeting when the plans and all submission documents are advanced far enough.

Comment No. 3

Pursuant to Section 12-18.A of the Town Code, all site development plans submitted to the Planning Board are required to be referred to the Architectural Review Board (ARB) for review and comment.

Response No. 3

The applicant will coordinate with the Planning Board regarding an appropriate time to be referred to the ARB when the plans and all submission documents are advanced far enough.

Comment No. 4

Pursuant to Section 340-5.B of the Town Code, the Conservation Board is required to review the proposed wetland application and, within 45 days of receipt thereof, file a written report and its recommendation concerning the application with the Planning Board. Such report is required to evaluate the proposed regulated activity in terms of the findings, intent and standards of Chapter 340.

Response No. 4

The applicant has met with the Town's wetland consultant (Kellard Sessions) and the tree mitigation plan (JMC Drawing C-130) has been updated to reflect comments and suggestions received following this meeting.

General Comments

Comment No. 1

The Applicant has determined that approximately 171 trees were removed from the site. The Applicant's cover letter indicates that the 255 arborvitae plants previously planted along the perimeter are proposed as mitigation for the previous tree removal.

Response No. 1

Please see response No. 8 which identifies tree replacement as well tree mitigation approach.

Comment No. 2

The site plan has been revised to depict the location of the Town-regulated wetland buffer. The plans should be revised to quantify the amount of disturbance within the buffer (square feet) and prepare a 2:1 mitigation plan for review.

Response No. 2

Survey information was obtained from the Town of North Castle's Planning Board website that included the extents of the town regulated wetland located on the adjacent property. This was the only information available as there is no historical information on this town regulated wetland. This wetland was delineated on April 18, 2022, by Ecological Solutions, LLC. The wetland buffer and the approximate amount of previous disturbance within this buffer are now shown on JMC Drawing C-110.

JMC met with a representative from Kellard Sessions on December 20, 2022, on site to investigate any potential wetlands and if a wetland mitigation plan would need to be prepared to mitigate the disturbances to either the wetland or wetland buffer area. It was determined that the wetlands in

question were limited to the adjacent 2 Tripp Lane property and that there was in fact work performed within this wetland's buffer area at a total of 7,775 sf as shown on JMC drawing C-110. A mitigation of 15,550 sf would be required is shown on JMC Drawing C-130.

Comment No. 3

The Applicant has brought fill onto the site without the benefit of a fill permit issued by the Building Department.

Response No. 3

The applicant awaits further determination from the Planning Board about the process for legalizing the imported fill.

As was discussed at the last Planning Board meeting, the homeowner and JMC recently met on site and dug eleven additional test pits to determine the approximate limit of the imported fill. The fill layer was easily identified (grayish soil) which can be seen in certain holes in the pictures included in this submission. With the measurements taken, JMC was able to create a drawing to approximate a volume of fill that was imported to the Site, which is also included in this submission.

Comment No. 4

The driveway piers detail should be revised to dimension the base of the pier to the top of the light fixture. This dimension can't exceed 8 feet in height.

Response No. 4

Detail #12 On JMC Drawing C-901 has been updated to correctly dimension the driveway piers. A variance will be required for the height of the driveway piers.

Comment No. 5

The proposed (legalization) driveway gates are located on the property line. Driveway gates should be located a minimum of 20 feet from the front property line to permit adequate vehicular pull off from the right-of-way should Tripp Lane ever be expanded to the edge of the right-of-way.

Response No. 5

The client awaits a decision on the requested waiver.

Comment No. 6

The Applicant should submit floor plans and elevations for the proposed (legalization) shed.

Response No. 6

Floor plans and elevations have been provided for the improvements to the residence along with the Cabana. The Shed was prefabricated therefore no specification sheets, floor plans, elevations were provided to the client. A picture of the shed is now included on the Gross Land Coverage Calculation drawing.

Comment No. 7

An updated gross land coverage calculations worksheet should be submitted for review.

Response No. 7

It is the Architect's opinion that the basement and garage should not be included in the gross floor area calculations as shown on the average grade diagram on drawing A1.

Comment No. 8

The submitted gross floor area calculations worksheet does not include the floor area of the garage or basement. Garage space is required to be counted as part of gross floor area. The Applicant shall also provide an exhibit demonstrating that the basement level would be excluded pursuant to the definition of gross floor area.

Response No. 8

It is the Architect's opinion that the basement and garage should not be included in the gross floor area calculations as shown on the average grade diagram on drawing A1.

We trust that the above, along with the enclosed documents and drawings, address comments from the Town's Consultant's to further along the application to the Town's Zoning Board of Appeals. We look forward to your continued review throughout the Site Plan approval process and discussing this matter with you further. Should you have any questions or require additional information regarding the information provided above, please do not hesitate to contact our office at 914-273-5225.

Sincerely,

JMC Planning Engineering Landscape Architecture & Land Surveying, PLLC

Rick Bohlander, PE

Rick Bohlander

Project Manager

p:\2020\20044\admin\ltcomment response 09-11-2023.docx

SITE DEVELOPMENT PLAN APPROVAL DRAWINGS

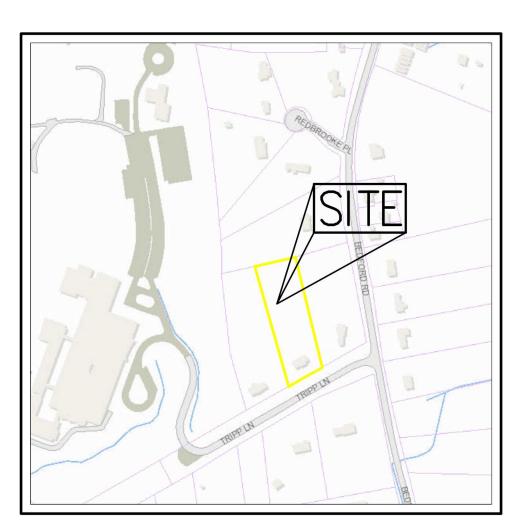
PEREIRA RESIDENCE

4 TRIPP LANE TAX MAP SECTION 108.02 | BLOCK 1 | LOT 10 WESTCHESTER COUNTY NORTH CASTLE, NY

Applicant / Owner: MR. & MRS. PEREIRA **4 TRIPP LANE**

TOWN OF NORTH CASTLE, NY **APPLICANT PHONE: (914) 391-6979**

Architect:


GET MY C.O. 57 WHEELER AVENUE, SUITE 203 PLEASANTVILLE, NY 10570 (914) 727-0980

Surveyor:

SUMMIT LAND SURVEYING P.C. 21 DRAKE LANE WHITE PLAINS, NY 10607 (914) 629-7758

Site Planner, Civil Engineer and Landscape Architect: 120 BEDFORD ROAD **ARMONK, NY 10504** (914) 273-5225

JMC Drawing List:

C-000 COVER SHEET

C-100 PRE-EXISTING CONDITIONS MAP

C-110 EXISTING CONDITIONS MAP AND DEMOLITION PLAN

C-130 TREE MITIGATION PLAN

C-200 SITE PLAN

C-310 GROSS LAND COVERAGE PLAN

C-410 CUT AND FILL PLAN

C-900 CONSTRUCTION DETAILS

C-901 CONSTRUCTION DETAILS

TABLE OF LAND USE

TOWN OF NORTH CASTLE N.Y. SECTION 108.02 BLOCK 1. LOT 10.

ZONE "R-2A." - "ONE FAMILY RESIDENTIAL DISTRICT" (2 ACRES)			
DESCRIPTION	REQUIRED	PROVIDED	
MINIMUM LOT AREA (ACRES / S.F.)	2	±2.06/±89,820
MINIMUM LOT FRONTAGE	(FEET)	150	±183.6
MINIMUM LOT WIDTH	(FEET)	150	±175
MINIMUM LOT DEPTH	(FEET)	150	±513.3
MINIMUM YARDS			
FRONT	(FEET)	50	±55.13
SIDE	(FEET)	30	±35.17
REAR	(FEET)	50	±402.19
ACCESSORY BUILDING SIDE YARD SETBACK	(FEET)	10	15
MAXIMUM BUILDING HEIGHT	(FEET)	30	<30
MAXIMUM BUILDING COVERAGE	(PERCENT)	8	3.92
MINIMUM DWELLING UNIT SIZE (§355–70)	(S.F.)	1,400	2,786
MINIMUM DRIVEWAY PIER/GATE SETBACK FROM RIGHT-OF-WAY (FEET)		20	±0.65 (1)
MAXIMUM DRIVEWAY CURB CUT	(FEET)	18	±24.6 (1)
MAXIMUM DRIVEWAY PIER HEIGHT	(FEET)	8	9 (1)

(1) WILL REQUIRE A VARIANCE.

