May 09, 2022
Mr. Christopher Carthy, Chairman
and Members of the Planning Board
Town of North Castle
17 Bedford Road
Armonk, NY 10504

RE: JMC Project 20101
The Summit Club at Armonk Residential Bedford Road (Route 22)
Town of North Castle, NY

Response to Town Comments Resubmission

Dear Chairman Carthy and Members of the Planning Board:
On behalf of the owner and applicant, Summit Club Partners, LLC, we are pleased to submit the following documents for your continued review of the Site Plan Application for the proposed residential development on The Summit Club residential property:
I. JMC Drawings:

Dwg. No. Title

C-000	Cover Sheet	6	$05 / 09 / 2022$
C-010	Overall Existing Conditions Map	6	$05 / 09 / 2022$
C-01II	Existing Conditions Map (South)	6	$05 / 09 / 2022$
C-012	Existing Conditions Map (North)	6	$05 / 09 / 2022$
C-020	Site Demolition \& Tree Removal Plan (South)	6	$05 / 09 / 2022$
C-02I	Site Demolition \& Tree Removal Plan (North)	6	$05 / 09 / 2022$
C-022	Site Tree Removal Table	6	$05 / 09 / 2022$
C-100A	Overall Site Layout and Phasing Plan	6	$05 / 09 / 2022$
C-I00	Site Layout Plan (South)	6	$05 / 09 / 2022$
C-101	Site Layout Plan (North)	6	$05 / 09 / 2022$
C-102	Fire Truck Access Plan	6	$05 / 09 / 2022$
C-103	Utility Complex Plans	1	$05 / 09 / 2022$
C-200	Site Grading Plan (South)	6	$05 / 09 / 2022$
C-201	Site Grading Plan (North)	6	$05 / 09 / 2022$
C-202	Road Profiles Plan	6	$05 / 09 / 2022$
C-900	Construction Details	6	$05 / 09 / 2022$
C-901	Construction Details	6	$05 / 09 / 2022$
C-902	Construction Details	6	$05 / 09 / 2022$
C-903	Construction Details	6	$05 / 09 / 2022$

C-904	Construction Details	2	$05 / 09 / 2022$
C-905	Construction Details		$05 / 09 / 2022$
PSP-I	Preliminary Subdivision Plat	6	$05 / 09 / 2022$
IPP-I	Integrated Plot Plan	6	$05 / 09 / 2022$

2. Granoff Architects Drawings:

Dwg. No. Title
Rev. \#/Date
Landscape:
LS I02.I Entry Signage
Residential Building - Plan Type ' A ':
A I00.A Garage Floor Plan 20 05/09/2022
A IOI.A First Floor Plan 2 05/09/2022
A 102.A Second Floor Plan 20 05/09/2022
A 103.A Third Floor Plan 2 05/09/2022
A 300.A Building Elevations 20 05/09/2022
A 30I.A Building Elevations 2 05/09/2022
A 302.A Building Elevations $205 / 09 / 2022$
A 303.A Building Elevations 20 05/09/2022
A 304.A Building Elevations - Materials 05/09/2022
Residential Building - Plan Type ' B ':

A 100.B	Garage Floor Plan	2	$05 / 09 / 2022$
A 10I.A	First Floor Plan	2	$05 / 09 / 2022$
A 102.B	Second Floor Plan	2	$05 / 09 / 2022$
A 103.B	Third Floor Plan	2	$05 / 09 / 2022$
A 300.B	Building Elevations	2	$05 / 09 / 2022$
A 30I.B	Building Elevations	2	$05 / 09 / 2022$
A 302.B	Building Elevations	2	$05 / 09 / 2022$
A 303.B	Building Elevations	2	$05 / 09 / 2022$
A 304.B	Building Elevations - Materials	2	$05 / 09 / 2022$

3. R\&M Engineering Documents:
a. Submission Cover Letter, dated 04/26/2022 (Planning Board)
b. Submission Cover Letter, dated 04/26/2022 (NYSDEC)
c. NYSDEC Short Environmental Assessment Form, dated 04/29/2022
d. NYSDEC SPDES Application Form, dated 04/26/2022
e. SPDES Site Plan, dated 04/2022
f. Engineering Report: Sewage Treatment Plant Replacement, dated 04/26/2022
4. "Report on Subsurface Soil and Foundation Investigation: Brynwood Club Development", prepared by Carlin-Simpson \& Associates, last revised I0/I6/2013.

The revisions depicted on the above noted plans reflect responses to comments outlined in the Town of North Castle Planning Department Memorandum, dated April 4, 2022. For ease of review, we have repeated and enumerated the comments in italic print, followed by our responses:

Town of North Castle Planning Department, dated April 4, 2022

General Comments

Comment No. I

The submitted plans contain several items relating to the golf club, including, pro shop, parking lot, roadway improvements, guest cottages, etc. The Applicant has confirmed that the current application is only seeking approval of the residential component and that the golf course site plan and special use permit will be officially processed at a later date.

Response No. I

The site plans have been revised to only depict the "Residential Phase" development improvements, which includes the following:

- Six (6) residential buildings
- Amenities complex (building \& pool)
- Tennis court complex
- Utilities complex (water supply buildings/infrastructure, new STP \& re-use of existing STP as storage)
- Guardhouse
- Roadways

Comment No. 2

The proposed IO foot tall tennis court fence exceeds the maximum fence height of six feet. Any fence exceeding six feet in height will require a variance from the Zoning Board of Appeals.

Response No. 2

The comment is so noted. We will process an application with the Zoning Board of Appeals upon referral by the Planning Board.

Comment No. 3

The floor plans should be revised to depict which seven of the 72 units will be designated as AFFH units.

Response No. 3

Granoff Architects has re-submitted the floor plans and highlighted the chart and units that are planned to be AFFH units.

Phase I:

Building I	Unit IOI-3 bedroom
Building 2	Unit IO2-2 bedroom
Building 3	Unit 102-2 bedroom

Phase II:
Building 4 Unit I02-2 bedroom Unit IOI-3 bedroom
Building 5 Unit 102-2 bedroom
Building 6 Unit I02-2 bedroom

Comment No. 4

The site plan should be revised to depict a lighting/photometric plan for review that conforms to the minimum requirements of Section 355-45.M of the Town Code. All proposed site lighting should be depicted on this plan.

Response No. 4

Awaiting calculations from the manufacturer at this time. Proposed lighting will conform to meet the minimum requirements.

Comment No. 5

A golf course community must be affiliated with an adjoining membership club which is subject to a Town Board special use permit. Such affiliation shall be established by the requirement that, except for the initial developer/sponsor of the golf course community and successor sponsors/owners of units which have not yet been sold for owner occupancy, the owner of a dwelling unit of the golf course community must for the duration of ownership be a member (whether individually or as a family) of the membership club. The terms and conditions of membership shall be determined by the membership club.

The golf course of the affiliated membership club functions as the open space for the golf course community, and preservation of that open space is a basis for the permitted density of a golf course community. Accordingly, as a condition of site development plan approval of a golf course community, the affiliated membership club shall record in the Westchester County Clerk's office a permanent conservation easement pursuant to which the membership club agrees that the property on which the golf course is located shall be used solely as a golf course or as open space. The conservation easement shall be in form and substance reasonably acceptable to the Town Board and Town Attorney.

Response No. 5

The owners of the market-rate residences will all be members of The Summit Club which has reopened as of April, 2021. A Temporary Special Use Permit for the club/golf course operations, including the temporary facilities was approved by the Town Board on 02/24/202I.

The golf course lot is already subject to a recorded Declaration providing that the golf course lot can only be used as a golf course/club or as open space. The landowner, Summit Club Partners,

LLC, will enter into a permanent conservation easement and file it with the Westchester County Clerk's office.

Comment No. 6

The Applicant will need to file the previously discussed conservation easement prior to the issuance of the first building permit.

Response No. 6

The comment is so noted.

Comment No. 7

The Applicant has indicated that chipping would be required during construction. At this time, the Applicant should provide details for review by the Planning Board.

Response No. 7

Based on the subsurface geotechnical exploration conducted at the property, rock is present in the proposed redevelopment area and blasting and/or chipping will be required to remove the rock during construction. All rock removal processes shall meet all applicable Town of North Castle. Additional information related to blasting and/or rock chipping in accordance with Town Code Chapter 22 "Blasting, Explosives and Chipping, last revised I I/I8/2020 will be provided under separate cover. Based on the current design and available geotechnical information, we estimate approximately 12,000 cubic yards of rock to be removed for construction of the project. Refer to "Report on Subsurface Soil and Foundation Investigation: Brynwood Club Development", prepared by Carlin-Simpson \& Associates, last revised 10/I6/2013.

Comment No. 8

The Applicant has indicated that rock processing would be proposed on the site. Additional details should be submitted regarding the proposed operation at this time.

Response No. 8

Based on the subsurface geotechnical exploration conducted at the property, rock is present in the proposed redevelopment area. Once removed, the rock will be processed on-site and used for construction. A note has been added to the site plans. All rock processing operations shall meet all applicable Town of North Castle and Westchester County Department of Health requirements. Additional information related to on-site rock processing in accordance with all local and WCDH requirements will be provided under separate cover. As indicated above, based on the current design and available geotechnical information, we estimate approximately I2,000 cubic yards of rock to be removed for construction of the project. Refer to "Report on Subsurface Soil and Foundation Investigation: Brynwood Club Development", prepared by Carlin-Simpson \& Associates, last revised 10/16/2013.

Comment No. 9

The Town charges a fee in lieu of providing recreation facilities. The Applicant believes that sufficient on-site recreational facilities are being provided to meet the demand of the project, and has requested a credit be given for the market rate homes. The residents of the AFFH units would not be required to be members of the Club and would likely use Town recreation facilities. Therefore, the required \$1,000 per unit fee in lieu should be paid by the Applicant for the AFFH units.

Response No. 9

The comment is so noted.

Comment No. 10

The site plan depicts 65,300 square feet of Town-regulated steep slope disturbance.
Response No. 10
The current site plans have been revised to depict +/-62,000 square feet (1.42 acres) of Townregulated steep slope disturbance.

Comment No. II

The site plan depicts the removal of 250 Town-regulated trees.

Response No. 11

The current site plans have been revised to depict the removal of 238 Town-regulated trees.

Comment No. 12

The Applicant has retained the services of a hydrogeologist/water system consultant to design a new on-site water system. The Applicant shall keep the Planning Board apprised on the status of the design.

Response No. 12

The applicant has retained the services of a hydrogeologist/water system consultant who is currently working on the design of the new on-site water system. The new water system will be sized appropriately to accommodate the proposed residential, golf club and various amenities facilities.

According to the project Hydrogeologist/Water Supply Consultant (WSP), the next step for the project potable water system will be to conduct a 72 -hour yield test of the three on-site wells with a full NYS Part 5 water sample for each well. After the 72-hour test is completed, WSP will revise the 50% plans and specifications that have been developed and previously provided to the Town. Once the plans and specifications have been updated and further developed, they will be submitted to the Town of North Castle (Sal Misiti), it's consultants and the WCDH. Please refer
to drawings prepared by WSP USA submitted in our previous submission.

Comment No. 13

The Applicant has retained the services of a sewage treatment plant consultant to design a new sewage treatment plant. The existing sewage treatment plan is proposed to be converted into a storage building that will be reviewed during the golf club SUP/site plan review. The Applicant shall keep the Planning Board apprised on the status of the design.

Response No. 13

The applicant has retained the services of a sewage treatment plant consultant (R\&M Engineering) who is currently working on the design of the new sewage treatment plant. As indicated above, the existing STP building will be reused as an equipment storage building. Instead, a new sewage treatment plant is proposed within the hillside between the existing driveway leading to the STP building and the south side of the existing driving range. The new plant has been sized appropriately to accommodate the proposed residential, golf club and various amenities facilities. Refer to drawings prepared by R\&M Engineering.

Comment No. 14

The Applicant has stated that signage is proposed for the project. The location and design of the signage should be included on the plans at this time.

Response No. 14

New entrance signage will be proposed on the new decorative stone walls proposed at the entrance to the site. Additional signage will be provided throughout the interior of the development area as required (traffic control, directional, etc.). The design of the proposed entrance signage will be prepared and provided under separate cover. Refer to drawing LS IO2.I, prepared by Granoff Architects for Entry Signage detail.

Comment No. 15

Pursuant to Section 355-34.I(5)(b) of the Town Code, within multifamily developments, the affordable AFFH units shall be physically integrated into the design of the development and shall be distributed among various sizes (efficiency, one-, two-, three- and four-bedroom units) in the same proportion as all other units in the development. The plan should identify which units will be AFFH and demonstrate that the unit sizes are equally distributed among the various sizes.

Response No. 15

The chart has been revised. See plan residential sheets.

Comment No. 16

Pursuant to Section 355-24.I.I of the Town Code AFFH units shall be marketed in accordance with the Westchester County Fair Affordable Housing Affirmative Marketing Plan.

Response No. 16

The comment is so noted.

Comment No. 17

Pursuant to Section 355-24-I. 2 of the Town Code, the maximum monthly rent for an affordable AFFH unit and the maximum gross sales price for an AFAH unit shall be established in accordance with US Department of Housing and Urban Development guidelines as published in the current edition of the Westchester County Area Median Income AMI Sales Rent Limits available from the County of Westchester.