GENERAL CONSTRUCTION NOTES APPLY TO ALL WORK HEREIN

- 1. PRIOR TO CONSTRUCTION, THE CONTRACTOR SHALL CALL 811 "DIG SAFELY" (1-800-962-7962) TO HAVE UNDERGROUND UTILITIES LOCATED. EXPLORATORY EXCAVATIONS SHALL COMPLY WITH CODE 753 REQUIREMENTS. NO WORK SHALL COMMENCE UNTIL ALL THE OPERATORS HAVE NOTIFIED THE CONTRACTOR THAT THEIR UTILITIES HAVE BEEN LOCATED. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE PRESERVATION OF ALL PUBLIC AND PRIVATE UNDERGROUND AND SURFACE UTILITIES AND STRUCTURES AT OR ADJACENT TO THE SITE OF CONSTRUCTION, INSOFAR AS THEY MAY BE ENDANGERED BY THE CONTRACTOR'S OPERATIONS. THIS SHALL HOLD TRUE WHETHER OR NOT THEY ARE SHOWN ON THE CONTRACT DRAWINGS. IF THEY ARE SHOWN ON THE DRAWINGS, THEIR LOCATIONS ARE NOT GUARANTEED EVEN THOUGH THE INFORMATION WAS OBTAINED FROM THE BEST AVAILABLE SOURCES, AND IN ANY EVENT, OTHER UTILITIES ON THESE PLANS MAY BE ENCOUNTERED IN THE FIELD. THE CONTRACTOR SHALL, AT HIS OWN EXPENSE, IMMEDIATELY REPAIR OR REPLACE ANY STRUCTURES OR UTILITIES THAT HE DAMAGES, AND SHALL CONSTANTLY PROCEED WITH CAUTION TO PREVENT UNDUE INTERRUPTION OF UTILITY SERVICE.
- 2. CONTRACTOR SHALL HAND DIG TEST PITS TO VERIFY THE LOCATION OF ALL EXISTING UNDERGROUND UTILITIES PRIOR TO THE START OF CONSTRUCTION. CONTRACTOR SHALL VERIFY EXISTING UTILITIES DEPTHS AND ADVISE OF ANY CONFLICTS WITH PROPOSED UTILITIES. IF CONFLICTS ARE PRESENT. THE OWNER'S FIELD REPRESENTATIVE, JMC, PLLC AND THE APPLICABLE MUNICIPALITY OR AGENCY SHALL BE NOTIFIED IN WRITING. THE EXISTING/PROPOSED UTILITIES RELOCATION SHALL BE DESIGNED BY JMC, PLLC.
- 3. CONTRACTOR IS RESPONSIBLE FOR OBTAINING ANY AND ALL LOCAL PERMITS REQUIRED.
- 4. ALL WORK SHALL BE DONE IN STRICT COMPLIANCE WITH ALL APPLICABLE NATIONAL, STATE, AND LOCAL CODES, STANDARDS, ORDINANCES, RULES, AND REGULATIONS. ALL CONSTRUCTION WORK SHALL BE PERFORMED IN ACCORDANCE WITH ALL SAFETY CODES. APPLICABLE SAFETY CODES MEAN THE LATEST EDITION INCLUDING ANY AND ALL AMENDMENTS, REVISIONS, AND ADDITIONS THERETO, TO THE FEDERAL DEPARTMENT OF LABOR, OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION'S OCCUPATIONAL SAFETY AND HEALTH STANDARDS (OSHA); AND APPLICABLE SAFETY, HEALTH REGULATIONS AND BUILDING CODES FOR CONSTRUCTION IN THE STATE OF NEW YORK. THE CONTRACTOR SHALL BE RESPONSIBLE FOR GUARDING AND PROTECTING ALL OPEN EXCAVATIONS IN ACCORDANCE WITH THE PROVISION OF SECTION 107-05 (SAFETY AND HEALTH REQUIREMENTS) OF THE NYSDOT STANDARD SPECIFICATIONS. IF THE CONTRACTOR PERFORMS ANY HAZARDOUS CONSTRUCTION PRACTICES, ALL OPERATIONS IN THE AFFECTED AREA SHALL BE DISCONTINUED AND IMMEDIATE ACTION SHALL BE TAKEN TO CORRECT THE SITUATION TO THE SATISFACTION OF THE APPROVAL AUTHORITY HAVING JURISDICTION.
- 5. CONTRACTOR SHALL MAINTAIN ACCESS TO ALL PROPERTIES AFFECTED BY THE SCOPE OF WORK SHOWN HEREON AT ALL TIMES TO THE SATISFACTION OF THE OWNERS REPRESENTATIVE. RAMPING CONSTRUCTION TO PROVIDE ACCESS MAY BE CONSTRUCTED WITH SUBBASE MATERIAL EXCEPT THAT TEMPORARY ASPHALT CONCRETE SHALL BE PLACED AS DIRECTED BY THE ENGINEER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING SAFE PEDESTRIAN ACCESS AT ALL TIMES.
- 6. CONTRACTOR SHALL MAINTAIN THE INTEGRITY OF EXISTING PAVEMENT TO REMAIN.

SUBSURFACE UTILITY LOCATIONS ARE BASED ON A COMPILATION OF FIELD EVIDENCE, AVAILABLE RECORD PLANS AND/OR UTILITY MARK-OUTS. THE LOCATION OR COMPLETENESS OF UNDERGROUND INFORMATION CANNOT BE GUARANTEED. VERIFY THE ACTUAL LOCATION OF ALL UTILITIES PRIOR TO EXCAVATION OR CONSTRUCTION.

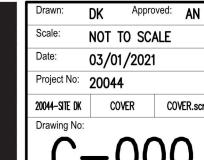
APPROVED BY TOWN OF NORTH CASTLE PLANNING BOARD: RESOLUTION, DATED:

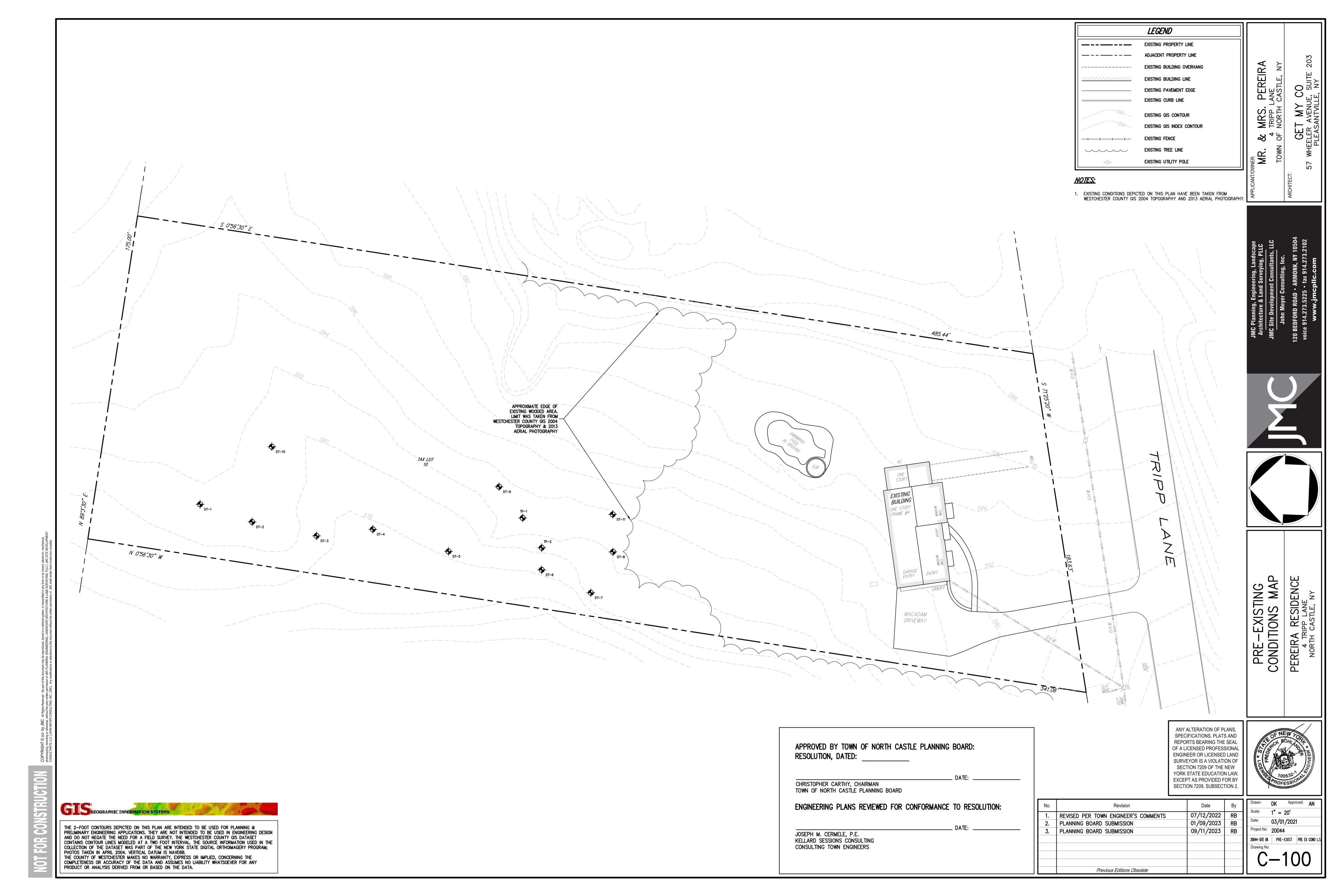
CHRISTOPHER CARTHY, CHAIRMAN TOWN OF NORTH CASTLE PLANNING BOARD

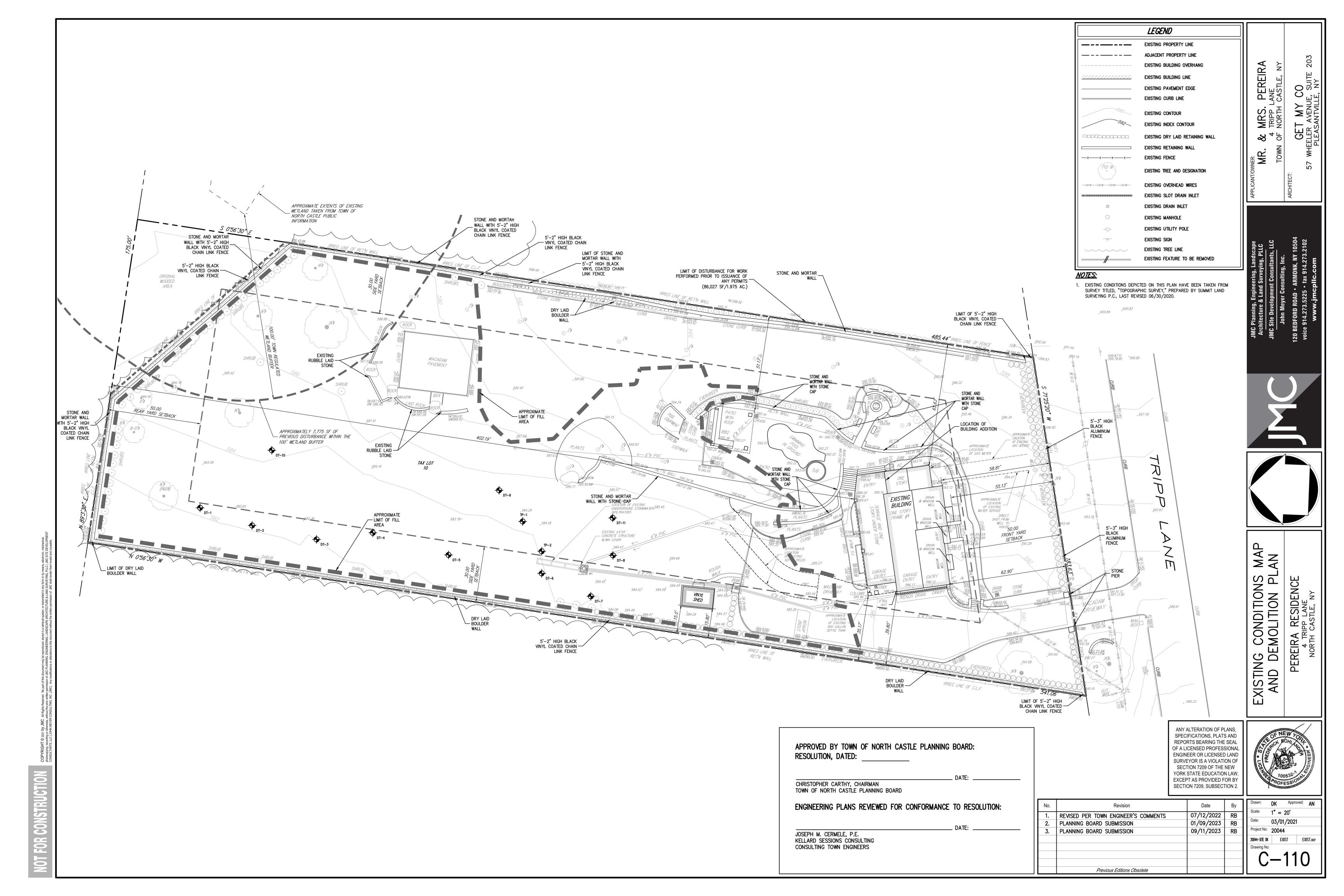
ENGINEERING PLANS REVIEWED FOR CONFORMANCE TO RESOLUTION:

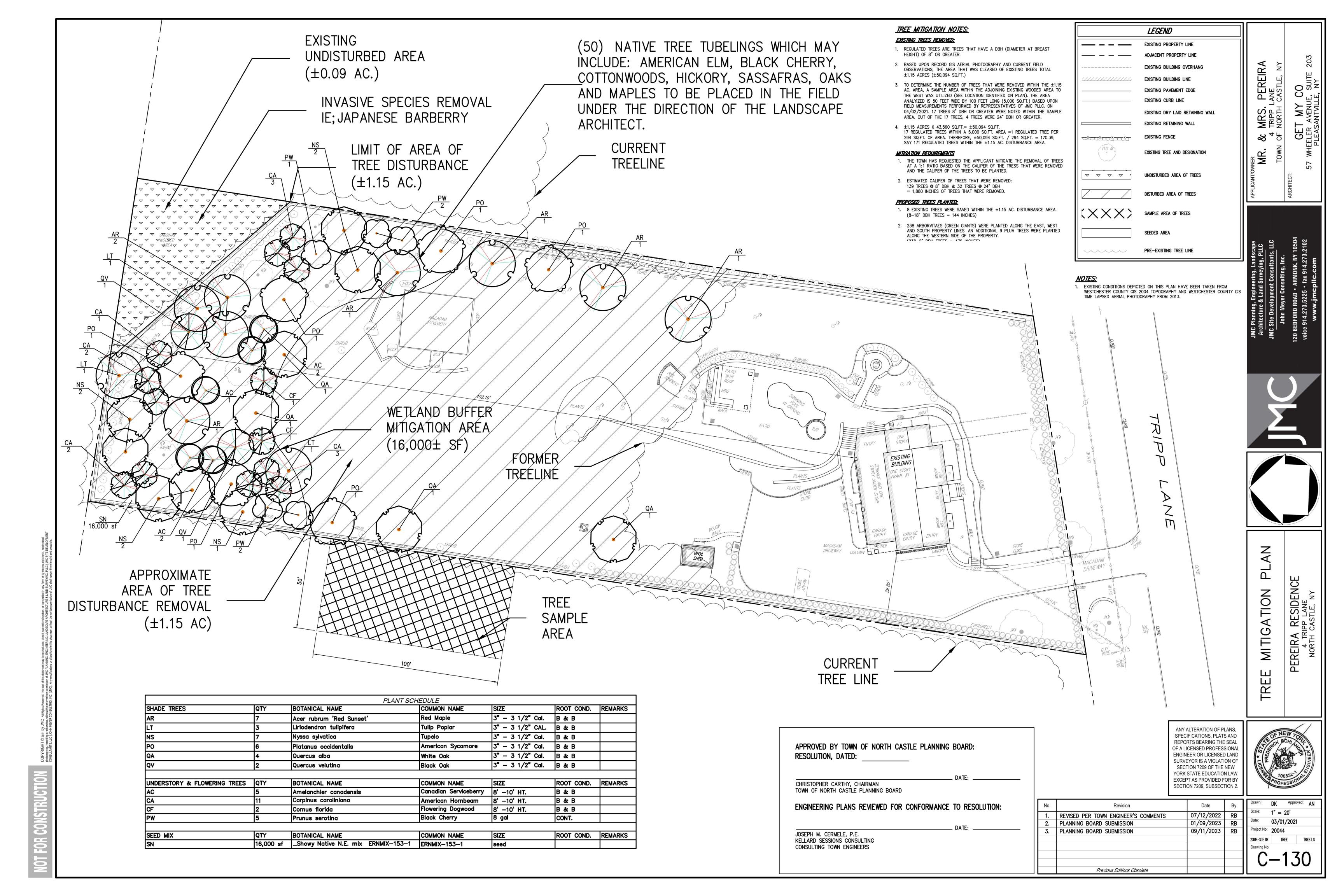
JOSEPH M. CERMELE, P.E. KELLARD SESSIONS CONSULTING CONSULTING TOWN ENGINEERS

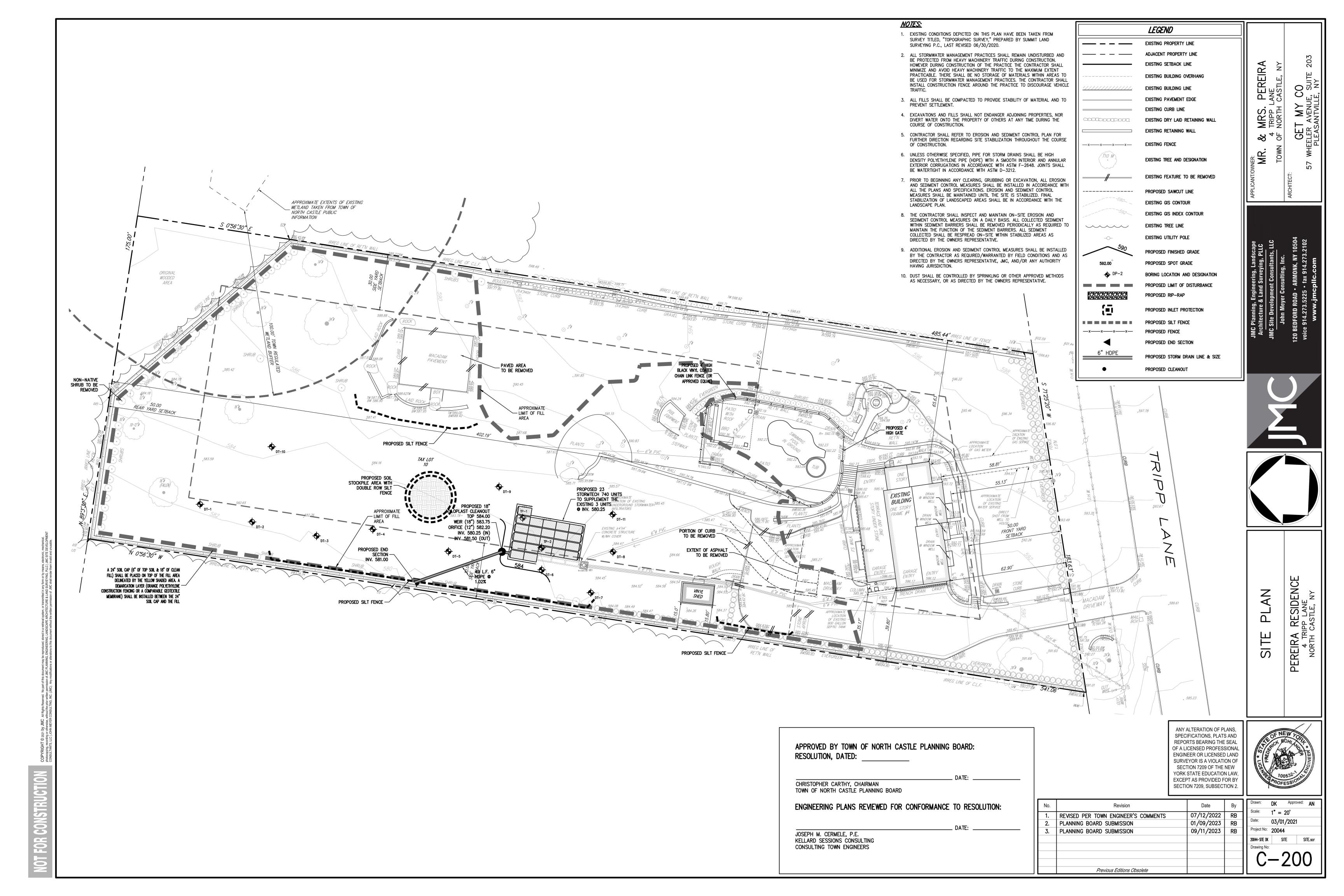
SPECIFICATIONS, PLATS AND REPORTS BEARING THE SEAL OF A LICENSED PROFESSIONAL ENGINEER OR LICENSED LAND SURVEYOR IS A VIOLATION OF SECTION 7209 OF THE NEW YORK STATE EDUCATION LAW, **EXCEPT AS PROVIDED FOR BY** SECTION 7209, SUBSECTION 2

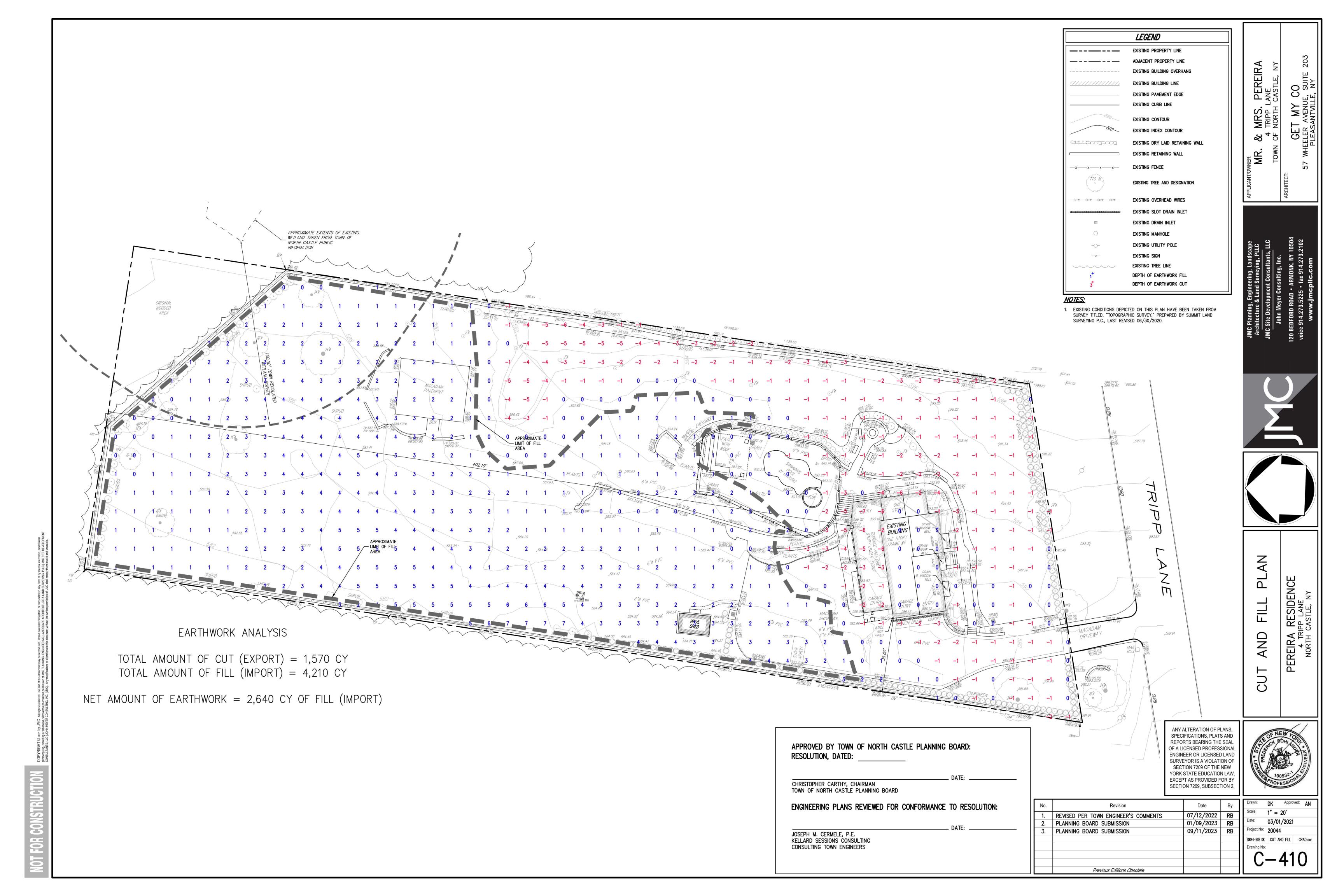

).	Revision	Date	Ву	
	REVISED PER TOWN ENGINEER'S COMMENTS	07/12/2022	RB	
	PLANNING BOARD SUBMISSION	01/09/2023	RB	
•	PLANNING BOARD SUBMISSION	09/11/2023	RB	

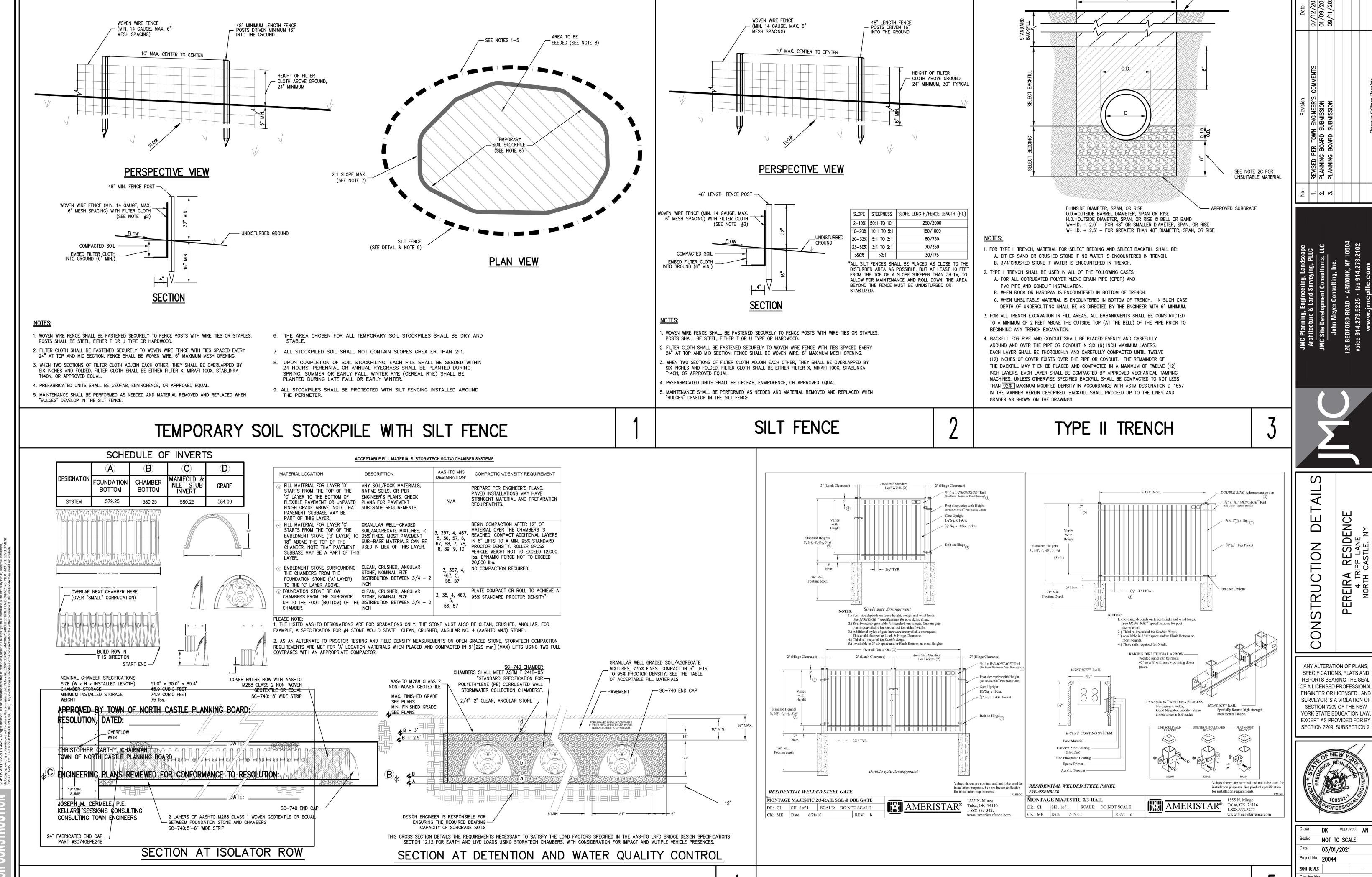

Previous Editions Obsolete




JMC Planning, Engineering, Landscape Architecture & Land Surveying, PLLC JMC Site Development Consultants, LLC John Meyer Consulting, Inc.


120 BEDFORD ROAD • ARMONK, NY 10504 voice 914.273.5225 • fax 914.273.2102 www.jmcpllc.com





STORMTECH CHAMBERS SC-740

5

AMERISTAR MONTAGE MAJESTIC FENCE WITH GATE

A-2 WHEN STEPS ARE REQUIRED, STEPS SHALL COMPLY WITH THE SAME REQUIREMENTS OF ASTM STANDARD C-478, ARTICLE 13 ENTITLED "MANHOLE STEPS & LADDERS".

A-3 FOR MASONRY STRUCTURES, THE FIRST COURSE OF MASONRY SHALL BE SET IN THE CONCRETE FOUNDATION BEFORE THE CONCRETE HAS SET. CONCRETE FOUNDATION SHALL BE CLASS "A" (4000 psi) CONCRETE, TWELVE (12) INCHES THICK AND SHALL EXTEND SIX (6) INCHES BEYOND THE OUTSIDE FACE THE STRUCTURE.

A-4 IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO FURNISH AND CONSTRUCT THE PROPER SIZE STRUCTURE INCLUDING THE NECESSARY OPENINGS TO ACCOMMODATE THE WORK AS SHOWN ON THE PLANS OR ORDERED BY THE ENGINEER, AT NO ADDITIONAL COST TO THE OWNER.

A-5 ALL NECESSARY PATCHING FOR DRAIN STRUCTURES SHALL BE ACCOMPLISHED WITH NON-SHRINKING CEMENT MORTAR GROUT, APPROVED EQUAL TO SIKA-SET AS MANUFACTURED BY THE SIKA CHEMICAL

A-6 FOUNDATIONS FOR PRECAST CONCRETE STRUCTURES SHALL BE SET ON A COMPACTED LAYER OF APPROVED CRUSHED STONE HAVING A MINIMUM COMPACTED THICKNESS OF EIGHT (8) INCHES.

A-7 ALL PIPES SHALL BE CUT FLUSH WITH THE INSIDE WALL OF THE STRUCTURE.

PROVIDE REINFORCED CONCRETE TOP SLAB FOR OVERSIZED DRAIN INLETS WITH PROPER SIZE OPENING TO ACCOMMODATE INSTALLATION OF FRAME & GRATE.

A-9 FOR MASONRY STRUCTURES GREATER THAN TEN (10) FEET IN DEPTH, THICKNESS OF MASONRY WALLS SHALL BE INCREASED TO TWELVE (12) INCHES.

A-10 FOR ALL STRUCTURES GREATER THAN 10 FEET IN DEPTH, STRUCTURES SHALL PROVIDE MINIMUM INSIDE DIMENSIONS OF 4 FEET X 4 FEET.

NOTES PERTAINING TO MANHOLES

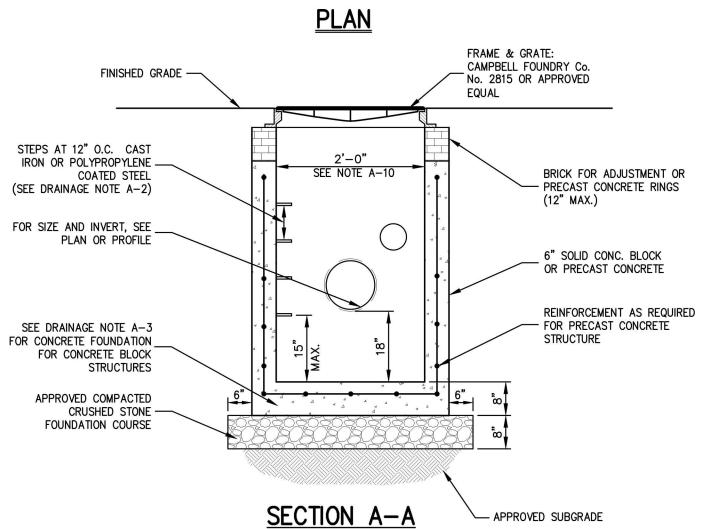
B-1 PRECAST CONCRETE MANHOLES SHALL COMPLY WITH ASTM STANDARD C-478. MANHOLE JOINTS SHALL COMPLY WITH ASTM STANDARD C-443.