Response No. 17

The comment is so noted.

Comment No. 18

Pursuant to Section 355-24-I. 3 of the Town Code, units designated as affordable AFFH units shall remain affordable for a minimum of 50 years from date of initial certificate of occupancy for rental properties and from date of original sale for ownership units.

Response No. 18
The comment is so noted.

Comment No. 19

Pursuant to Section 355-24-I. 4 of the Town Code, a property containing any affordable AFFH units shall be restricted using a mechanism such as declaration of restrictive covenants in recordable form acceptable to the Town which shall ensure that the affordable AFFH unit shall remain subject to affordable regulations for the minimum 50 -year period of affordability. The covenants shall require that the unit be the primary residence of the resident household selected to occupy the unit upon approval such declaration shall be recorded against the property containing the affordable AFFH unit prior to the issuance of a Certificate of Occupancy for the development.

Response No. 19

The comment is so noted. The applicant will comply.

Comment No. 20

Pursuant to Section 355-34.I(6)(a) of the Town Code the Applicant shall submit an exhibit demonstrating that the proposed AFFH units meet the minimum size requirements and are not less than 80% of the of
average floor area of market rate units.

Response No. 20

The AFF units are not less than 80% of the average Market Rate floor area. See charts and notes on the submitted floor plans.

We trust the attached documents and above responses are sufficient for your review and we respectfully request placement on the May $23^{\text {rd }}$ Planning Board agenda. Thank you for your consideration.

If you have any questions or require additional information, please do not hesitate to contact our office at (914) 273-5225.

Sincerely,
JMC Planning Engineering Landscape Architecture \& Land Surveying, PLLC

Paul R. Sysak, RLA
Project Manager
cc: \quad Adam R. Kaufman, AICP
Joseph M. Cermele, PE, CFM
Roland Baroni, Esq.
Jeffrey B. Mendell
Mark P. Weingarten, Esq.
Peter J. Wise, Esq.
Rich S. Granoff, AIA, LEED AP
Kenneth S. Andersen, AIA
p:\2020\20I0 I \admin\tcarthy 05-09-2022.docx

SITE PLAN APPROVAL DRAWINGS

THE SUMMIT CLUB AT ARMONK (RESIDENTIAL PHASE)

TAX MAP SECTION 101.02 | BLOCK 1 | LOT 28.1 \& 28.2
WESTCHESTER COUNTY
568 \& 570 BEDFORD ROAD (NY-22)
TOWN@F NORTH CASTLE, NEW YORK

roposed bulling area summer (gross floor area):

Son
ESSDENTAL UNT PHASNG DECLARATOV:

NERAL CONSTRUCTON NOTES APPY TO ALL WORK HEREN:

JMC Drawing List:

$\frac{\text { Applicant/Owner: }}{\text { SUMMIT CLUB PARTNERS, LLC }}$

$\frac{\text { Attorney: }}{\text { DLLBELLO DONNELLAN WEINGARTEN WISE \& WIEDERKEHR, LLP }}$

WHITE PLANSS,N N 1060
(914) $881-0200$

APEX Gogring Lighting Consultant: 20.3OBEEVER ROAD
WEHERSSFELLD CTO 06109

IIS|) $\frac{\text { Water Distribution System Consultant: }}{\text { WSP }}$
 NeW YoRk, , NY 10119
(212) 4655000

Sewage Treatment Plant Consultant:
R\&M ENGINEERING
50 ELM STREE

50 ELM STRET
HUNTINGTON, NV 11743

(6511 271.0576
Site Planner/Civil Engineer/Surveyor
JMC PLANNING, ENGINEERING, LANDSCAPE ARCHITECTURE, $\&$ LAND SURVEYNG PLLC

$\underset{\text { SCALE: } 1 \text { IT } 5,000}{\text { ZONIG }}$
ZONING COMPLANCE CHART

Descra		$\underset{\substack{\text { REOMRED/ } \\ \text { cermitio }}}{ }$	ExsnI	$\begin{gathered} \text { Rropopsob/ } \\ \text { RRRODNOD } \end{gathered}$	$\begin{aligned} & \text { Propopsob/ } \\ & \text { PRRODND } \end{aligned}$	Proposeb/ PROONED	Proposigl PRROUSO
Cor nectaces)	2 cmwe (i)	Ster or					
Oroper (eter	${ }_{\text {cre me ((1) }}$	st	$\pm \pm 1095$	${ }_{ \pm 1208(1)}$	$\pm .1085$	\#, 1095	\pm \#,055
rear		Eff OTE	${ }_{\text {t231 }}$	${ }_{\text {tu332 }}(1)$			
some	30(1)		± 827.8	${ }^{19978} 8$ (1)	88 (1)	${ }^{\text {P1,4687 }}$	
Rear	¢0(1)	(extiole		$\underbrace{41,5858(1)}$			
	m/30	3/305 [2]	3/<295	3/295	3/<395	3/<395	3/<2985
	2 Prevorumu wr	Ste Wif ${ }^{\text {S }}$		12/E60 (8)	${ }^{168}$		
				S/			
Tort peatus specs	ovemuc wr	Stera	${ }_{180}$	${ }^{102 / 290}(8)$	${ }^{80}$		

发

$\underset{\substack{\text { cors } \\ \text { stume menn }}}{ }$
为

$\frac{\text { ROAD A FIRE TRUCK TURNING ANALYSIS }}{\text { SCALE: } 1^{1 "}=50^{\prime}}$

ROAD B FIRE TRUCK TURNING ANALYSIS

2

El ${ }^{[1}$

$\xlongequal{2-N \omega+\infty,}$
。

HORIZONTAL: $1^{\prime \prime}=30$
VERTICAL: 1" = 10'

WATER MAIN PROFILE
HORIZONTAL: $1^{\prime \prime}=30$
VERTICAL: $1 "=10$

SEQUENCE OF CONSTRUCTION
In
CONSTRUCTION PHASE 1 （～13．0 AC．）

Mand

路

\qquad
mins momer

CONSTRUCTION PHASE 2 （ $\sim 4.7 \mathrm{AC}$ ．）

CONSTRUCTION PHASE 3 （～5．9 AC．）

and

Nomel

GENERAL NOTES

－． ous sinn ex comia

Aitr Remsioms

15．

deame mime eve PLAN
GARAGE LEVEL
A-100.A


```
cosmen
M,
lomen
M
My,
Myyyy
    cyyyy
    <ccol
*)
To marererate wn
```



```
Ma,
M,
M,
```



```
M,
```


PLAN LEGEND

SUMMIT CLUB PARTN
LLC - RESIDENCES

dieman mine
SECOND FLOOR PLAN

A-102.A

[^0]| T/Emea | | mane fate mis | | Torat bestams |
| :---: | :---: | :---: | :---: | :---: |
| Butume 1 | | | (m) Beprom Munt | |
| ${ }^{\text {enumone } 28 \text { soom }}$ | 12 murs | (7) Eeceooms | (12 2ebeoon | |
| Pumbess som | | Cosemomisem | (12 Efacom | |
| Rumbetsion | 120urs | Cis Bepooms | \% Sbeicouwil | 27 Ebebous |
| emumes ssoent | R2uns | Osis befeoms | Emepoom Murioes | |
| toras | pzums | | | 1e8emeooms |
| | | | ¢sefrumis | |
| oessiry unt | ${ }^{\text {zuwns }}$ | 隹 | | |
| oweunsumrs | ${ }^{\text {r2uwrs }}$ | | | |

PLANLEGEND
SUMMIT CLUB PART
LLC-RESIDENCES

A-103.A

A-300.A

moiectune
SUMMIT
CLUB PARTNERS
SUMMIT CLUB PART
LLC-RESIDENCES

Reanc mine
BUILING ELEVATIONs

A-302.A

PLANNING BOARD
SUBMISSION

SUMMIT CLUB PARTNERS
SUMMIT CLUB PAR
PLAN LEGEND

[^1]

PLAN LEGEND
SUMMIT CLUB PART
LLC - RESIDENCES

A-103.B

(1) $\frac{\text { NORTH ELEVATION }}{\text { 2.UNTI COLOR SCHEME S SANO }}$
$3 / 32^{n}=1 \cdot 0^{\prime \prime}$

(2) NORTH ELEVATION - VIEW \qquad

(4) NORTH ELEVATIIT - VIEW

peamm ime
Buliving Elevations

A-301.B

April 26, 2022
Town of North Castle Planning Board
17 Bedford Road
Armonk, NY 10504
Attention: Mr. Christopher Carthy, Chairman and Members of the Planning Board

RE: The Summit Club at Armonk
Sewage Treatment Plant Replacement
SCTM: 101.2-1-28.1 \& 28.2
R\&M No. 2021-201

Dear Chairman Carthy and Members of the Planning Board:
Enclosed herewith for your review and comment, please find the Engineering Design Report describing the proposed replacement and expansion of the existing sewage treatment plant (STP) for the anticipated development of The Summit Club at Armonk, formerly known as Brynwood Golf and Country Club.

In addition to the Engineering Design Report, the Short Environmental Assessment Form prepared for the STP has been included in the submission package. Both referenced documents have been concurrently submitted to the NYS Department of Environmental Conservation (NYS DEC) for the State Pollutant Discharge Elimination System (SPDES) review process required to obtain the proposed STP's discharge permit. Preparation and submission of the technical plans and specifications to the Planning Board and Westchester County Department of Health will be subsequent to NYS DEC conceptual approval of the report.

If you have any questions regarding the above or require any additional information, please do not hesitate to contact us.

Sincerely,
R\&M Engineering

Matthew P. Scheiner, P.E.
Partner
MPS/snm
Encl.
cc: Jeffrey Mendell - Summit Club Partners, LLC (via email)
Paul Sysak, RLA, ASLA - JMC Site Development Consultants (via email)
David Lombardi, P.E. - JMC (via email)

April 26, 2022
New York State Department of Environmental Conservation
Regional Permit Administrator
21 South Putt Corners Road
New Paltz, NY 12561-1620

Attention: Mike Grosso
Environmental Analyst

RE: The Summit Club at Armonk Sewage Treatment Plant Replacement
SCTM: 101.2-1-28.1 \& 28.2
R\&M No. 2021-201

Dear Mr. Grosso:

Enclosed herewith is the submission package for the proposed replacement and expansion of the existing sewage treatment plant (STP) for the anticipated development of The Summit Club at Armonk, formerly known as Brynwood Golf and Country Club. For your review and comment, please find the following:

- Engineering Report describing the proposed STP design sized for 45,000 gallons per day
- State Pollutant Discharge Elimination System (SPDES) Application Form
- SPDES Site Plan
- Short Environmental Assessment Form for the STP

Concerning the Short Environmental Assessment Form, an Environmental Impact Statement (EIS) was previously prepared for the project and the Town of North Castle Planning Board issued the State Environmental Quality Review Act (SEQRA) Findings Statement on April 22, 2015. All other required attachments for the SPDES application can be found in the appendices of the Engineering Report.

Heather McVeigh from the Westchester County Department of Health (WCDH) has been included on the submission so that her office is aware of the review timeline and permit approval status. Following NYS DEC approval, technical plans and specifications will be prepared and submitted through WCDH.

Re: Summit Club STP Replacement
R\&M Job No.: 2021-201
Date: April 26, 2022
Page 2 of 2

If you have any questions regarding the above or require any additional information, please do not hesitate to contact us.

MPS/snm

Encl.
cc: Heather McVeigh - Westchester County Department of Health (via email) Jeffrey Mendell - Summit Club Partners, LLC (via email) Paul Sysak, RLA, ASLA - JMC Site Development Consultants (via email) David Lombardi, P.E. - JMC (via email)

Short Environmental Assessment Form

 Part 1 - Project Information

 Part 1 - Project Information}

Instructions for Completing

Part 1 - Project Information. The applicant or project sponsor is responsible for the completion of Part 1. Responses become part of the application for approval or funding, are subject to public review, and may be subject to further verification. Complete Part 1 based on information currently available. If additional research or investigation would be needed to fully respond to any item, please answer as thoroughly as possible based on current information.

Complete all items in Part 1. You may also provide any additional information which you believe will be needed by or useful to the lead agency; attach additional pages as necessary to supplement any item.

4. Check all land uses that occur on, are adjoining or near the proposed action:

| \square Urban \square Rural (non-agriculture) | \square Industrial | |
| :--- | :--- | :--- | :--- | :--- |
| \square | Commercial \square | Residential (suburban) |
| \square Forest \square Agriculture | \square Aquatic \square | Other(Specify): Institutional, open space, golf course. |
| \square Parkland | | |

Part 1 / Question 7 [Critical Environmental No
Area]

Part 1 / Question 12a [National or State No Register of Historic Places or State Eligible Sites]
Part 1 / Question 12b [Archeological Sites] Yes
Part 1 / Question 13a [Wetlands or Other Yes - Digital mapping information on local and federal wetlands and Regulated Waterbodies] waterbodies is known to be incomplete. Refer to EAF Workbook.
Part 1 / Question 15 [Threatened or No Endangered Animal]
Part 1 / Question 16 [100 Year Flood Plain] Yes
Part 1 / Question 20 [Remediation Site] No

Department of Environmental Conservation

State Pollutant Discharge Elimination System (SPDES) Application Form: Private, Commercial \& Institutional (P/C/I) Discharge of Treated Sanitary Sewage
© New Application

C Renewal Application
DEC Authorization
Contact/Agent Information
Name
R\&M Engineering, Matthew P. Scheiner, PE

Titie
Partner

| Mailing Address | | |
| :--- | :--- | :--- | :--- |
| 50 Elm Street
 City State Zip
 Huntington NY 11743
 Phone Email
 $(631) 271-0576$ mscheiner@rmengineering.com | | |

Certification: I hereby affirm under penalty of perjury that the information provided on this form and any attached supplemental forms is true to the best of my knowledge and belief. False statements made herein are punishable as a Class A misdemeanor pursuant to section 210.45 of the Penal Law.

Applicable discharge data on the following pages must be completed. Discharges from this facility are not authorized until this application form is attached to the permit signed and authorized by the New York State Department of Environmental Conservation or its designated agency.

SPDES Application for P/C/I Discharge of Treated Sanitary Sewage
 Discharges To Surfacewater - 1 of 1

Facility Name The Summit Club at Armonk

\square
To Add or Remove outfalls, click on the Green + or the Red X respectively.
Complete this page of the application if your facility has any discharges to surface water. Complete this form for each surface water outfall.

Discharge Data

$\begin{aligned} & \text { Outfall No. } \\ & \hline 001 \end{aligned}$	Outfall Status				Design Flow 45,000 Gal/Day	
	OProposed	OReplacement	O Existing	- Expansion		
Outfall Location (end of pipe or conveyance)		Latitude 41 \square Longitude 73		$\begin{array}{l\|} \hline 57 \\ \hline 27 \\ \hline 27 \end{array}$		

Type of Treatment

Modified extended aeration treatment process.

SPDES Application for P/C/I Discharge of Treated Sanitary Sewage Discharges to Surface Water

Facility Name The Summit Club at Armonk

\square DEC Authorization \square

Outfall No. 001

Sampling Information

Include the following sampling information. Please indicate whether the values listed are from sampling results (include the date), estimated from the treatment system design as installed, or estimated from the proposed treatment system design.

Plant Design Pollutant Information	Influent		Effluent		Number of Samples or Source of Estimate
	mg/l	Ibs/day	mg/l	Ibs/day	
BOD5	240		5.0		Prop. Treatment System Design
Suspended solids	240		10.0		Prop. Treatment System Design
Percent removal, BOD/TSS					
pH, Range			6.5-8.5		Prop. Treatment System Design
Settleable solids, m//l			0.1		Prop. Treatment System Design
Solids, total dissolved					
Dissolved oxygen					
Ammonia, as N	13.0		1.8		Prop. Treatment System Design
Nitrogen, Total, as N					
Phosphorus, Total, as P	8.0		1.0		Prop. Treatment System Design
Fecal Coliform, MPN			200 No.	1100 mL	Prop. Treatment System Design
Total Residual Chlorine (if used)	n/a				n/a
Temperature, Degrees F, Summer			70		Prop. Treatment System Design
Temperature, Degrees F, Winter					

ENGINEERING REPORT

For
THE SUMMIT CLUB AT ARMONK Sewage Treatment Plant Replacement
Armonk
Town of North Castle
Westchester County, NY 10504

R\&M Job No.: 2021-201

Prepared for
Summit Club Partners, LLC
568 Bedford Road (NY-22)
Armonk, NY 10504

FOREWORD

This Engineering report has been prepared in compliance with the requirements of the New York State Design Standards for Intermediate Sized Wastewater Treatment Systems (issued by New York State Department of Environmental Conservative (NYSDEC)), requirements of Chapter 873, Article VIII of the Westchester County Sanitary Code and in general follows the guidelines of the Recommended Standards For Wastewater Facilities (Ten State Standards).

This Engineering Report has been prepared to address the complete replacement of the existing Sewage Treatment Plant (STP) to serve the proposed redevelopment of the property to update the existing golf course with a new clubhouse, amenities complex, and residential community comprised of 72 townhomes. The parcel for The Summit Club at Armonk project is located east of Interstate 684 and approximately 720 feet north of Blair Road in Armonk, Town of North Castle, New York.

TABLE OF CONTENTS

SECTION
FOREWORD
I GENERAL INFORMATION 3
II INTRODUCTION 4
III PROPOSED TREATMENT PLANT CAPACITY 5
IV INFLUENT SEWAGE CHARACTERISTICS 7
V EFFLUENT REQUIREMENTS 8
VI TREATMENT OPTIONS 9
VII TREATMENT FACILITY DESIGN 11

APPENDICES

APPENDIX A -

APPENDIX B -

APPENDIX D -

APPENDIX E -

APPENDIX F -
FIGURES

DRAWING NO

DRAWING NO. 2

DRAWING NO. 3

APPENDIX C - MANUFACTURER'S PROCESS CALCULATIONS

STP SITE PLAN
SOIL BORING REPORT

PUMP PERFORMANCE CURVES

BLOWER PERFORMANCE DATA

DISINFECTION EQUIPMENT CUTS

SAMPLING LOCATIONS

HYDRAULIC PROFILE

MANUFACTURER'S STP LAYOUT
(All Drawings are located at the end of this document.)

SECTION I

GENERAL INFORMATION

Project Name:	The Summit Club at Armonk STP Replacement
Applicant:	Summit Club Partners, LLC c/o Mr. Jeffrey Mendell 568 Bedford Road Armonk, New York 10504
Project Description:	The applicant proposes to redevelop the existing golf course to also include 72 townhouse units, clubhouse, and a new amenities complex including a pool, spas, restaurant, and bar and lounge. The existing sewage treatment plant (STP) will be replaced, with the STP relocated and capacity upsized to meet the treatment and disposal needs of the golf course and proposed community as well as additional future expansion of the residential space.
Project Location:	The total site area where The Summit Club at Armonk development is proposed is 156.29 acres at 568 \& 570 Bedford Road in Armonk, NY. The parcel for the Summit Club redevelopment is located east of Interstate 684 and approximately 720 feet north of Blair Road in Armonk, Town of North Castle, New York.
Consulting Engineer:	Robinson \& Muller Engineers, P.C. 50 Elm Street Huntington, N.Y. 11743 Phone: (631) 271 - 0576, Fax: (631) 271-0592 E-Mail: MScheiner@rmengineering.com

SECTION II

INTRODUCTION

General

This Engineering Report has been prepared for The Summit Club at Armonk project, the development of a housing community of 72 townhomes and golf and country club. There are also future plans for expansion of the residential complex with additional townhomes and private guest cottages. A projected flow of $45,000 \mathrm{gpd}$ shall be used as the basis of design when accounting for contributions to the existing STP from the proposed and potential future development. The project site is the Summit Club golf course in Armonk, Town of North Castle, New York.

The total project site area for the Summit Club development is 156.29 acres. The existing STP is situated on the site between the ninth hole green and fairway bunker within the existing framed building. This building will be used in the redevelopment as an equipment storage building. As such, a replacement STP is proposed within the hillside between the existing driveway to the existing STP building and the south side of the existing driving range.

Project Site

The overall existing site where the STP will be located varies in elevation from approximately 640 feet above mean sea level (AMSL) in the northeast portion of the property to 400 feet AMSL in the western portions of the property. The STP will be in the southeast portion of the property where the ground surface is proposed to be approximately 534-574 feet AMSL. Based on the subsurface soil and foundation investigation report by Carlin-Simpson \& Associates in Appendix A, groundwater was only encountered in one of ten borings taken and four of eleven test pits excavated, reflecting variation in the location of long-term water table at the project site. Based on the information available from the investigation, it is assumed that the flow direction in the project site area is generally to the west.

The subject parcel for the STP and residential complex is a part of lot 101.02-1-28.2 (568 Bedford Road) and the golf course is on parcel 101.02-1-28.1 (570 Bedford Road). There are fourteen (14) currently private wells onsite, which are at least 50 feet away from the STP outfall line. The STP shall be serviced by a dedicated 1 " water service line that runs from the proposed potable water treatment building adjacent to the existing STP building.

SECTION III

PROPOSED TREATMENT PLANT CAPACITY

SANITARY SEWAGE FLOW

The average daily design flow for sewage is the average of the daily volumes of sewage to be received at the STP for a continuous twelve (12) month period. For the community and golf club, the flow is determined by the criteria from Table B3 - Typical Per-Unit Hydraulic Loading Rates from the Department of Environmental Conservation (NYS DEC) "Design Standards for Wastewater Treatment Works, Intermediate Sized Sewage Facilities" (2014 Edition) as follows:

1.	Townhomes	162 Bedrooms	@ 110 gpd/Bedroom	=	17,820 gpd
2.	Bar \& Grill	35 Seats	@ 16 gpd/Seat*	$=$	560 gpd
3.	Restaurant	252 Seats	@ 28 gpd/Seat*	$=$	7,056 gpd
4.	Golf Tournament	144 Golfers	@ 16 gpd/Golfer*	$=$	2,304 gpd
5.	Country Club	20 Employees	@ 12 gpd/Employee*	$=$	240 gpd
6.	Golf Course (GC)	15 Employees	@ 12 gpd/Employee*	$=$	180 gpd
7.	Seasonal GC Staff	12 Bedrooms	@ 60 gpd/Bedroom*	$=$	720 gpd
8.	Pool	257 Swimmers	@ 8 gpd/Swimmer*	$=$	2,053 gpd
9.	Spas	24 Swimmers	@ 8 gpd/Swimmer*	$=$	192 gpd
10.	Excess Pool Deck	170 Swimmers	@ 8 gpd/Swimmer*	$=$	1,363 gpd
11.	STP Equipment Washdown/Lab	-	55 gpd	$=$	55 gpd
			Proposed Total Flow	$=$	32,543 gpd
	Future Total Flow (Including Add'tl Guest Cottages + Townhomes)			$=$	8,360 gpd
	Total Average Daily Design Flow			$=$	40,903 gpd
	SAY			$=$	45,000 gpd

*These identified per-unit hydraulic loading rates in the above table have been reduced by 20% because they follow the guidelines set in the NYS DEC design standards for establishments with water-saving plumbing fixtures.

In the table above, items 1-9 result in a proposed flow of $32,543 \mathrm{gpd}$ and the breakdown also includes planned future flows with a maximum contribution of $12,457 \mathrm{gpd}$. Therefore, a maximum average daily design flow of $45,000 \mathrm{gpd}$ will be used to size the STP for the purposes of this report.

The State Pollutant Discharge Elimination System (SPDES) Permit No. 0069299 for the existing STP established an effluent limitation for flow of 0.016 MGD ($16,000 \mathrm{gpd}$), while the actual flows are minimal and taken care of with temporary facilities while the golf course is closed for renovations. Since this report will evaluate and involve the complete replacement of the existing STP, the flow through the STP is proposed to increase to $45,000 \mathrm{gpd}$. With the existing discharge permit being expired and the increase in flow, a new SPDES Permit will be obtained from the NYS DEC as required.

In accordance with "Figure 1" of the Ten State Standards, the peak hourly flow for a population of approximately $600(45,000 \mathrm{gpd} \div 75 \mathrm{gpd}$ per person) is 3.93 times the average daily flow rate. Peak hourly flow is therefore calculated to be $45,000 \mathrm{gpd} \times 3.93$ $=176,850$ gpd (122.81 gpm , say 123 gpm).

SECTION IV

INFLUENT SEWAGE CHARACTERISTICS

The standard influent untreated sewage design characteristics provided in the New York State Department of Environmental Conservation (NYS DEC) "Design Standards for Wastewater Treatment Works, Intermediate Sized Sewage Facilities" (2014 Edition) are as follows:

BOD 5 :
TSS:
TP:
Ammonia:
FOG:
$155-286 \mathrm{mg} / \mathrm{L}$
$155-330 \mathrm{mg} / \mathrm{L}$
$6-12 \mathrm{mg} / \mathrm{L}$
$4-13 \mathrm{mg} / \mathrm{L}$
$70-105 \mathrm{mg} / \mathrm{L}$

Based on the above influent sewage characteristics and influent flow of 45,000 gallons per day, the influent loads that the expanded STP shall be capable of treating have been calculated as follows:
lbs. of pollutants $=\mathrm{mg} / \mathrm{L}$ pollutant $\times 8.34 \mathrm{lb}$. / gal. x flow (Q) in gals. / day $\times 10^{-6}$

BOD $_{5}:$	$240 \mathrm{mg} / \mathrm{L} \times 8.34 \mathrm{lb} . / \mathrm{gal} . \times 45,000 \mathrm{gpd} \times 10^{-6}$	$=$	90.07	$\mathrm{lb} . \mathrm{BOD}_{5} /$ day
TSS:	$240 \mathrm{mg} / \mathrm{L} \times 8.34 \mathrm{lb} . / \mathrm{gal} . \times 45,000 \mathrm{gpd} \times 10^{-6}$	$=$	90.07	$\mathrm{lb} . \mathrm{SS} /$ day
TKN:	$40 \mathrm{mg} / \mathrm{L} \times 8.34 \mathrm{lb} . / \mathrm{gal} . \times 45,000 \mathrm{gpd} \times 10^{-6}$	$=$	15.01	$\mathrm{lb} . \mathrm{TKN} / \mathrm{day}$
TP:	$8 \mathrm{mg} / \mathrm{L} \times 8.34 \mathrm{lb} . /$ gal. $\times 45,000 \mathrm{gpd} \times 10^{-6}$	$=$	3.00	$\mathrm{lb} . \mathrm{TP} / \mathrm{day}$

SECTION V

EFFLUENT REQUIREMENTS

The treated effluent from the proposed Summit Club community and golf club will discharge to surface water, an onsite tributary to Byram River classified by NYS DEC as a Class D stream. Class D streams do not typically support any uses for drinking water, public swimming, fishing or fish propagation due to inconsistencies in flow and effluent dilution ratio. Therefore, the receiving tributary is classified as an "intermittent stream," which has typical effluent limits as specified in Table B-4B of the NYS DEC standards.