B-2 FOR PRECAST CONCRETE MANHOLES FIVE (5) FEET OR LESS IN HEIGHT, TOP CONE SECTION SHALL BE REPLACED WITH PRECAST REINFORCED CONCRETE SLAB (6" MIN. THICKNESS) WITH OPENING OF SUFFICIENT SIZE TO ACCOMMODATE MANHOLE CASTING.

B-3 FOR MANHOLES 10 FEET OR MORE IN DEPTH, MANHOLE DIAMETER SHALL BE FIVE (5) FEET.

B-4 TERMINAL MANHOLE FLOORS SHALL BE SLOPED TOWARD OUTFALL PIPE.

B-5 INVERT CHANNELS FOR PRECAST CONCRETE MANHOLES SHALL BE CONSTRUCTED OF CONCRETE.


B-6 NOTES A-1, A-2, A-4, A-5, A-6 & A-7 UNDER "NOTES PERTAINING TO DRAIN INLETS" ABOVE SHALL

NOTES PERTAINING TO PRECAST CONCRETE STRUCTURES FOR STORM DRAINS, SANITARY SEWERS AND WATER LINES

C-1 ALL PRECAST CONCRETE STRUCTURES SHALL BE DESIGNED TO ACCOMMODATE AN H-20 DESIGN LOAD.

C-2 STEPS SHALL BE LOCATED WITHIN STRUCTURE TO AVOID PLACEMENT OVER PIPES WHEN PRACTICABLE.

STEPS (SEE UTILITY NOTES A-1, A-2 AND C-2) SEE NOTE A-10 <u>PLAN</u>

1. SEE NOTES PERTAINING TO DRAIN INLETS UNDER UTILITY NOTES ON THIS DRAWING.

LAWN OR LANDSCAPING-(SEE PLANS) DRIVEWAY WIDTH APPROVED COMPACTED -SUBGRADE 2" TOP COURSE MATERIAL: ASPHALT CONCRETE, TYPE 6F NOTES: MIX/ITEM: NYSDOT ITEM 403.1701 THICKNESSES INDICATED REFER TO COMPACTED MEASURES. . MATERIAL AND MIX/ITEM NUMBERS REFER TO: 6" BASE/SUBBASE COURSE NEW YORK STATE MATERIAL: SUBBASE, TYPE 4 DEPARTMENT OF TRANSPORTATION MIX/ITEM: NYSDOT ITEM 304.05 STANDARD SPECIFICATIONS

SITE DRIVEWAY

__CONTINUOUS TOP RAIL - KNUCKLED FINISH TWISTED AND BARBED TOP OF WALL GALVANIZED HIGH CARBON STEEL COIL SPRING TENSION WIRE TIES 12" O.C.

CHAIN LINK FENCE

ANY ALTERATION OF PLANS, SPECIFICATIONS, PLATS AND REPORTS BEARING THE SEAL OF A LICENSED PROFESSIONAL ENGINEER OR LICENSED LAND SURVEYOR IS A VIOLATION OF SECTION 7209 OF THE NEW

YORK STATE EDUCATION LAW,

EXCEPT AS PROVIDED FOR BY SECTION 7209, SUBSECTION 2

NOT TO SCALE

LARGE BELGIAN BLOCK CURBING POST SETTING 6'-1" CENTER TO CENTER (12" DEEP X 8" LONG X 4" WIDE) INTERMEDIATE POST-CLEAR BETWEEN PICKETS FINISHED PAVEMENT GRADE SEE PLANS PAVEMENT **SPECIFICATIONS**: POSTS, RAILS : & PICKETS END POSTS: 4"x4" INTERMEDIATE POSTS: RAILS: 1"x1" PICKETS: 3/4" x 1 1/2" COLOR: CLASS A CONCRETE FOUNDATION (4,000 PSI) APPROVED COMPACTED 1. JOINTS SHALL BE NO WIDER THAN 3/4" AND SHALL BE MORTARED. JOINTS SHALL BE FULLY FILLED WITH 1:2 CEMENT MORTAR, NEATLY

CONNECTOR SECTION

- REINFORCED EDGE

UTILITY NOTES

LAWN INLET (TYPE LI)

STONE CURB (BELGIAN BLOCK)

POINTED AND CLEANED OF EXCESS MORTAR.

PIPE DAI.

SKIRT SECTION

CROSS-SECTION °

HOLES ON 12" CENTERS MAX.

ELEVATION

SKIRT SECTION OF 36" TO 54" DIA. PIPE MAY BE MADE FROM TWO SHEETS JOINED BY RIVETING OR BOLTING ON CENTER LINE, 60" MAY BE CONSTRUCTED IN 3 PIECES.

. SKIRT SECTION FOR 12" TO 30" DIA. PIPE TO BE MADE IN ONE PIECE.

BLACK ALUMINUM FENCE

PIPE DIM.

ALTERNATE CONNECTION

PE	SHEET THICKNESS		DIMENSIONS					
Α.	31121 11	HORNESS	Α	В	Ξ	L	w	C
	STEEL	ALUMINIUM	1" TOL	MAX	1" TOL	1.5" TOL	2" TOL	
"	0.064"	0.060"	6"	6"	6"	21"	24"	24"
	_	_						

APPROVED BY TOWN OF NORTH CASTLE PLANNING BOARD: RESOLUTION, DATED:

CHRISTOPHER CARTHY, CHAIRMAN TOWN OF NORTH CASTLE PLANNING BOARD

ENGINEERING PLANS REVIEWED FOR CONFORMANCE TO RESOLUTION:

JOSEPH M. CERMELE, P.E. KELLARD SESSIONS CONSULTING CONSULTING TOWN ENGINEERS

DRY LAID BOULDER WALL

STONE AND MORTAR WALL

STONE AND MORTAR WALL

SHED

END SECTION

THEY ARE TO BE GALVANIZED ONLY.

. TOE PLATE TO BE PUNCHED TO MATCH HOLES IN SKIRT LIP. 3/8" GALV BOLTS TO BE FURNISHED. LENGTH OF TOE PLATE IS W+10" FOR 12" TO 30" DIA. PIPE AND W+22" FOR 36" TO 60" DIA. PIPE. 5. END—SECTIONS AND FITTINGS ARE TO BE GALVANIZED STEEL OR ALUMINIUM ALLOY FOR USE WITH LIKE PIPE 6. WHERE FLARED END—SECTIONS ARE TO BE USED WITH BITUMINOUS COATED AND PAVED METAL PIPE,

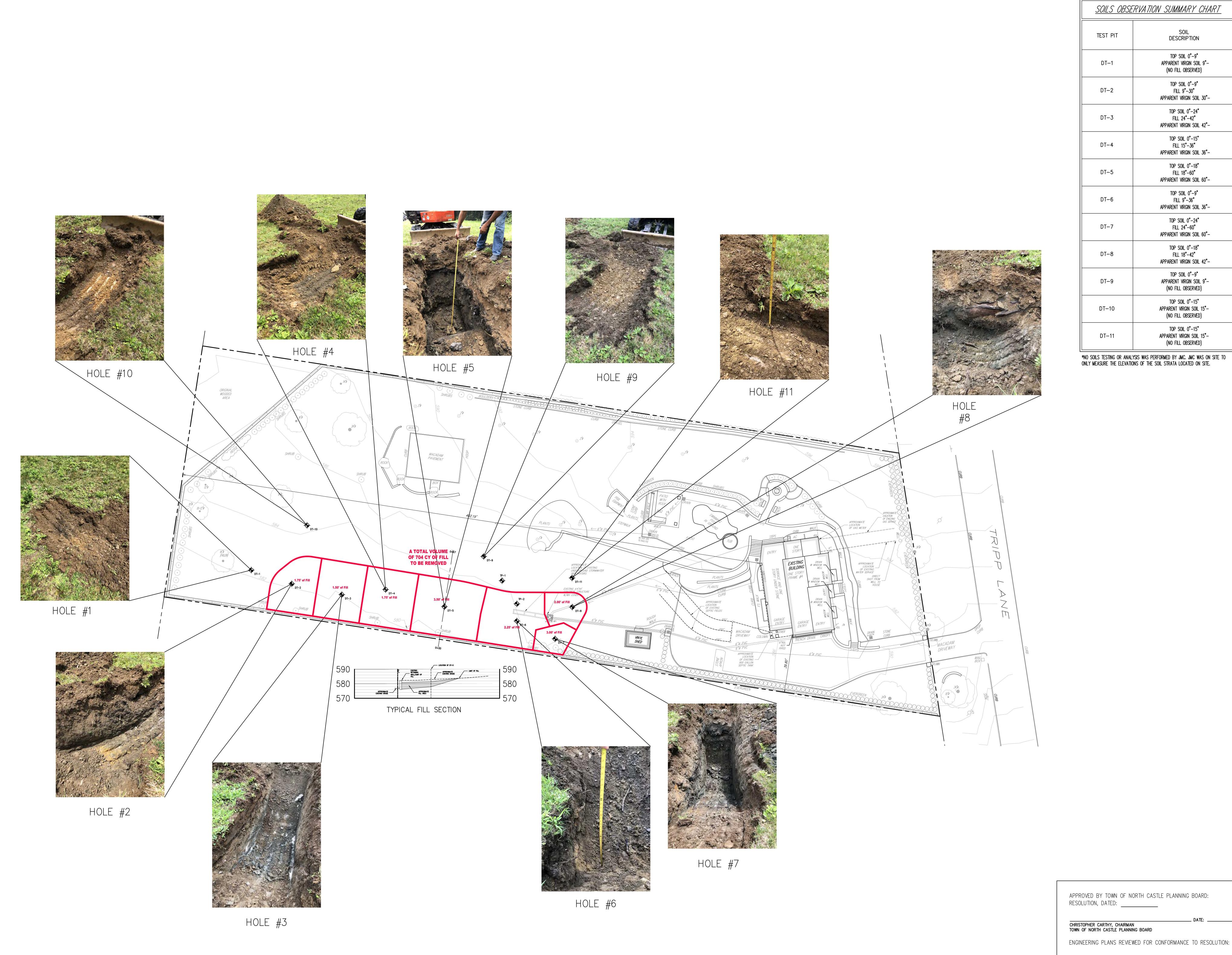
GATE AND STONE PIER

6" HEIGHT (INCLUDES UPPER SECTION)

5'-0" HT. @ CONNECTION TO PIER

SPECIFICATIONS:

COLUMN HEIGHT: 6'-6"


2'-10" X 3'-1"

2'-0" HT.