Consequently, we expect that the State Pollutant Discharge Elimination System (SPDES) permit to align with these limits. The 30-day arithmetic average flow limit listed on the permit will be the design flow of 45,000 GPD, and the preliminary effluent limits for the parcel provided by the NYS DEC Division of Water Quality specific to the project are outlined below:

BOD $_{5}:$	$5.0 \mathrm{mg} / \mathrm{L}$ Daily Max.
TSS:	$10.0 \mathrm{mg} / \mathrm{L}$ Daily Max.
Settleable Solids:	$0.1 \mathrm{mg} / \mathrm{L}$ Daily Max.
Ammonia (Summer):	$0.9 \mathrm{mg} / \mathrm{L}$ Daily Max.
Ammonia (Winter):	$1.8 \mathrm{mg} / \mathrm{L}$ Daily Max.
Phosphorus:	$1.0 \mathrm{mg} / \mathrm{L}$ Monthly Average
Fecal Coliform:	$400 \mathrm{No}. / 100 \mathrm{~mL}$ (7-day geometric mean)
Fecal Coliform:	$200 \mathrm{No}. / 100 \mathrm{~mL}$ (30-day geometric mean)

The daily maximum limit for the Summer is applicable between June $1^{\text {st }}$ through October $31^{\text {st }}$ each calendar year, while the limit for Winter applies November $1^{\text {st }}$ through May $31^{\text {st }}$. Based on the selected Purestream Biologically Engineered Single Sludge Treatment (BESST) process for the STP replacement, the following effluent quality is anticipated:

$\mathrm{BOD}_{5:}$	$<5.0 \mathrm{mg} / \mathrm{L}$
TSS:	$<10.0 \mathrm{mg} / \mathrm{L}$
Ammonia:	$<0.9 \mathrm{mg} / \mathrm{L}$
Phosphorus:	$<1.0 \mathrm{mg} / \mathrm{L}$
Fecal Coliform:	$<200 \mathrm{No} . / 100 \mathrm{~mL}$ (30-day geometric mean)

The effluent quality is expected to meet or exceed the effluent requirements.

SECTION VI

TREATMENT OPTIONS

Based on density restrictions, formal sewage treatment must be provided for the proposed project. Generally, two options are available:

- Off-Site Treatment and
- On-Site Treatment.

Off-Site Treatment

Off-site treatment requires that there be an existing STP which:

- is sufficiently close to the project site to allow for economical transfer of sanitary sewage flow from the project site to the host STP site;
- has sufficient uncommitted excess capacity for the expected proposed and future sanitary sewage flow (if any); and
- is capable of treating the sewage to the required effluent quality.

After reviewing the site and the surrounding area, no STP sites were found that could potentially serve as an optimal alternative to replacing the existing STP and have the capacity to receive sewage from the Summit Club golf course and residential complex, and therefore we have concluded that it is not feasible to use an off-site treatment option.

On-Site Treatment

Some onsite treatment plants use extended aeration process or Rotating Biological Contactors (RBCs) followed by a deep bed denitrification filter(s). Other STPs use Sequencing Batch Reactors (SBR), Membrane Bio-Reactors (MBR), and the Biologically Engineered Single Sludge Treatment (BESST) process.

The BESST process was selected for the project based upon its record of process stability and ability to consistently achieve the NYS DEC \& Westchester County sanitary sewage design goals for treatment of sanitary sewage.

Sanitary sewage will be transported to the STP from the residences and amenities complex via an 8" PVC gravity collection and conveyance system designed by JMC, PLLC.

Description of Selected BESST Treatment Process:

The BESST process is a continuous flow modified extended aeration process. Sewage enters first into the anoxic chamber where it mixes with Return Activated Sludge (RAS) from the clarifier. The nitrogen removal process is completed here as nitrite $\left(\mathrm{NO}_{2}-\mathrm{N}\right)$ and nitrate $\left(\mathrm{NO}_{3}-\mathrm{N}\right)$ produced in the aeration zone are converted to nitrogen gas $\left(\mathrm{N}_{2}\right)$. Some of the influent BOD_{5} is consumed in this denitrification process. The dissolved oxygen (DO) level is maintained below $0.2 \mathrm{mg} / \mathrm{l}$, and submerged mixers keep mixed liquor suspended solids (MLSS) in suspension.

The mixed liquor is transferred by gravity from the anoxic chamber to the far end of the aeration chamber through a submerged transfer pipe. BOD 5 removal and nitrification take place here as the mixed liquor is aerated by fine bubble air diffusers. The aerated mixed liquor then flows into the bottom of the clarifier by means of a baffle.

In the clarifier, solids settle to the bottom as the supernatant flows over the effluent weir and is gravity discharged to the effluent recharge system. Waste Activated Sludge (WAS) sludge is returned to the sludge holding tanks.

SECTION VII

TREATMENT FACILITY DESIGN

Drawing No. 1 - STP Site Plan shows the proposed location of the STP and effluent piping connecting into the existing outfall line that discharges to surface water. Drawing No. 2 Hydraulic Profile illustrates the proposed hydraulic flow profile of sewage and sludge flows through the STP through the existing sewer manhole that will be used as the connection point into the outfall line.

The proposed sewage treatment and disposal facilities will consist of an equalization tank, a 45,000 gpd BESST process train including a sludge holding tank, an influent screening device and constant head box on a precast concrete access slab, a proposed flow metering effluent manhole, approximately 300 feet of 6 " PVC piping to reach the existing outfall piping, and a proposed $20-\mathrm{ft}$ by $35-\mathrm{ft}$ masonry STP building containing a tertiary filter and two (2) UV treatment units. Each step of the process and the required support systems are described below.

All side walls, end walls, bottom, and partitions of the BESST process and equalization tanks shall be of structural grade ASTM-A36 steel plate and all internal piping will be constructed of type 316 stainless steel. There shall be full grating over each of the BESST tanks, including the tertiary filter within the building, and two (2) stairs for Operator access to the BESST process tank and tertiary filter that extend above grade. The perimeter of the process tank and filter will be equipped with galvanized steel safety handrails and kickplate at top of tank elevation.

Influent Equalization Tank

The 8" diameter PVC gravity sewer line has a proposed invert into the equalization tank set at 4.25 feet below the top of tank elevation. The existing flow equalization tank will be equipped with two (2) Goulds Model 3887 non-clog submersible pumps to convey sanitary sewage out of the tank to the anoxic tank internal to the BESST process train. Each pump will have the capacity to handle at a minimum the peak influent flow of 45 gpm at 13.26 ft . TDH. Pump performance curves can be found in Appendix B.

The equalization volume in the tank will be provided between the lead pump "off" elevation to the lag pump "on" elevation, consisting of a proportion of the daily average flow, sludge holding tank volume, and tertiary filter volume.

$$
\begin{aligned}
& \text { Equalization Volume Required }= \begin{array}{l}
20 \% \text { of Daily Average Flow }+25 \% \text { Sludge } \\
\\
\\
\text { Holding Tank Volume }+5 \% \text { Daily Flow Filter }
\end{array} \\
& \text { Volume } \\
&= 45,000 \times 0.20+13,757 \times 0.25+45,000 \times \\
& 0.05 \\
& \text { Total Required Equalization }= 14,689.25 \text { gallons (} 1,963.80 \text { cu. ft.) } \\
& \text { Volume }
\end{aligned}
$$

The minimum vertical difference between "Lag Pump On" float level elevation and the "Lead Off" float level elevation shall be 5.0 ft . This will provide a total equalization storage volume of 15,051 gallons, which is well above the minimum calculated above.

The applicable criteria of Chapter 60 "Screening, Grit Removal and Flow Equalization" of the Ten State Standards including general criteria and the special considerations and standards for flow equalization structures. The $34^{\prime}-0^{\prime \prime} \times 12^{\prime}-0^{\prime \prime} \times 7^{\prime}-0^{\prime \prime}$ SWD equalization tank has full grating over the tank with removable panels for operator access. Operation of the pumps will be controlled by use of a pressure transducer, and all pressure transducer and tank elevations are shown below:

Float	Height
Top of Equalization Tank	585.75
Approximate Grade El.	585.50
Influent Line El.	581.50
High Water Level Alarm	581.25
Lag Pump On	580.75
Lag Pump Off	578.75
Lead Pump On	577.75
Lead Pump Off	575.75
Low Water Level Alarm	575.25
Bottom of Equalization Tank	573.75

Table - Equalization Pump Float Levels

Influent Screening Device

The two (2) explosion proof submersible raw sewage pumps specified in the previous section will pump the sewage from the equalization tank to a covered fine bar screen via two (2) $3^{\prime \prime}$ diameter force mains. The bar screen shall be mounted on the precast concrete access slab that is located between the proposed equalization and BESST process tank. See Drawing No. 1 - STP Site Plan for proposed location of the access slab. The screen
will have the capacity to process the flow from both equalization pumps in the event that they run simultaneously. The screened solids will be disposed of manually. The selected screening device is a model MB 260T by Or-Tec, Inc. with a 2 mm screen opening. The screened influent will pass through a constant head box prior to being conveyed to the anoxic tank via gravity.

Anoxic Compartment

See Appendix C - Manufacturer's Process Calculations for Anoxic Compartment calculations.

The equalized sewage will enter the anoxic compartment where it will mix with the return activated sludge (RAS) which is returned from the bottom of the clarifier by means of air lift pumps. This anoxic compartment will act as a selector conditioning zone for the microorganisms which will consume the pollutants in the sewage. Some of the influent BOD_{5} will be consumed by the denitrifying bacteria as they complete the nitrogen removal process (Denitrification) and convert nitrate $\left(\mathrm{NO}_{3}\right)$ to nitrogen gas (N_{2}). Two (2) electric submersible mixers on slide rail assemblies with manual hoists will be provided within the anoxic compartment to prevent settling. The mixed liquor will flow into the far end of the bottom of the aeration compartment through a submerged transfer pipe.

The BESST anoxic zone will be $14^{\prime}-0^{\prime \prime}$ wide by $4^{\prime}-0^{\prime \prime}$ long (plan view at the water level), and have a $10^{\prime}-6^{\prime \prime}$ effective depth ($12^{\prime}-0^{\prime \prime}$ total sidewall depth). The total volume of the anoxic zone shared between the two trains shall be 993.85 cu.ft. ($7,434.0$ gallons) . With a design flow of 45,000 GPD, the detention time will be 3.96 hours.

Aeration Compartment

See Appendix C - Manufacturer's Process Calculations for Aeration Compartment calculations.

The mixed liquor will be aerated by a fine bubble air diffusion system to provide process oxygen and prevent solids settlement. The remaining BOD_{5} will be removed and the nitrification process which begins as ammonia $\left(\mathrm{NH}_{3}\right)$ is converted to nitrite $\left(\mathrm{NO}_{2}\right)$ and nitrate $\left(\mathrm{NO}_{3}\right)$. The mixed liquor will then flow into the bottom of each clarifier by means of a baffle design integral to the clarifier. Return sludge will be removed from the bottom of each clarifier and pumped to the anoxic zone by means of air lift pumps. Oxygen levels in each aeration compartment will be controlled by utilizing a portable hand-held D.O. monitoring probe and adjusting the manual VFD's on each blower.

The air requirement for the aeration tanks is determined by the manufacturer based on the oxygen and air consumption rates, including a safety factor of 5 scfm . The calculation is outlined below:

Air Flow Rate Required:

$$
\begin{gathered}
\text { Oxygen }=Q\left(\left(S_{O}-S_{R}\right) / 0.68\right)-1.42 P_{X}+4.57 Q\left(N_{O}-N\right) \\
\text { Oxygen }=170.33((0.24-0.0037) / 0.68)-1.42(14.004)+4.57(170.33)(0.04-0.001) \\
\text { Oxygen }=69.655 \mathrm{~kg} \mathrm{O} O_{2} / \text { day } \\
\text { Air }=O_{2}\left(\frac{c_{S}}{c_{S}-2}\right)\left(\frac{o_{K}}{0.024 a}\right) \\
\text { Air } \left.=69.655\left(\frac{8.1224}{8.1224-2}\right)\right)\left(\frac{1.30}{0.024 * 30}\right) \\
\text { Air }=166.85 \mathrm{Nm}^{3} / \mathrm{h} \\
\text { Air }=\left(166.85 \frac{\mathrm{Nm}^{3}}{h} * 35.31 \frac{\mathrm{~m}^{3}}{\mathrm{ft}^{3}} * \frac{1 \mathrm{~min}}{60 \mathrm{hr}}\right)=98.19 \mathrm{cfm}+5 \mathrm{cfm}= \\
\text { Air }=103.19 \mathrm{cfm}
\end{gathered}
$$

Therefore, for each aeration tank the required amount of air is 51.60 cfm , and the air provided for the aeration tanks will come from the main process blower. See Appendix C for a breakdown of the manufacturer's BESST calculations as well as a list of inputs for the above calculations.

Each proposed aeration compartment will be $14^{\prime}-0^{\prime \prime}$ wide by $9^{\prime}-2 \frac{1}{2}$ " long (plan view at the water level), and have a $10^{\prime}-6^{\prime \prime}$ effective depth ($12^{\prime}-0^{\prime \prime}$ total sidewall depth). The aeration volume in each treatment train will be $1,757.69$ cu.ft. ($13,147.5$ gallons), for a total volume of $3,515.37$ cu.ft. (26,295 gallons). With the design flow of 45,000 GPD, the detention time will be 14.02 hours. The combined detention time for the anoxic zones and the aeration zones will be 17.98 hrs.

Clarifier

See Appendix C - Manufacturer's Process Calculations for Clarifier calculations.
The clarifier has a triangular cross-section. Mixed liquor will enter the clarifier through the baffle at the bottom of the clarifier and flow upward. As the mixed liquor rises, heavier solids settle out, and in effect, form a blanket which filters out colloids and very fine particles. A distinct interface forms between the supernatant and the sludge blanket. An air lift pump will be used to remove the activated sludge from the bottom of the clarifier and either discharge it to the anoxic chamber or waste it to the sludge storage tanks. Nitrified return activated sludge (RAS) will be recycled to the anoxic chamber to maintain the biomass concentration required for the treatment process. The RAS rate is proposed to be 4 times the design flow rate for the STP (45,000 GPD x 4 / 1440 min /day / 2 process trains $=62.50 \mathrm{gpm}$ per process train).

Since there are two (2) sludge airlifts rated at 13 scfm each and two (2) skimmer airlifts rated at 5 scfm , the required amount of air for the airlift lines is 36 scfm . The airlift calculations from the manufacturer and performance curves are shown in Appendix C.

Periodically, waste activated sludge (WAS) will be pumped to the sludge storage tanks to control the solids retention time (SRT) of the biomass. FOG and skimmings will be transferred through the airlift system back to the sludge holding tanks. The design SRT is 29.2 days. An air lift skimmer will be used to remove floatables such as light plastics, fats and oils from the surface of the clarifier. Clarifier supernatant flows over a weir into a trough and flows by gravity to the tertiary filter.

Each clarifier will measure $14^{\prime}-0^{\prime \prime}$ wide by $11^{\prime}-0^{\prime \prime}$ long (plan view at the water level), and have a $10^{\prime}-6^{\prime \prime}$ effective depth ($12^{\prime}-0^{\prime \prime}$ total sidewall depth). Each clarifier has a volume of 811.76 cu.ft. (6,072 gallons), for a total of $1,623.53$ cu.ft. (12,144 gallons). Detention time in the clarifiers at average flow of $45,000 \mathrm{gpd}$ will be 6.48 hrs . The combined detention time for the anoxic zones, the aeration zones, and the clarifiers will be 24.46 hrs . Surface loading rate will be $146.10 \mathrm{GPD} / \mathrm{sq} . \mathrm{ft}$. ($45,000 \mathrm{gpd} /(2$ units X 154 sq.ft. per unit) and weir loading rate will be $1,607.14 \mathrm{GPD} / \mathrm{Ft}$. ($45,000 \mathrm{GPD} /\left(2\right.$ Units $\left.\mathrm{X} 14^{\prime}-0^{\prime \prime} \mathrm{L}\right)$). These values are within the limitations set forth by the Ten States Standards.

Blowers

1. Process Air / Airlift Blowers

A total of two (2) blowers, each with a minimum capacity of 148 scfm , will be provided for the aeration tanks and sludge airlifts, which is greater than the required capacity of $138.19 \mathrm{cfm}(103.19 \mathrm{cfm}+36.0 \mathrm{cfm}=138.19 \mathrm{cfm})$ for both tanks, See Appendix C - Manufacturer's Process Calculations for the aeration and airlift calculations. One (1) blower will act as the duty blower, and the standby blower will as function as a common spare for the aeration/airlift, the equalization tank, sludge holding tank, and tertiary filter. The blower selected for this duty is the Kaeser Model BB69C with a 10.0 HP motor. See Appendix D for blower performance data. Each blower will be supplied with a manual VFD control system with an electrical bypass. High and low pressure switches will be provided with manual valves to accommodate usage of the standby blower.

2. Equalization Tank / Sludge Holding Tank Air Blowers

Two (2) blowers, each with a minimum capacity of 74 scfm , will be dedicated for the equalization and sludge holding tanks. This minimum capacity is greater than the required capacities of the equalization tanks and sludge holding tank of 18.81 cfm and 55.22 cfm , respectively. The blower selected is the Kaeser Model BB52C, with a 5.0 HP motor, see Appendix D for blower performance data. Each blower will be supplied with a manual VFD control system with an electrical bypass. High and low pressure switches will be provided with manual valves to accommodate usage of the standby blower.

3. Tertiary Filter Air Blower

One (1) duty blower, with a minimum capacity of 160 scfm , will be provided for the tertiary filter, which is greater than the required capacity of 126.40 cfm , based on an air supply rate of $4 \mathrm{cfm} / \mathrm{sq}$. ft. of filter beds. The total square footprint of the proposed filter beds is 31.6 square feet. The blower selected is the Kaeser Model BB69C, with a 10.0 HP motor, See Appendix D for blower performance data. High and low pressure switches will be provided with manual valves to accommodate usage of the standby blower.

The blowers will be provided with sound enclosures and will be housed in the proposed STP control building.

Tertiary Filtration and Disinfection

To meet the stringent effluent BOD_{5} and TSS limits for the STP outlined in Section V , a dual-media, dual-bed auto backwash tertiary filter and ultraviolet disinfection will be provided following the BESST extended aeration process. The tertiary filter unit to be provided as a pre-designed unit is the PURESTREAM PST-31.5 that includes filter beds, a clear well chamber, and backwash capabilities to treat secondary effluent to meet the design limits.

Drawings of the tertiary filter unit are included in Drawing No. 3 - Manufacturer's STP Layout. All side walls, bottom, and partitions of the filter will be of structural grade $1 / 4$ " steel plate, the internal air scour lines will be Schedule 40 perforated PVC pipe, and the backwash surge and backwash pump piping is Schedule 40 PVC pipe with iron pipe fittings.

Disinfection of the effluent from the tertiary filter will be achieved using two (2) Enaqua Model M4 ultraviolet disinfection system units that will also be located in the proposed STP control building. The proposed in-line units will be installed in a flow-through configuration and fed by gravity from the filter. Isolation valves will be provided on the incoming lines to control flow in the event of maintenance, replacement, or repair work on one unit. See Appendix E regarding additional information on the UV disinfection system specified.

Effluent Flow Metering

A flow meter will be provided at a common location in the proposed 5^{\prime} diameter sampling manhole and effluent flow meter chamber. The instrumentation will provide a visual readout of instantaneous flow using a flow totalizer and a flow recorder and will be located in a dry location adjacent to the control equipment in the proposed STP control building.

Effluent Recharge

The treated effluent from the STP is discharged to Byram River from an existing outfall to the tributary located in the northwest region of the subject parcel. The replacement STP will be connected into the existing buried 6" diameter SDR-35 PVC outfall line at an existing manhole west of the existing STP building. The effluent recharge piping and structures shall remain intact downstream of the referenced manhole, and no sufficient evidence exists to warrant a modification of the existing outfall location.

Sludge Holding Tank

The sludge holding tank will be used to hold wasted sludge prior to disposal and will be provided as a part of the main treatment process tank. Sludge holding tank sizing is based on an equivalent sewage flow of 75 gpd per capita and 3 cubic feet of sludge per capita per month. For the equivalent population of 600 people ($45,000 \mathrm{gpd} \div 75 \mathrm{gpd} / \mathrm{capita}$) and 3 cubic feet of sludge per capita per month, the required tank volume is $1,800 \mathrm{cu}$.ft. (600 people $X 3$ cu.ft./capita), or 13,464.0 gallons. The sludge holding zone will measure 14'$0 "$ wide by $9^{\prime}-9$ " long (plan view at the water level) with a 10' -6 " SWD ($12^{\prime}-0^{\prime \prime}$ total sidewall depth), providing a total volume of $1,839.17 \mathrm{cu}$. ft . (13,757 gallons). This will provide 39.17 cu. ft. (293.00 gal) greater than the $1,800 \mathrm{cu}$. ft needed of sludge storage, or approximately 30.65 days of storage capacity.

Air will be supplied to the sludge holding tank at a minimum rate of 30 cfm per 1000 cu . ft . of tank volume via non-clog coarse bubble diffusers to keep the contents aerobic to avoid septic odors and contents of the sludge holding tanks in the completely mixed condition. Consequently, the total air supply rate will be as follows:

CFM	$=\quad 1,839.17 \mathbf{c u} . \mathrm{ft} . \times 30 \mathrm{cfm} / 1000 \mathrm{cu} . \mathrm{ft}$.
	$=\quad \mathbf{5 5 . 1 7} \mathbf{~ c f m}$

Sludge and scum removal will be via scavenger truck to an approved off-site treatment facility, while the sludge supernatant will be returned by gravity flow to the anoxic zone of the treatment process. Each pump provided will be the Goulds Model 3887 submersible sewage pump, which will provide a minimum capacity of 76 gpm at 14.12 ft . TDH to elevate the sludge supernatant back to the equalization tank so decanted liquid can be rescreened prior to entering the treatment tanks. The sludge decant pump will be controlled by a dedicated control panel, which will contain a start timer, a stop timer, and a float override. Pump performance curves can be found in Appendix B.

Chemical Dosing

Dosing of alum to the aeration compartments of the BESST system is required to comply with the Total Phosphorus effluent limit dictated by the SPDES permit. A suitably sized chemical metering pump and storage tank with containment will be provided.

STP Control Building

The proposed STP control building will contain the tertiary filter, two (2) UV units, five (5) blowers, and spare mechanical equipment, electrical panels and controls.

A laboratory area will be provided within the building for the Operator, which shall include an emergency eyewash and safety shower installed as per 10 State Standards requirements. The structure will provide the necessary protection of the process controls and blowers from the elements (cold weather, rain, frost) and a dry, heated environment with proper ventilation for operating personnel for operation and maintenance functions, process testing, and record-keeping. Sufficient lighting shall be provided for safe working conditions.

The laboratory area of the STP control building will provide space to store instruments and test kits for process monitoring. The instruments and test kits to be provided will include:

* Portable dissolved oxygen meter
* pH meter
* Temperature meter or thermometer
* 1-liter graduated cylinders for settleability tests
* Hach DR900 colorimeter for Ammonia, Nitrite and Nitrate Measurement

Sufficient storage within the STP control building has been allotted for tools, spare parts, and lubricants as well as drawer space for the operator to store maintenance logs and treatment plant records. Spare parts and lubricants will be provided as part of the facility construction. Required logs and records will be discussed in detail in the facility Operation and Maintenance Manual to be prepared by the Engineer of Record during the construction period.

A new asphalt driveway will be paved on the west side of the STP control building to allow for Operator and visitor parking as well as a turnaround point for sludge pump trucks.

Standby Power

A standby gas generator will provide power to all the STP equipment during utility power outages. The generator will be pad mounted outside the STP control building in a louvered enclosure and will be provided with residential grade silencer.

Miscellaneous Facility Design Features

Separation

Distances - Table B-1 "Recommended Minimum Aerial Separation Distance from Treatment Facility" of the NYS DEC standards for Intermediate Sized Wastewater Treatment Systems requires a $200-\mathrm{ft}$. minimum radial distance to existing downwind dwellings from STP treatment processes enclosed in a building. Table B-1 also requires a $150-\mathrm{ft}$. minimum separation distance from the treatment units to neighboring property lines with residential use. The above requirements are met for the replacement STP process as shown in the proposed site plan in Figure 1.

Table B-2 "Minimum Horizontal Separation Distances" presents the $50-\mathrm{ft}$. distance requirement for sewer piping from drilled wells. The existing private wells on the parcel are all located greater than 50 feet from the proposed gravity sewer piping for the replacement STP.

Water

Supply - There shall be a 1" diameter water service for the STP that taps into the water supply distribution system from the proposed water treatment plant approximately 55 ft south of the existing STP building. A reduced pressure backflow preventer will be provided on the water supply into the treatment plant to protect the community water supply from possible contamination.

Ventilation - Ventilation will be provided to maintain a dry, comfortable condition inside the control building. Six (6) air changes per hour will be provided.

Testing- The design documents will contain provisions for structure, piping and equipment testing in accordance with the NYS DEC Standards and the requirements outlined in 10 State Standards. This will include structure water tightness testing, piping pressure testing, and operational testing of equipment (including pumps, controls, and alarms).