8'-0" W (ONE SIDE)

6'-9" HT. @ CENTER

TOTAL HEIGHT: 9'-0"

SOILS OBSE	SOILS OBSERVATION SUMMARY CHART			
TEST PIT	SOIL DESCRIPTION			
DT-1	TOP SOIL 0"-9" APPARENT VIRGIN SOIL 9"- (NO FILL OBSERVED)			
DT-2	TOP SOIL 0"-9" FILL 9"-30" APPARENT VIRGIN SOIL 30"-			
DT-3	TOP SOIL 0"-24" FILL 24"-42" APPARENT VIRGIN SOIL 42"-			
DT-4	TOP SOIL 0"-15" FILL 15"-36" APPARENT VIRGIN SOIL 36"-			
DT-5	TOP SOIL 0"-18" FILL 18"-60" APPARENT VIRGIN SOIL 60"-			
DT-6	TOP SOIL 0"-9" FILL 9"-36" APPARENT VIRGIN SOIL 36"-			
DT-7	TOP SOIL 0"-24" FILL 24"-60" APPARENT VIRGIN SOIL 60"-			
DT-8	TOP SOIL 0"-18" FILL 18"-42" APPARENT VIRGIN SOIL 42"-			
DT-9	TOP SOIL 0"-9" APPARENT VIRGIN SOIL 9"- (NO FILL OBSERVED)			
DT-10	TOP SOIL 0"-15" APPARENT VIRGIN SOIL 15"- (NO FILL OBSERVED)			
DT-11	TOP SOIL 0"-15" APPARENT VIRGIN SOIL 15"- (NO FILL OBSERVED)			

*NO SOILS TESTING OR ANALYSIS WAS PERFORMED BY JMC. JMC WAS ON SITE TO ONLY MEASURE THE ELEVATIONS OF THE SOIL STRATA LOCATED ON SITE.

JOSEPH M. CERMELE, P.E. KELLARD SESSIONS CONSULTING CONSULTING TOWN ENGINEERS

ANY ALTERATION OF PLANS, SPECIFICATIONS, PLATS AND REPORTS BEARING THE SEAL OF A LICENSED PROFESSIONAL ENGINEER OR LICENSED LAND SURVEYOR IS A VIOLATION OF SECTION 7209 OF THE NEW YORK STATE EDUCATION LAW, EXCEPT AS PROVIDED FOR BY SECTION 7209, SUBSECTION 2.

Scale: 1" = 20' Date: 08/23/2023 Project No: 20044 20044-SITE DK TEST PIT EXIST.scr F-1

20230710_131037

20230710_131038

07/10/2023 1

20230710_131041

20230710_131050

20230710_131103

20230710_131110

20230710_131050 (1)

07/10/2023 4

20230710_130744

20230710_130747

20230710_130756

20230710_130757

20230710_130800

20230710_130811

20230710_130813

20230710_130815

20230710_130948

20230710_130953

07/10/2023 5

20230710_134339

20230710_134342

20230710_134343

20230710_134345

20230710_134353

20230710_134357

20230710_134358

07/10/2023 4

20230710_131428

20230710_131429

20230710_131430

20230710_131440

20230710_131441

20230710_131443

20230710_131454

20230710_131457

20230710_132346

20230710_132347

20230710_132349

20230710_132354

20230710_132411

20230710_132413

20230710_132414

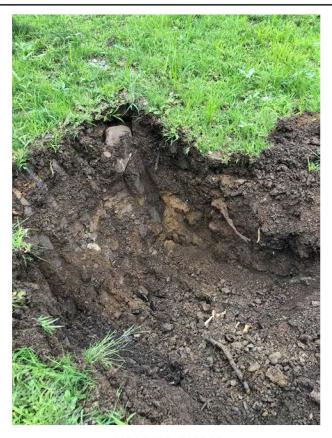
20230710_132535

20230710_132538

07/10/2023 5

20230710_132810

20230710_132810



20230710_132815

20230710_132815

20230710_132819

20230710_132819

20230710_132830

20230710_132830

20230710_132831

20230710_132831

07/10/2023 5

20230710_133422

20230710_133423

20230710_133424

20230710_133426

20230710_133427

20230710_133436

20230710_133445

20230710_133447

20230710_133448

20230710_133449

07/10/2023 5

20230710_134848

20230710_134849

20230710_134851

20230710_134902

20230710_134907

20230710_134909

20230710_134911

20230710_134914

20230710_134922

20230710_134914 (1)

07/10/2023 5

20230710_135105

20230710_135151

20230710_135152

20230710_135158

20230710_135206

20230710_135207

20230710_135105 (1)

07/10/2023 4

20230710_131251

20230710_131255

20230710_131303

20230710_131305

20230710_135551

20230710_135552

20230710_135602

20230710_135603

20230710_135609

20230710_135610

20230710_135603 (1)

07/10/2023 4

20230710_131455

20230710_133804

20230710_133805

20230710_134917

20230710_135059

20230710_135100

20230710_135101

20230710_135102

20230710_135339

20230710_135340

07/10/2023 5

20230710_135342

20230710_135344

20230710_135346

SITE DATA:

PROJECT LOCATION:

TOWN TAX MAP DATA: SITE AREA: **SEWAGE FACILITIES:** WATER FACILITIES: WATERSHED:

OWNER / DEVELOPER:

ANA PEREIRA 4 TRIPP LANE **ARMONK, NY, 10504** 4 TRIPP LANE **ARMONK, NY, 10504** SECTION 108.02, BLOCK 1, LOT 10 2.06 ACRES (89,820.04 SF) SUBSURFACE SEWAGE TREATMENT SYSTEM EXISTING DRILLED WELL

INLAND LONG ISLAND SOUND BASIN

SOILS	CLASSIFICATION	ONS	
TYPE	NAME	DESCRIPTION	HYDROLOGICAL GROUP
PnB	PAXTON	FINE SANDY LOAM	D
PnC	PAXTON	FINE SANDY LOAM	В

LOCATION MAP NOT TO SCALE

						//-
y = 0		SEPARA FROM WAS	TION DISTA			
WASTEWATER SOURCES	DRILLED WELL OR SECTION LINE (G) (FT)	TO STREAM LAKE WATERCOURSE (B) OR WETLAND (FT)	DWELLING (FT)	PROPERTY LINES (FT)	DRAINAGE DITCH/RAIN GARDEN (H) (FT)	INGROUND POOL (FT)
HOUSE SEWER	25' CIP 50' OTHER	25'	3,	10'	10°	10°
SEPTIC TANK	50'	50'	10' (H)	10'	10'	20'
EFFLUENT LINE / FORCE MAIN	50'	50'	10'	10'	10'	10°
DISTRIBUTION BOX / JUNCTION BOX	100'	100'	20' (D)	10'	20'	20'
ABSORPTION FIELD (F)	100' (A)	100'	20' (D)	10'	20'	35'
SEEPAGE PIT	150' (A)	100'	20' (D)	10°	20°	50'
DRY WELL (D) ROOF & FOOTINGS ROADS & DRIVEWAY	50° 100°	25' 25'	20' 20'	10'	10° 10'	20° 20°

- . Wells located in the general path of drainage of a SSTS must be located 200 feet or more away. All public water supply wells must be 200 feet from absorption fields or seepage pits. Mean high water mark of defined stream or lake.
- Drywells are not allowed above OWTS (drywells, Stormwater infiltrator or other subsurface stormwater infiltrator units) For slab on grade foundations with no drains, distance can be reduced in half.
- . For all systems involving placement of fill, separation disctances are measured from the toe of slope of the fill. Closest part of OWTS shall be located at least ten (10) feet from any water service line (1.e. - PWS main, water service connection, well).
- . Septic tanks are not permitted beneath raised decks and require a minimum of five (5) feet separation from deck piers (sonotubes)

NOC 2023-06R

APPROVED

emediation

APR 11 2023

ADDITIONAL SEPERATION DISTANCES FROM SSTA TO:

- Curtain Drain (upgrade from SSTS) 15 feet Curtain Drain (downgrade from SSTS) 50 feet
- Driveway Stormwater Basin 100 feet (high water elevation) Above Ground Well Deck with Pilings / sonotube 10 feet
- 10 feet . Slab on Grade Foundation . Roof & Fotting Drain Discharge Pipe 10 feet

Eljen Calculations: Repair System

Type: Trench

House Size: 3 Bedrooms Design Flow per Bedroom: 150

Percolation Rate: 120 Minutes Per Inch (mpi)

Flow: 3 Bedrooms x 150 gpd/bedroom = 450 gpd Absorption Area (from Table 7): 1,364 ft

Min. Modules Required (from Table 8): 57 Modules Min. Trench Length: 57 modules / 3 rows = 19 Modules per row

Min. Row Length: 19 Modules x 4 ft/module + 1 feet = 77 feet per row

C/C Distance: 8' (Standard)

Dosing: (4 Gal/# of Mod.) X (# of Mod) + F.M. Vol. = (4 / 19)(19) + 24.16 gal =252.16 GAL

Percolation		2 Bedi	room	3 Bedi	room	4 Bedi	room	Each Additional Bedroom Flow Rate (Gal/Day) 150		
	Application Rate	Flow (Gal/I		Flow (Gal/		Flow (Gal/I				
Rate	(Adjusted)	30	0	45	0	60	0			
(Min/In)	(GPD/SF)	Min Number of Modules	Linear Feet	Min Number of Modules	Linear Feet	Min Number of Modules	Linear Feet	Min Number of Modules	Linea Feet	
1-5	1.57	10	40 12 48		48	16	64	4	16	
6-7	1.33	10	40	15	60	19	76	5	20	
8-10	1.17	11	44	17	68	22	88	6		
11-15	1.00	13	52	19	- 76	25	100	7	28	
16-20	0.92	14	56	21	84	28	112	7	28	
21-30	0.75	17	68	25	100	34	136	9	36	
31-45	0.67	19	76	28	112	38	152	10	40	
46-60	0.58	22	88 33 133		132	44	176	11	44	
61-80	0.50	25	100	38	152	50	200	13	. 52	
81-100	0.42	30	120	45	180	60	240	15	60	
101-120	0.33	.38	152	57	228	76	304	19	76	