Certifications - Manufacturers certifications of successful equipment testing and Engineer of Record certification of installation and testing will be
provided in accordance with the provisions of Sections F and G of the NYS DEC Standards.

Sampling

Locations - Wastewater samples are to be taken at the plant influent (equalization tank) and the plant effluent (flow meter chamber). The sample locations are identified in the SPDES process flow diagram presented in Appendix F - Sampling Locations.
APPENDIX A
SOIL BORING RESULTS
BY CARLIN-SIMPSON \& ASSOCIATES

Consulting Geotechnical and Environmental Engineers

61 Main Street, Sayreville, New Jersey 08872
Tel. (732) 432-5757
Fax. (732) 432-5717

Principal:
Robert B. Simpson, P.E.
Associates:
Robert H. Barnes, P.E.
Meredith R. Anke, P.E.
Kurt W. Anke
Eric J. Shaw

Brynwood Partners, LLC
c/o Corigin Holdings
505 Fifth Avenue, $22^{\text {nd }}$ Floor
New York, NY 10017

13 February 2013
Revised 16 October 2013

Attn: Ms. Megan Maciejowski
Re: Report on Subsurface Soil and Foundation Investigation
Brynwood Club Development
Bedford Road
Town of North Castle, NY (12-175)
Dear Ms. Maciejowski:
In accordance with our proposals dated 20 November 2012 and 9 September 2013 and your subsequent authorization, we have completed a Subsurface Soil and Foundation Investigation for the referenced site. The purpose of this study is to preliminarily determine the nature and engineering properties of the subsurface soil and bedrock as well as the groundwater conditions for the planned development, to recommend a practical foundation scheme, to determine the allowable bearing capacity of the site soils, and to determine the subsurface soil and groundwater conditions and soil permeability in the new stormwater management areas.

We understand that the planned construction will consist of 21 new structures, roadways, parking areas, retaining walls, tennis courts, underground utilities, and a stormwater management system. To guide us in our study, you have provided us with a site plan that indicates the existing site conditions and the location of the planned new development.

Our scope of work for this project included the following:

1. Reviewed the proposed layout, the existing site conditions, the expected soil conditions, and planned this study.
2. Retained General Borings, Inc. to advance 11 test borings at the subject site.
3. Retained Traficante Contracting Inc. to excavate 18 test pits at the subject site.
4. Inspected ten (10) supplemental test pits that were excavated at the site by Brynwood Club personnel.
5. Laid out the boring and test pit locations in the field, provided full time inspection of the explorations, obtained soil samples, and prepared detailed logs and a Boring and Test Pit Location Plan.
6. Performed three (3) field percolation tests and one (1) borehole permeability test.
7. Performed soil identification tests on selected soil samples in our laboratory.
8. Analyzed the field and laboratory test data and prepared this report containing the results of this study.

SITE DESCRIPTION

The project site is located on the Brynwood Club property on Bedford Road in North Castle, Westchester County, New York. The subject property is currently occupied by a golf club with a clubhouse building, tennis courts, and a few smaller out-structures. The proposed development area is also occupied by an asphalt paved parking lot and driveways as well as grass lawn areas and wooded areas. There are numerous existing underground utilities located throughout the property.

Within the proposed development area, the existing site grades vary from approximately elevation +610.0 at the southwest corner of the subject site and the westernmost portion of the site, to elevation +640.0 on the east side of the existing clubhouse building, to elevation +674.5 in the existing tennis court area in the northeastern portion of the property.

SUBSURFACE CONDITIONS

To determine the subsurface soil, bedrock, and groundwater conditions, we advanced 11 test borings and 28 test pits at the site. The borings and test pits were performed at the locations shown on the enclosed Boring and Test Pit Location Plan. Detailed logs have been prepared and are included in this report. Our field engineer visually identified all soil samples and selected soil samples were tested in our laboratory. The results of these tests are also included in this report.

Soil

The soil descriptions shown on the boring and test pit logs are based on the Burmister Classification System. In this system, the soil is divided into three components: Sand (S), Silt (\$) and Gravel (G). The major component is indicated in all capital letters, the
lesser in lower case letters. The following modifiers indicate the quantity of each lesser component:

$\frac{\text { Modifier }}{\text { trace }(\mathrm{t})}$	$\frac{\text { Quantity }}{0-10 \%}$
little (l)	$10 \%-20 \%$
some (s)	$20 \%-35 \%$
and (a)	$35 \%-50 \%$

The subsurface soil conditions observed in the borings and test pits can be summarized as follows:

Stratum 1 The surface layer at most of the boring and test pit locations consists of

Topsoil
Stratum 2 Beneath the topsoil and at the surface in three (3) of the borings (B-6, B-8, Existing Fill

Stratum 3

Sandy Silt or
Silty Sand brown topsoil that typically ranges from about 0 ' 3 '" to $1^{\prime} 6^{\prime \prime}$ in thickness. and B-9) and ten (10) of the test pits (TP-2, TP-9, TP-10, TP-12, TP-14, TP-16, TP-19, TP-21, TP-26, and TP-28) is existing fill that consists of loose to medium dense brown coarse to fine SAND, little (to and) Silt, trace (to some) coarse to fine Gravel. Cobbles, boulders, topsoil, roots, and debris were also present within the fill at some of the test locations. The existing fill was encountered to depths ranging from 1 ' 0 '" to more than $9^{\prime} 0^{\prime \prime}$ beneath the existing ground surface. Test pits TP-9 and TP-28 were terminated in the fill at final depths of $6^{\prime} 9^{\prime \prime}$ and $9^{\prime} 0^{\prime \prime}$ beneath the ground surface, respectively.

Underlying the topsoil and existing fill is virgin soil that is comprised of medium dense to dense brown, light brown, or gray brown SILT some (to and), coarse to fine Sand, trace (to little) coarse to fine Gravel or coarse to fine SAND, little (to and) Silt, trace (to and) coarse to fine Gravel, with occasional cobbles and boulders. The Sandy Silt or Silty Sand stratum continued to depths ranging from $2^{\prime} 0$ " to $12^{\prime} 0$ " below the existing ground surface. Boring B-8 and test pits TP-8, TP-10, TP-12, TP-19, TP-20, TP22 , and TP-26 were terminated in this stratum at final depths ranging from $5^{\prime} 0$ " to $12^{\prime} 0^{\prime \prime}$ beneath the ground surface.

Stratum 4 Below the Sandy Silt or Silty Sand at several test locations is completely Sand or Sandy Gravel
weathered Gneiss bedrock that generally consists of dense to very dense brown or gray brown coarse to fine SAND, little (to some) Silt, trace (to some) coarse to fine Gravel or coarse to fine GRAVEL and, coarse to fine Sand, trace Silt. Where encountered in the borings and test pits, the completely weathered bedrock was present at depths ranging from 2 ' 0 " to $7^{\prime} 0^{\prime \prime}$ beneath the ground surface and continued to depths ranging from $4^{\prime} 7$ '" to $15^{\prime} 2^{\prime \prime}$ below the existing ground surface.

> Stratum 5
> Gneiss
> Bedrock
> Gneiss bedrock was encountered at 27 of the 39 test locations. Where encountered in the borings and test pits, gneiss bedrock was observed at depths ranging from $1^{\prime} 8$ " to $15{ }^{\prime} 2^{\prime \prime}$ beneath the existing ground surface. In general, the quality of the bedrock will improve with depth.

> At boring B-10, the bedrock was cored between the depths of $2^{\prime} 0$ "' and 7'0'. The core recovery was 86% and the Rock Quality Designation (RQD) of the recovered core was 53%. This indicates that the quality of the upper five (5) feet of the Gneiss bedrock is fair. The Gneiss bedrock is moderately weathered and in a blocky and seamy condition.

Groundwater

Observations for groundwater were made during sampling and upon completion of the drilling operations at each boring location. In auger drilling operations, water is not introduced into the boreholes, and the groundwater position can often be determined by observing water flowing into or out of the boreholes. Furthermore, visual observation of the soil samples retrieved during the auger drilling and in the test pits can often be used in evaluating the groundwater conditions.

Groundwater was encountered in test pit TP-8 at a depth of 4 ' 1 " (+609.9), in test pit TP-13 at a depth of $4 \prime 10^{\prime \prime}(+631.2)$, in boring B- 8 at a depth of $3^{\prime} 3^{\prime \prime}(+608.3)$, in test pit TP22 at a depth of $4^{\prime} 6^{\prime \prime}(+470.5)$, and in test pit TP-28 at a depth of $8^{\prime} 0^{\prime \prime}(+491.0)$ beneath the ground surface. Groundwater was not encountered in any of the other borings or test pits that were performed at the subject site during this investigation.

Variations in the location of the long-term water table may occur as a result of changes in precipitation, evaporation, surface water runoff, and other factors not immediately apparent at the time of this exploration. Based on the site conditions, trapped groundwater may be encountered in the silty site soils and/or along the soil/rock interface during wet periods. Proper groundwater control measures will be required in the event that trapped water is encountered in the site excavations.

Bedrock

Bedrock was encountered in 27 of the 39 explorations that were performed at the site during this investigation. Completely weathered bedrock was encountered at ten (10) test locations at depths ranging from $2^{\prime} 0^{\prime \prime}$ to $7^{\prime} 0$ " below the existing ground surface. Harder bedrock was encountered in the remaining locations and below the completely weathered rock at depths ranging from $1^{\prime} 8^{\prime \prime}$ to 15 ' 2 '" beneath the ground surface. These depths correspond to bedrock elevations ranging between approximately elevation +471.0 and elevation +669.8 .

Based on the boring and test pit data and the site plans provided to this office, bedrock was encountered above the planned finished floor elevation in portions of the site. The observed depth to bedrock at each boring and test pit location is summarized in Table 1 in the following section of this report.

The bedrock encountered at the site consists of weathered Gneiss. Based on our experience, the in-situ bedrock will range from highly weathered, fractured rock to massive, intact rock. Penetration into the bedrock with excavation equipment will depend of the degree of weathering and fracturing in the rock. We anticipate that the "rippability" of the bedrock will be variable and very limited. Based on our observations, harder rock will be encountered and blasting and/or the use of hydraulic hammers will be required to excavate the harder, intact bedrock. Rock removal is discussed further in a separate section of this report.

EVALUATION

At the time of this report, the proposed layout, the proposed finished floor elevations, and the site grading were preliminary. Therefore, the following evaluation is preliminary in nature and has been generalized for the expected development. The recommendations below are intended for planning purposes only and are not intended for final design and construction. Additional subsurface investigation will be required for the proposed buildings and retaining walls. Preliminarily, we estimate that an additional 12 to 15 explorations will be required for this project. Once the site plans have been further developed, a copy shall be forwarded to our office so that we can review it along with the recommendations in this report. At that time, we will provide specific recommendations for additional subsurface investigation. After the supplemental investigation has been completed, additional geotechnical recommendations will be provided for the project site. As a result, the recommendations within this report are subject to change.

Based on the preliminary site plans, we understand that the planned construction will consist of 21 new structures that will include seven (7) golf residences, seven (7) club villas, five (5) golf cottages, one (1) fairway residences building, and one (1) clubhouse building. The proposed construction will also include new asphalt paved roadways and parking areas, retaining walls, tennis courts, underground utilities, and a stormwater management system.

The grading plan provided to this office indicates that the proposed finished floor elevations vary across the site. In addition, the fairway residences, golf cottages, and golf residences will have basements. Based on the existing and proposed grades, cuts ranging up to approximately $14^{\prime} 0^{\prime \prime}$ and fills ranging up to approximately $10^{\prime} 0$ " are expected to achieve the proposed floor slab subgrade elevations. In the proposed pavement areas, cuts ranging up to approximately $6^{\prime} 0^{\prime \prime}$ and fills ranging up to approximately $8^{\prime} 0^{\prime \prime}$ are expected to achieve the proposed pavement subgrade elevations.

The boring and test pit data indicates that there is existing fill (Stratum 2) present in portions of the site to depths ranging from $1^{\prime} 0$ " to more than $9^{\prime} 0$ " below the existing ground surface. The existing fill generally consists of loose to medium dense Sand with varying amounts of Silt and Gravel and occasional cobbles, boulders, topsoil, roots, and debris. Underlying the existing fill is medium dense to dense Sandy Silt or Silty Sand (Stratum 3). The Sandy Silt or Silty Sand is underlain by dense to very dense completely weathered Gneiss bedrock (Stratum 4) in areas followed by more competent Gneiss bedrock (Stratum 5), which was encountered at depths ranging from $2^{\prime} 0$ " to $15^{\prime} 2^{\prime \prime}$ beneath the existing ground surface. The existing fill and bedrock observations are summarized in Table 1 below.

Table 1 - Summary of Boring and Test Pit Data

Boring or Test Pit No.	Approximate Ground Surface Elevation	Depth to Bottom of Existing Fill (Elevation)	Depth to Weathered Bedrock (Elevation)	Depth to Bedrock or Auger Refusal (Elevation)
B-1	+661.0	NE	5'0" (+656.0)	$8^{\prime} 0$ "' +653.0$)$
B-2	+628.0	NE	NE	7'0" (+621.0)
B-3	+620.0	NE	2'0" (+618.0)	4'9" (+615.3)
B-4	+628.0	NE	2'0" (+626.0)	10'6" (+617.5)
B-5	+623.0	NE	2'0" (+621.0)	$8^{\prime} 6^{\prime \prime}(+614.5)$
B-6	+617.0	$1^{\prime} 0$ " (+616.0)	NE	5'6" (+611.5)
B-7	+628.0	NE	5'0" (+623.0)	15'2" (+612.8)
B-8	+609.0	5'6" (+603.5)	NE	NE to 12'0"
B-9	+674.0	7’0" (+667.0)	7’0" (+667.0)	7'6"'(+666.5)
B-10	+638.8	NE	NE	2'0" (+636.8)
B-11	+640.0	NE	4'0"' (+636.0)	5'6" (+634.5)
TP-1	+662.0	NE	NE	2'0" (+660.0)
TP-2	+672.0	1'10" (+670.2)	NE	4'4"'(+667.7)
TP-3	+672.0	NE	NE	$2^{\prime} 2^{\prime \prime}(+669.8)$
TP-4	+672.0	NE	NE	$3^{\prime} 6^{\prime \prime}(+668.5)$
TP-5	+670.0	NE	3'8" (+666.3)	4'9"'(+665.3)
TP-6	+672.0	NE	$2^{\prime} 10$ " (+669.2)	4'7'' (+667.4)
TP-7	+620.0	NE	NE	$2^{\prime} 8^{\prime \prime}(+617.3)$
TP-8	+614.0	NE	NE	NE to 5'0"
TP-9	+628.0	$>6^{\prime} 9^{\prime \prime}(<+621.3)$	NE	NE to 6'9"
TP-10	+625.0	$3^{\prime} 0^{\prime \prime}(+622.0)$	NE	NE to 8'0"
TP-11	+642.0	NE	3'9" (+638.3)	$6^{\prime} 0^{\prime \prime}(+636.0)$
TP-12	+635.0	5'0" (+630.0)	NE	NE to 6'6'
TP-13	+636.0	NE	NE	7'5" (+628.6)
TP-14	+625.0	5'0" (+620.0)	NE	5'0" (+620.0)
TP-15	+668.0	NE	NE	$1^{\prime} 8^{\prime \prime}(+666.3)$
TP-16	+651.0	1'10" (+649.2)	NE	4'10" (+646.2)
TP-17	+655.0	NE	NE	NE to 1'0"
TP-18	+670.0	NE	NE	NE to $7^{\prime} 0{ }^{\prime \prime}$
TP-19	+427.0	2'5" (+424.6)	NE	NE to 7'0'
TP-20	+415.0	NE	NE	NE to 8'0"
TP-21	+478.0	1'4" (+476.7)	NE	7'0" (+471.0)
TP-22	+475.0	NE	NE	NE to 7'6'
TP-23	+496.0	NE	NE	$3^{\prime} 10^{\prime \prime}(+492.2)$
TP-24	+564.0	NE	NE	6'8' $(+557.3)$
TP-25	+633.0	NE	NE	3'4" (+629.7)
TP-26	+669.0	5'6" (+663.5)	NE	NE to 8'0'

Boring or Test Pit No.	Approximate Ground Surface Elevation	Depth to Bottom of Existing Fill (Elevation)	Depth to Weathered Bedrock (Elevation)	Depth to Bedrock or Auger Refusal (Elevation)
TP-27	+561.0	NE	NE	$4^{\prime} 4^{\prime \prime}(+556.7)$
TP-28	+499.0	$>9^{\prime} 0^{\prime \prime}(<+490.0)$	NE	NE to 9'0"

Notes: NE - Not Encountered
B-8: Groundwater at +608.3
TP-8: Groundwater at +609.9
TP-9: Terminated in the Existing Fill
TP-13: Groundwater at +631.2
TP-22: Groundwater at +470.5
TP-28: Groundwater at +491.0
TP-28: Terminated in the Existing Fill

Removal of Existing Structures from New Building and Pavement Areas

Building Areas

The site plan indicates that existing structures are present in some of the proposed building areas. The existing structures will be removed as part of the proposed development. All debris resulting from the demolition of these items must be completely removed from the new building areas, extending at least ten (10) feet beyond the new building limits, where practical. This shall include the complete removal of all foundations, walls, slabs, utilities, sidewalks, pavement, and miscellaneous debris. Where the removal of existing items or associated materials extends below the planned building, the resulting excavations shall be backfilled with new compacted fill as described below.

Existing utilities, where they are encountered within the planned building areas, should be either abandoned or rerouted around the new structures. Once the utility has been rerouted or abandoned, the section of pipe and any associated structure within the building areas should be completely removed. The removal of the pipe and structure must also include any loose fill around the pipe or structure. After the pipe, associated structure, and associated loose backfill have been removed, the resulting excavation shall be backfilled with new controlled fill as described below.

New compacted fill shall consist of either suitable on-site soil or imported sand and gravel. Imported sand and gravel fill shall contain less than 20% by weight passing a No. 200 sieve. The fill shall be placed in layers not exceeding one (1) foot in loose thickness. In the proposed building area, new fill shall be compacted to at least 95% of its Maximum Modified Dry Density (ASTM D1557). Each layer shall be compacted, tested, and approved prior to placing subsequent layers.

Pavement Areas

In the proposed pavement areas, any existing structures and debris resulting from the demolition of the structures must be completely removed from the new pavement areas, extending at least five (5) feet beyond the new paving limits, where practical. The
excavations resulting from the removal of existing items shall be backfilled using controlled compacted fill. New fill shall consist of either suitable on-site soil or imported sand and gravel placed in one (1) foot loose layers and compacted to at least 92% of its Maximum Modified Dry Density (ASTM D1557).

Implications of Existing Fill

The boring and test pit data indicates that existing fill is present in portions of the site. Where encountered in the borings and test pits, the fill extended to depths ranging from $1^{\prime} 0$ '" to more than $9^{\prime} 0$ " beneath the existing ground surface. These depths correspond to elevations ranging from approximately +424.6 to elevation +670.2 . The depth of the existing fill is expected to be variable and may be deeper in unexplored areas of the site and around the existing site buildings.

The existing fill is not an acceptable bearing material for the new building foundations or floor slabs. The consistency and density of the fill material are not predictable. Certain areas may contain clean dense soils while other areas may contain loose material, topsoil, and/or debris. The existing fill creates the possibility of intolerable differential settlements under loading.

To eliminate the potential for damaging differential settlements, we recommend that the existing fill be completely removed from the new building areas. Based on the existing grades and the proposed finished floor elevations, we expect that some of the existing fill will be removed during the planned building excavations. However, existing fill is expected to be encountered below the planned subgrade elevation in portions of the site. Undercutting of the subgrade will be required in these areas to remove the existing fill or otherwise unsuitable materials from the building areas. The over-excavated areas shall then be replaced with new structural fill, as necessary, to achieve the planned subgrade elevations.

To further evaluate the existing fill conditions in and around the planned building areas, we recommend that a series of supplemental test pits be performed at the time of construction. The test pits should be conducted under the full time observation of a CarlinSimpson \& Associates representative. These test pits will allow us to confirm the consistency, thickness, and horizontal limits of the existing fill material.

Provided that the existing fill and any other unsuitable materials encountered during construction are removed, it is our opinion that the new structural fill and virgin soils can adequately support the new building foundations and floor slabs.

Rock Removal - Blasting Issues

As discussed above, bedrock was encountered at 27 of the 39 test locations during this study. The bedrock was encountered at depths ranging from $1^{\prime} 8$ " to 15 ' 2 " beneath the ground surface. These depths correspond to bedrock elevations ranging between approximately elevation +611.5 and elevation +669.8 . Based on the site plans provided to this office, bedrock was encountered above the planned finished floor elevation in portions of the site. Bedrock may also be encountered at higher elevations in the unexplored areas of the site.

The bedrock encountered in the borings and test pits consists of weathered Gneiss. Based on our experience, the in-situ bedrock will range from highly weathered, fractured rock to massive, intact rock. To excavate the rock, the upper $1^{\prime} 0^{\prime \prime}$ to $5^{\prime} 0$ '" of rock may be "rippable" by using large construction equipment. The use of hydraulic hammers and/or blasting will be required in order to achieve deeper excavations. Zones of weathered rock may exist deeper than $5^{\prime} 0$ '" but conditions are expected to be highly variable. Hard rock will be encountered during construction.

In order to develop the site, rock removal will be required in areas to achieve the proposed grades. Rock removal may also be required for the new pavement and utilities in portions of the site. Rock blasting will likely be required to achieve the proposed grades in areas. Nearby buildings and existing underground utilities could be affected by the blasting.

The Blasting Contractor should avoid over-blasting the rock. Over-blasting will disturb the deeper intact rock that will be used as bearing material for the proposed foundations and floor slab.

The blasting operation will be monitored by a seismologist using a seismograph. The Peak Particle Velocity emanating from any blast will be restricted to $2.0 \mathrm{in} / \mathrm{sec}$. Each blast will be monitored to insure that this criteria is not exceeded.

The U.S. Bureau of Mines [Nicholas et al (1971)] has established that a threshold of $4.0 \mathrm{in} / \mathrm{sec}$ will likely crack plaster and thus they recommend that the safe vibrational criterion be $2.0 \mathrm{in} / \mathrm{sec}$. This criterion has been used successfully in the industry. Each blast will be monitored independently to insure that this criterion is not exceeded. The monitoring results shall be provided to the Blasting Contractor as soon as possible so that the blasting program can be modified if necessary.

We recommend that a minimum of four (4) monitoring points be established, to the north, east, south and west of the planned blast area. The seismograph sensors should be placed near the closest structure and at any structures identified during the pre-blast survey that are considered to be susceptible to vibration damage.

Prior to the start of any construction, a Blasting Management Plan shall be prepared by the Blasting Contractor for this project. This plan shall be in accordance with State regulations and the Explosive Materials Code, NFPA No. 495, National Fire Prevention Association. Additionally, all blasting should adhere to the provisions of 29 CFR Ch. XVII Section 1910.109 for explosives and blasting agents and to all local requirements.

Prior to any blasting work being done, a licensed professional engineer shall be retained to perform a detailed pre-blast survey of existing structures located within 500 feet of the planned blast area. The pre-blast survey shall be conducted in accordance with the requirements of local authorities. A copy of all reports prepared by the licensed engineer shall be submitted to the Town Engineer and the Owner's representative in a timely manner.

Prior to the beginning of blasting, a notice will be sent to all residential and commercial property owners within a 500 foot radius of the blast area. This notification will
be given at least 48 hours before blasting takes place. A contact person will be established and named in this notice to respond to all concerns raised by nearby residents during the blasting phase of the project. The contact person will respond to any inquiries within 24 hours.

Preparation of New Building Areas and Removal of Existing Fill

In order to prepare the building areas for construction, all surface materials such as topsoil, asphalt, and surface vegetation shall be removed from the planned building areas, extending at least ten (10) feet beyond the new construction limits, where feasible.

The boring data indicates that existing fill is present within portions the proposed building areas. Fill material may also be present in other unexplored portions of the site. Where encountered in the test borings, the existing fill extended to depths ranging from about 1 ' 0 '" to 7 ' 0 " below the existing ground surface. As shown in Table 1 above, the approximate bottom of the fill material ranges from elevation +603.5 to elevation +670.2 . The existing fill is expected to vary in thickness across the site and may extend deeper in the unexplored areas and around the existing site structures.

After the surface materials are removed, the existing fill shall be excavated from the new building areas. The removal of the existing fill from the new building areas shall extend through the existing fill, down to the virgin soil or weathered bedrock. At the bottom of the excavation, the removal of the unsuitable material shall extend horizontally beyond the building lines a minimum distance of three (3) feet plus a distance equal to the depth of the excavation below the planned finished floor elevation. For example, if the removal of the existing fill extends vertically five (5) feet below the planned finished floor elevation, the excavation must extend horizontally a minimum of eight (8) feet (3 feet plus 5 feet) beyond the new building line at that location.

The removal of the existing fill from the planned building areas shall be performed under the full time observation of Carlin-Simpson \& Associates. The on-site representative from Carlin-Simpson \& Associates shall direct the Contractor during this operation to ensure that all of the unsuitable material has been removed from the proposed building areas.

During the removal of the unsuitable material from the building areas, the Contractor should segregate the potentially re-usable existing fill material from the non-reusable fill (i.e. debris and topsoil). The on-site representative from Carlin-Simpson \& Associate shall evaluate the suitability of the excavated materials for use as structural fill during the excavation and prior to its re-use. Potentially usable fill should be stockpiled and covered with tarps or plastic sheeting for protection from excess moisture. Any fill material that is wet must be dried prior to its re-use.

After the surface materials and existing fill have been removed and prior to the placement of new structural fill, the exposed subgrade must be graded level and proofrolled by several passes of a vibratory drum roller. The proofrolling operation is necessary to densify the underlying soils. Carlin-Simpson \& Associates shall be retained to observe the proofrolling of the subgrade. If any soft or otherwise unsuitable soils are noted, the
unsuitable material shall be removed and replaced with new structural fill. Carlin-Simpson \& Associates shall be responsible for determining what material, if any, is to be removed and will direct the contractor during this operation.