			- 1	HEALTH DEPA	ARTM	ENT S	SEPTIO	C SCH	EDUL	E									5		
LOT NO.	S.S.T.A. AREA (S.F.)	LOT AREA (S.F.)	TEST HOLE NO.	DEEP TEST PIT DESCRIPTION	TOTAL DEPTH	DEPTH TO WATER	DEPTH TO ROCK	PERCENT SLOPE AREA	PERC TEST NO.	PERC. RATE (MIN/IN)	MIN. DESIGN RATE	APPLICATION RATE (GPD/SF)	NO. OF BEDROOMS	DESIGN	SIGN DA TANK SIZE	REQD. TRENCH LENGTH	BANK R	UN FILL VOLUME	CURTAI	N DRAIN LENGTH	REMARK
	2		TP-#1	7" T.SOIL, 7"-20" MOD. COMPACT. LOAM, 20"-84" SILTY LOAM, NO G.W.	7'-0"				PT-1	FAILURE											
			TP-#2	8" T.SOIL, 8"-84" MOD. COMPACT. SILTY LOAM, NO G.W., NO LEDGE	7'-0"	I			PT-2	120 MIN.								2 2			
18	2,698 S.F.	89,820 S.F.	TP-#3	4" T.SOIL, 4"-84" MOD. COMPACT. SILTY LOAM, NO G.W., NO LEDGE	7'-0"				PT-3	120 MIN.	120 MIN.	0.33	3 BRM	450 GPD	1000 GAL	228 LF			7 FEET	276 FEET	DOSIN
			TP-#4	5" T.SOIL, 5"-84" MOD. COMPACT. SILTY LOAM, G.W. SEEPING @ 5', NO LEDGE	7'-0"			9	PT-4	120 MIN.	8 8					ELJEN B-43		30			
		6 9 9	TP-#5	4" T.SOIL, 4"-84" MOD. COMPACT. SILTY LOAM, NO G.W., NO LEDGE	7'-0"						2 5										9 3

- PROPERTY LINE --- P/C CONCRETE DISTRIBUTION BOX (TYP) - 57 ELJEN B-43 GSF UNITS L= 228 LF@ 8' O.C. - LOCATION OF DEEP TEST HOLE (TYP.) - LOCATION OF PERCOLATION TEST HOLE (TYP.) - 10' SETBACK FROM TREE SEPTIC AREA SLOPE = 2.78% S 0.56'30" E - EXISTING WATER SERVICE CONNECTION - ARANDO EXISTING OWTS TO BE ABANDONED IN ACCORDANCE WITH THE RULES AND REQUIREMENTS OF THE WESTCHESTER COUNTY DEPARTMENT OF HEALTH 4" Ø SCH40 PVC SLEEVE UNDER DRIVEWAY-1-1/2" SCH40 FORCE MAIN-PROPOSED H/D 750 GAL PUMP TANK-CLEANOUT-ZABEL FILTER AT OUTLET-EXISTING STONE COLUMN-PROPOSED H/D 1000 GAL SEPTIC TANK-4" CIP OR SDR35 PIPE. S=2%-EXISTING SEPTIC TANK TO BE ABANDONED IN-ACCORDANCE WITH THE RULES AND REQUIREMENTS OF MIN. W/IN 6" SCH40 PVC SLEEVE

WCHD NOTES

The design professional shall supervise the construction of the SSTS and make an open works inspection.

THE WESTCHESTER COUNTY DEPARTMENT OF HEALTH

2. Within 24-hours of the completion of the SSTS, the design professional must notify the Westchester County Department of Health that the SSTS is ready for inspection by submitting a completed request for an open works inspection on the appropriate form to the Department.

EXISTING OVERHEAD—

UTILITY WIRES

3. There are no sources of contamination within 200 feet of the proposed well.

SOLID 4" PVC DISCHARGE PIPE

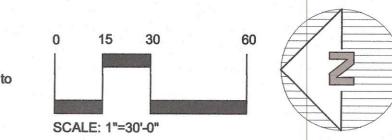
- 10' DEEP X 18" WIDE CURTAIN DRAIN

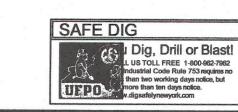
- There shall be no trees within 10 feet of the OWTS.
- 5. That no backfilling of a completed OWTS can occur until after it has been inspected and accepted by the Westchester County Department of Health.
- 6. After backfilling the OWTS, the area shall be covered with a minimum of 4 inches of clean top soil seeded and mulched. 7. There are DEC wetlands, streams, ponds etc. with in 200' of SSTS. There are no reservior/reservior stems or controlled lake with
- in 500' of SSTS.
- 8. There is 0.12 AC of proposed disturbance
- There are no existing or proposed wells within 200 feet of the proposed OWTS. 10. There are no existing SSTS within 200 ft of well unless otherwise shown on this plan.
- 11. Estimated construction and completion date: Oct. 2022 to Oct. 2023.

REMEDIATION NOTES:

- . The are no wells within 200' of OWTS unless otherwise shown on plan
- 2. The proposed OWTS remediation area shall be isolated and protected against damage by erosion, storage of earth or material, displacement, compaction or other adverse physical change in the characteristics of the soil or in the drainage of the area.
- 3. If for any reason the approved construction plan cannot be followed, a revised plan must be prepared, submitted, and approved by WCHD.
- 4. The design professional shall supervise the construction of the OWTS and make an open works inspection.
- 5. Within a 24-hours of the completion of the OWTS. The design professional must notify the Westchester County Department of
- Health (WCHD) that the OWTS is ready for inspection on the appropriate form to WCHD. 6. That no backfilling of a completed OWTS can occur until after it has been inspected and accepted by the Westchester County
- Department of Health.
- 7. After backfilling the OWTS, the area shall be covered with a minimum of 4 inches of clean top soil, seeded, and mulched.
- All pipes connecting to tank and boxes shall be cut flush with the inside wall of box.
- 9. The proposed OWTS remediation work shall be installed by a Westchester County licensed septic system contractor. Prior to any excavation all underground utilities must be located. Call 1-800-962-7962.
- 11. The Westchester County Health Department approval expires one year from the date on the approval stamp, and is required to be renewed on or before the expiration date. The approval is revocable for cause or may be amended of modified when
- considered necessary by the department. 12. The professional engineer shall certify to the size and condition of the existing house sewer, septic tank and pump chamber.

GENERAL NOTES:

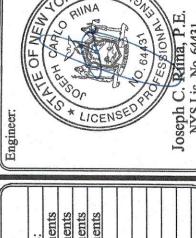

- . A written permit and/or approval issued by the WCHD to construct an individual sewerage system shall terminate and therefore be null and void unless construction is undertaken within one (1) year of the date of issuance.
- 2. If for any reason the approved construction plan cannot be followed, a revised plan
- must be prepared, submitted and approved by the WCHD.
- 3. All construction to be in accordance with these plans and last revised set of WCHD Rules and Regulations 4. All SSTS and wells shall be located in the exact location as shown on this plan unless
- otherwise authorized by the WCHD. 5. Existing wells and SDS shown on this map were installed prior to approval date and
- are not part of this approval.
- 6. All laundry and kitchen wastes shall be discharged into the SSTS. 7. No cellar, roof or footing drains shall be discharged into the SSTS or within 25' of any
- 8. Within 24-hours of the completion of the OWTS, the design professional must notify the Westchester County Department of Health (WCDH) that the OWTS is ready for inspection by submitting a completed request for an open works inspection on the appropriate form to WCDH.
- 9. Prior to commencement of operation, a Certificate of Compliance must be applied for and received from WCHD.
- 10. The proposed SSDS shall be isolated and protected against damage by erosion, storage of earth or materials, displacement, compaction or other adverse physical change in the characteristics of the soil or in the drainage of area
- 11. Proposed septic area to be kept free of traffic and debris during house construction
- and install adequate drainage to prevent erosion after septic is installed. 12. Any modifications or deviations from this plan must be approved by the Design
- Engineer and WCHD prior to construction. 13. The Engineer shall not be held responsible or held accountable for the integrity of any
- structures constructed or under construction prior to the approval of the plans.
- 14. All conditions, locations, and dimensions shall be field verified and the Engineer shall be immediately notified of any discrepancies.
- 15. All written dimensions on the drawings shall take precedence over any scaled
- 16. The Design Engineer shall supervise the construction of the SSTS and make an open 17. The Design Engineer disclaims any liability for damage or loss incurred during or after
- construction. 18. The proposed OWTS shall be installed by a Westchester County licensed septic
- contractor. Well shall be installed by a New York State Department of Environmental Conservation Registered well driller.
- 19. Contractor to verify all substructures encountered during construction.
- 20. The Contractor shall supervise and direct the work using his best skill and attention. He shall be solely responsible for all construction means, methods, techniques, sequences, and procedures and for coordinating all portions of the work under the
- 21. The Contractor shall be responsible to the owner for the acts and omissions of his employees, subcontractors, and their agents and employees, and any other persons performing any of the work under a contract with the Contractor.
- 22. Unauthorized alterations or additions to this drawing is a violation of Section 7209 (2) of the New York State Education Law. 23. Survey and topographical information shown hereon prepared by surveyor: Summit
- Land Surveying, P.C.


SEPTIC CONSTRUCTION REQUIREMENTS:

- 1. The installation of the OWTS shall be in accordance with the most recently enacted Rules and Regulations for the Design and Construction of Residential Subsurface Sewage Treatment Systems and Drilled Wells in Westchester County, NY.
- 2. The Westchester County Health Department approval expires one year from the date on the approval stamp and is required to be renewed on or before the expiration date. The approval is revocable for cause or may be amended or modified when considered
- necessary by the department. 3. All work performed including new installations, repairs, relocations, etc. shall have all
- current required permits or approvals. 4. No regrading in SSTS area except as shown on this plan.
- 5. Boulders, if any on surface of ground shall be cleared away prior to construction of the
- Prior to any excavation all underground utilities must be located. Call 1-800-962-7962. **House Connection & Tanks**
- 7. The house sewer to tank connection shall be a minimum 4" diameter at a minimum slope of 2.0%. The pipe shall be cast iron, ductile iron, or sewer grade PVC. All materials shall comply to the NYS Uniform Fire Prevention and Building
- Code(9NYCRR). The house trap shall have a cleanout and fresh air intake having a minimum diameter of one-half. 8. If cover exceeds 2 ft over any installed tank or chamber, a manhole and collar to grade
- is required for access. Minimum requirement of 6-12" of cover over all tanks and

SEPTIC CONSTRUCTION REQUIREMENTS FOR ELJEN GSF GEOTEXTILE SAND FILTER:

- . This design complies with and must be installed in accordance with the most current Eljen New York Design and Installation Manual.
- 2. All work performed including new installations, repairs, relocations, etc. shall have all
- current required permits or approvals. 3. No regrading in SSTS area except as shown on this plan.
- Boulders, if any on surface of ground shall be cleared away prior to construction of the
- 5. If cover exceeds 2 ft over any installed tank or chamber, a manhole and collar to grade is required for access. Minimum requirement of 6-12" of cover over all tanks and
- 6. Absorption Fields to be constructed of 4" perforated PVC pipe or equal, encased in Geotextile fabric over pipe and ASTM C33 Sand below with standard precast junction boxes at influent connection and 4" solid PVC pipe running from septic tank outlet to
- and between junction boxes. Minimum Trench Depth = 25", Trench Width = 48".
- 8. Total depth of sand in trench = 6" (ASTM C33 Sand).
- 9. Minimum backfill over trench 12".
- 10. All pipes connecting to tank and boxes shall be cut flush with the inside wall of box.
- 11.PVC pipe to meet minimum standards of ASTM D-2729. 12. Organic material that can restrict flow must be removed for raised beds. The soils must
- be scarified to provide deep channels for the sand. A plowed interface on contour is recommended to prepare the soil for fill placement. 13. Backfill material shall be clean with no roots or stones larger than 2 inches in any
- dimension to a minimum depth of 8 inches over the GSF modules and final cover for vegetation of 4 inches to 6 inches of clean loam. Backfill septic material must be
- inspected and approved by the WCHD before installation. 14. Fill Material shall meet or exceed State of New York Code requirements. All fill material shall be clean bank run sand, free of topsoil, humus, and "dredging" directly beneath
- 15. ASTM C33 Specified Sand with less than 10% passing a #100 sieve and less than 5%
- passing a #200 sieve shall be placed below and around the GSF modules with 6 inches minimum underneath and 6 inches minimum surrounding the GSF modules in trench configurations.
- 16.No laterals shall be placed beneath a driveway or paved areas. 17. Fill stabilization may not be achieved by mechanical compaction Only by a natural
- settling, for a period required by W.C.H.D. which may include a freeze-thaw cycle. Percolation tests must be done in stabilized fill and must meet the design rate. 18. Prior to submission of Certificate of Compliance to WCHD, fill section must be
- stabilized with grass seed and hay cover. 19. This system is not designed for use with a garbage disposal nor for backwash from a
- water softener. 20. Eljen provided geotextile cover fabric shall provide proper tension and orientation of
- the fabric around the sides of the perforated pipe on top of the GSF modules. Fabric should be neither too loose nor too tight. The correct tension of the cover fabric is set by spreading the cover fabric over the top of the module and down both sides of the module with the cover fabric tented over the top of the perforated distribution pipe and placing a shovel full's amount of Specified Sand directly over the pipe area allowing the cover fabrics to form mostly vertical orientation along the sides of the pipe.

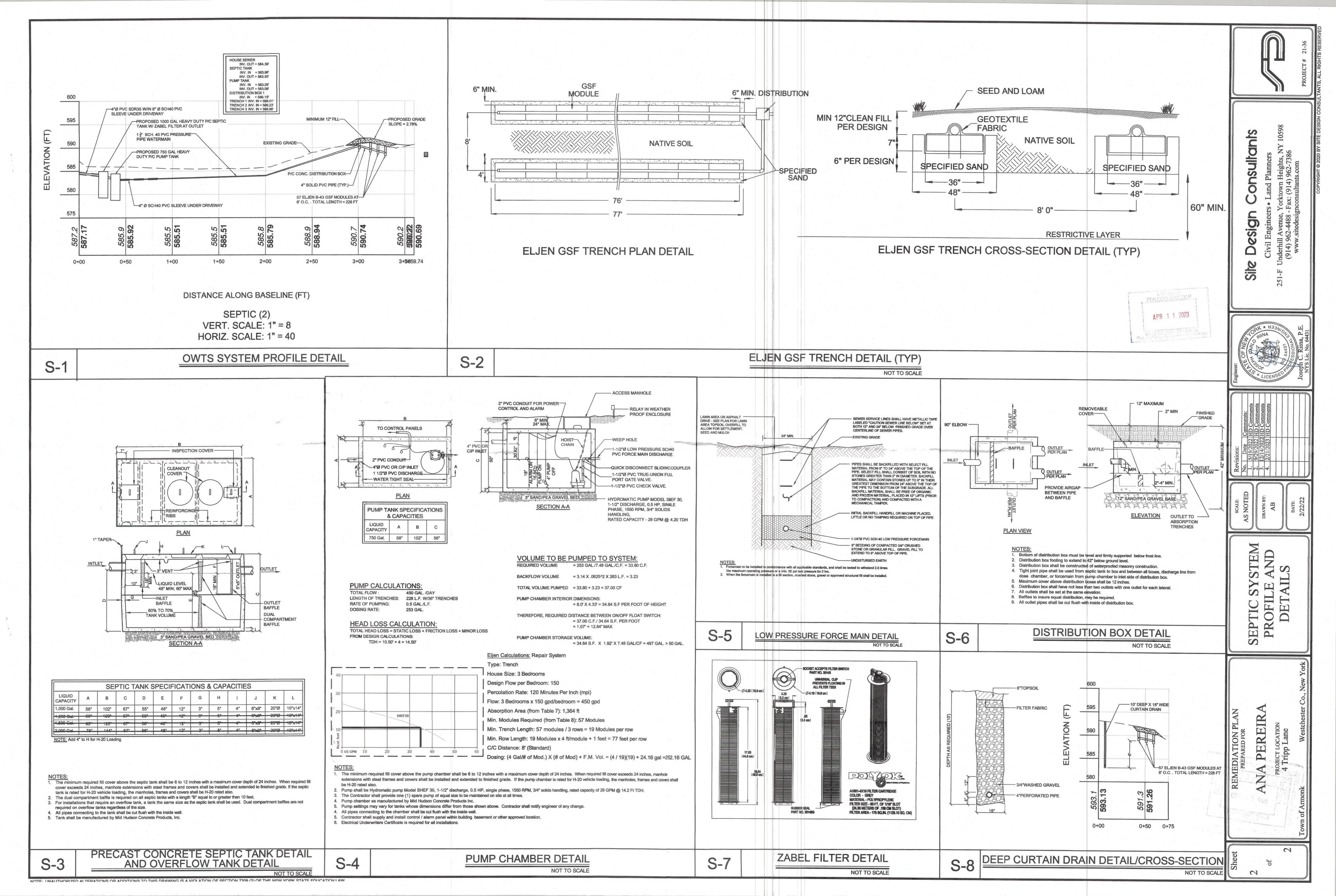


NOTE: Required trench length taken from table in WCHD Rules and Regulations. (Based on Perc Test) NOTE: LINALITHORIZED ALTERATIONS OR ADDITIONS TO THIS DRAWING IS A VIOLATION OF SECTION 7200 (2) OF THE NEW YORK STATE EDUCATION LAW

Isultants

ō

esign



O

OWTS EDIA PLA

PERE 0

N

Bldg, Dept

Westchester County Department of Health Bureau of Environmental Quality

REMEDIATION APPROVAL APPLICATION	١	
(WCDOH OFFICE USE ONLY) WCDH File # NOTh Castle	Fee Amount:	\$500
WCDH File #1 000000 Switching Island Sound Basin If NYC Watershed:	Joint Review ⊠ Delegated R∈	eview
Watershed bedinining a series		
Property Information:		
Property Name: Ana Pereira		10504
Property Address: 4 Tripp Lane, Armonk, NY	0.00	ode: <u>10504</u> Acres
TMD: Section: 108.02 Block: 1 Lot: 10	Lot Area:#: 914	
Owner Last Name: Pereira Owner First Name: Ana	State: NY 7ir	Code: 10504
St. #: 4 St. Address: Tripp Lane	StateTT	, 00001
Owner E-mail Address: <u>anap38@msn.com</u> Property Use: ⊠ Single Family □ Multiple Family □ Industrial □ Comm	mercial	
Property Use: X Single Family Multiple Family Industrial Some	Horoidi — — outor (seessas) —	
Existing On-site Wastewater Treatment System Information: Is property located in a Sewer District: Y N N N Name:	is there a public sev	ver available: Y □ N 🛱
Is there a site plan or OWTS plan available? Y \(\subseteq \) WCDH Fil		
# of Bedrooms: # of Bathrooms: Total Habitable S	Space:	Sq. Ft.
Proposed On-site Wastewater Treatment System Information:		
120	Area: %	
Design Soil Percolation Rate:	, , , , , , , , , , , , , , , , , , ,	
Components: Existing New	Gal.	
Septic Tank: to be abandoned 1000	Gai.	
Pump Chamber:	Gal.	
Dose: <u>304</u> gallons Overflow Tank:	Gal	
Absorption Trench(es):	LF	Ft. Width
Police 10 20 407	LF	
Gravelless Trench(es):	Ft Dia.	Sq. Ft.
Absorption Pit(s): # of pits	LF	Sq. Ft.
Galleys:	LF	Sq. Ft.
Flow Diffusers: 57 Eljen B-4 C		
75A Alternative: X 57 Eijen B-4 C	JOI Office	
ETU/ATU: Make and Model	N	Size
Junction/Distribution Box(es):	Number	Ft. Width
Curtain Drain:	Ft Depth	
ROB Sand/Gravel Fill:	Ft. Depth	Sq. Ft Area
Other:		·
Will any portion of the existing OWTS remain? Y □ N ☒ If Y Total LI	F Total SF	
Describe remaining components:		
Describe remaining components.		
Septic System Contractor (SSC): United Septic	Lice	nse #
Septile dystern contracts: (===)		
Existing Water Supply Information: ☑ Private Water Supply □ Public Water Supply: Source Name:	¥	
COF NE		
Other Requirements/Conditions		
I represent that I am wholly and completely responsible to the design and cabove described will be constructed as shown on the approach pen of appreciations of the Westchester County Department of Hearth and the Department of the commissioner of Hearth in the symmetry of the Commissioner of Hearth in	pletion thereof, a "Certificate of Control along with a completed Guara] that the remediation work th the rules and onstruction Compliance" inty of Remediation Work
	F.L./IV.A OCAI	
APPROVED FOR REMEDIATION This approval expires one (1) year from the date results and the vocable for necessary by the Commissioner of Health, Any ohange or attention of cons	r cause or may be amended or m truction requires a new permit	nodified when considered
Date: Approved By: Commissioner of Health, Westchester County Department of Health	No.	Rev 1/22