New structural fill required to achieve final grades shall consist of either suitable onsite soil or imported sand and gravel. Imported fill shall contain less than 20% by weight passing a No. 200 sieve. The structural fill shall be placed in layers not exceeding one (1) foot in loose thickness and each layer shall be compacted to at least 95% of its Maximum Modified Dry Density (ASTM D1557). Each layer must be compacted, tested, and approved prior to placing subsequent layers. The suitability of the excavated soil for reuse as structural fill is discussed in a following section of this report.

After the installation of structural fill has been completed to the required subgrade elevations, the virgin soil and new structural fill may be used to support the proposed building foundations and floor slabs.

New Building Foundations

According to the boring data, the foundation bearing materials will consist of medium dense to dense virgin soil, weathered bedrock, and new structural fill. Foundations for the proposed structures may be designed as a shallow spread footing bearing on the virgin soil, weathered bedrock, or new structural fill utilizing a net allowable bearing pressure of $4,000 \mathrm{psf}$ (2.0 TSF).

Exterior footings shall bear at a depth of at least 42 inches below finished outside grade for protection from frost. Interior column footings may bear on the virgin soil, weathered bedrock, or new structural fill just below the floor slab provided the building is heated during winter. Column footings shall have a minimum dimension of 30 inches. The wall footings shall have a minimum width of 18 inches.

Prior to the placement of formwork, reinforcement steel, and concrete, the bearing subgrade soil shall be cleaned of all loose soil and compacted with several passes of a small vibratory drum trench compactor (i.e. Wacker Model RT560), a heavy vibratory plate tamper (i.e. Wacker BPU 3545A or equivalent), or "jumping jack" style tamper (i.e. Wacker Model BS 600). This must be performed under the inspection of a representative from Carlin-Simpson \& Associates. If instability is observed during the compaction of the bearing subgrade, the soft soil shall be removed and replaced with new compacted fill.

Where rock is encountered in the foundation excavations, "Special Construction Procedures" must be employed. When continuous wall footings or closely spaced column footings (20 feet or less) bear on dissimilar material (i.e. rock and soil) the potential for differential movement exists. A footing bearing in rock will not move, whereas a footing bearing on soil will settle slightly due to the compressive nature of all soils when subjected to new loads. The area between movement and non-movement will develop a (shear) stress point. Cracks in foundations and walls will be the result from such movement. Therefore, continuous wall footings must bear either entirely on rock or entirely on soil for any individual building. Alternatively, for larger structures, transition zones can be constructed to create a gradual transition from a soil to a rock bearing subgrade.

Adjacent column footings greater than 20 feet apart may bear on dissimilar material (i.e. soil and rock). Any individual column footing must bear entirely on the same type bearing material (i.e. all soil or all rock).

Where rock and soil both exist at the bearing elevation within a foundation excavation, the footings must either be lowered to bear entirely on rock, or a minimum of 18 inches of rock must be removed from below planned footing bottom. The over-excavated 18 inches must then be filled with a granular material having a maximum particle size of $1 / 2$ inch and containing at least 15% but not more than 30% material by weight passing a No. 200 sieve. The fill shall be placed in six (6) inch layers and each layer shall be compacted to at least 95% of its Maximum Modified Dry Density (ASTM D1557). This procedure will create a "cushion" atop the rock and reduce the potential for differential movement. For soft, rippable rock, this procedure will not be required.

If during the excavation for continuous foundations, the transition from soil to rock is gradual (i.e. from medium dense soil to dense weathered rock to very dense rock) over a distance of 20 feet or more, the "Special Construction Procedures" may not be required. This would have to be evaluated in the field on a case-by-case basis by the representative from Carlin-Simpson \& Associates at the time of construction.

Where the transition from rock to soil is abrupt within the excavation for continuous wall foundations, transition zones can be constructed by over-excavating the rock in steps and increasing the "soil cushion" thickness over a distance of 24 feet or more. To construct the transition zone, the bedrock is over-excavated in a series of steps, each step being six (6) inches in depth and at least eight (8) feet in length. The first step is six (6) inches deep, the second step is 12 inches deep, and the final step is 18 inches deep. The over-excavation is then backfilled with the soil cushion material described above.

Floor Slab

After the footings and foundation walls are installed, fill will be required to backfill the excavations and to raise grades in the building areas to the slab subgrade elevations. New fill for the floor slab shall consist of either suitable on-site soil or imported sand and gravel containing less than 20% material by weight passing a No. 200 sieve. The fill shall be placed in layers not exceeding one (1) foot in loose thickness and each layer shall be compacted to at least 92% of its Maximum Modified Dry Density (ASTM D1557). Fill layers shall be compacted, tested, and approved before placing subsequent layers.

The floor may be designed as a slab on grade, bearing on virgin soil, weathered bedrock, bedrock, or new structural fill. We recommend a Modulus of Subgrade Reaction (k) of 200 pounds per cubic inch (pci) be used for design. A six (6) inch layer of $3 / 4$-inch crushed stone is recommended beneath the concrete slab for additional support and drainage. In the event that the floor slab is constructed directly on Gneiss bedrock, a minimum of 12 inches of crushed stone or DGA should be provided beneath the floor slab for drainage and to act as a cushion on the rock. Sump pits and pumps are recommended where basements are planned.

Settlement

Settlement of individual footings, designed in accordance with recommendations presented in this report, is expected to be within tolerable limits for the proposed structure. For footings placed on natural soils or new compacted fill approved by Carlin-Simpson \& Associates and constructed in accordance with the requirements outlined in this report, maximum total settlement is expected to be on the order of $1 / 2$-inch or less. Maximum differential settlement between adjacent columns or load bearing walls is expected to be half the total settlement.

The above settlement values are based on our engineering experience with similar soil conditions and the anticipated structural loading, and are to guide the Structural Engineer with his design. To minimize difficulties during the foundation installation phase, it is critical that Carlin-Simpson \& Associates be retained to observe the foundation bearing surfaces and to confirm the recommended bearing pressures and that the existing fill and unsuitable materials have been removed from beneath the new foundations.

Foundation Walls

In the event that foundation walls are required, the soil adjacent to the building walls will exert a horizontal pressure against the walls. This pressure is based on the soil density and Coefficient of Earth Pressure at Rest (k_{o}), which is applicable to non-yielding building walls. We estimate that the backfill material will have an in-place (moist) density of about 130 pcf and a k_{0} of 0.5 . Based on these properties, the soil will produce an Equivalent Fluid Pressure of 65 pcf against the building walls.

For sliding, the coefficient of friction between concrete and the virgin site soils or new structural fill is 0.45 . For clean sound rock, a friction coefficient of 0.55 can be used. Where passive lateral earth pressure is to be included in the design of the wall, a design value of $195 \mathrm{psf} / \mathrm{ft}$ may be used. This is based on a Coefficient of Passive Earth Pressure (k_{p}) of 3.0, an in-place soil backfill density of 130 pcf , and a factor of safety of 2.0.

Where foundation walls are required, we recommend that a footing drain be placed around the exterior of the new structure to prevent water from accumulating against the foundation wall. This drain may consist of a minimum four (4) inch diameter, rigid wall perforated PVC pipe surrounded by at least 12 inches of $3 / 4$-inch clean crushed stone. The stone shall be wrapped in a geotextile fabric, Mirafi 140 N or equivalent. The foundation drainpipe should be extended to daylight or to the stormwater collection system. The outside face of the foundation wall, where it extends below grade, must be damp proofed or waterproofed.

The foundation walls should be backfilled with suitable structural fill placed in layers up to one (1) foot in loose thickness. The new fill should be compacted with a vibratory drum trench compactor (i.e. Wacker Model RT560), a heavy vibratory plate tamper (i.e. Wacker BPU 3545A or equivalent) or "jumping jack" style tamper (i.e. Wacker Model BS 600) to at least 92% of its Maximum Modified Dry Density (ASTM D1557). Heavy equipment should not be operated near the wall as damage to the wall could occur.

Outside the structure, the backfill placed adjacent to the foundation walls and above the footing drain shall consist of either clean crushed stone or an imported sand and gravel mixture containing less than 10% by weight passing a No. 200 sieve and placed in layers not exceeding one (1) foot in thickness. This clean sand and gravel or crushed stone backfill shall extend a minimum of one (1) foot horizontally from the back face of the foundation walls, and shall extend vertically up the wall face to two (2) feet below the finished ground surface elevation.

Beyond this point, the foundation walls should be backfilled with suitable soil placed in layers up to one (1) foot in thickness. The new fill should be compacted with a vibratory drum trench compactor (i.e. Wacker Model RT560), a heavy vibratory plate tamper (i.e. Wacker BPU 3545A or equivalent), or "jumping jack" style tamper (i.e. Wacker Model BS 600) to at least 92% of its Maximum Modified Dry Density (ASTM D1557). Heavy equipment should not be operated near the walls as damage to the walls could occur. Material excavated from the cut areas on site will be suitable for reuse as compacted fill, provided that it remains relatively dry enough to be adequately compacted to the required density and does not contain any debris or organic material (i.e. topsoil and roots).

Seismic Design Considerations

From site-specific test boring data, the Site Class was determined from Table 1615.1.1 of the New York State Building Code. The site-specific data used to determine the Site Class typically includes soil test borings to determine Standard Penetration resistances (N -values). Based on the average N -values in the upper 100 feet of soil profile, the site can be classified as Site Class C - Very Dense Soil and Soft Rock Profile.

New structures should be designed to resist stress produced by lateral forces computed in accordance with Section 1615 of the New York State Building Code. The values in Table 2 shall be used for this project. Based on the information obtained from the borings, it is our opinion that the potential for liquefaction of the native soils at the site due to earthquake activity is relatively low.

Table 2 - Seismic Design Parameter Values

Mapped Spectral Response Acceleration for Short Periods, [Fig 1615 (1)]	$\mathrm{S}_{\mathrm{S}}=0.347 \mathrm{~g}$
Mapped Spectral Response Acceleration at 1-Second Period, [Fig 1615 (2)]	$\mathrm{S}_{\mathrm{S} 1}=0.070 \mathrm{~g}$
Site Coefficient [Table 1615.1.2 (1)]	$\mathrm{F}_{\mathrm{a}}=1.20$
Site Coefficient [Table 1615.1.2 (2)]	$\mathrm{F}_{\mathrm{v}}=1.70$
Max Considered Earthquake Spectral Response for Short Periods [Eq 16-16]	$\mathrm{S}_{\mathrm{MS}}=0.416 \mathrm{~g}$
Max Considered Earthquake Spectral Respond at 1-Second Period [Eq 16-17]	$\mathrm{S}_{\mathrm{S} 1}=0.119 \mathrm{~g}$
Design Spectral Response Acceleration for Short Periods [Eq 16-18]	$\mathrm{S}_{\mathrm{DS}}=0.278 \mathrm{~g}$
Design Spectral Response Acceleration for 1-Second Period [Eq 16-19]	$\mathrm{S}_{\mathrm{Dl}}=0.079 \mathrm{~g}$

Site Retaining Walls

In order to develop the site, retaining walls will be required in areas. The site retaining walls may be designed as either cast-in-place steel reinforced concrete walls or geogrid reinforced modular block (MSE) walls. The preliminary site plans show five (5)
retaining walls. The maximum exposed height of these walls ranges from approximately seven (7) feet to 12 feet but the top and bottom wall elevations were not finalized at the time of this report.

The following recommendations are preliminary in nature based on the boring and test pit data from other areas of the project site during this investigation. The recommendations below are intended for planning purposes only and are not intended for final design and construction. A supplemental subsurface investigation is required for the proposed retaining walls so that additional design recommendations can be provided.

In the event that existing fill materials are present within the proposed wall areas, these materials must be completely removed from the limits of new wall construction. The removal of the topsoil or other unsuitable fill materials shall extend horizontally a minimum distance of five (5) feet beyond the front face of the new wall or extend horizontally a minimum distance equivalent to the vertical depth of the required excavation below the proposed wall base or foundation bearing elevation, whichever is greater. This is required to ensure that all unsuitable material has been removed from beneath the wall base or foundation zone of influence, which shall be defined by an imaginary plane projecting downward and away from the front edge of the wall base or foundation on a one horizontal to one vertical $(1 \mathrm{H}: 1 \mathrm{~V})$ projection.

The foundations for the new retaining wall may be placed on the virgin soil, weathered bedrock, or on new compacted fill approved by Carlin-Simpson \& Associates. New compacted fill shall consist of either suitable on-site soil or imported sand and gravel. Imported fill shall contain less than 20% by weight passing the No. 200 sieve. The fill shall be placed in one (1) foot thick loose layers and compacted to at least 95% of its Maximum Modified Dry Density. Preliminarily, the footings or base of the wall can be designed using a net design bearing pressure of $4,000 \mathrm{psf}$ (2.0 TSF).

For MSE walls, the wall base or foundation must be adequately embedded for internal and global stability. The embedment depth will be determined by the Wall Design Engineer. For reinforced concrete walls, the footing or base of the wall shall bear at least 42 inches below finished grade of the outside face of the wall for protection from frost. The wall foundation or base may bear at shallower depths when installed directly on the bedrock since rock is not susceptible to frost. Where both soil and rock are encountered within the wall foundation or base excavation, the "Special Construction Procedures" discussed above for the building foundations must be utilized.

Drains must be provided behind the retaining walls to prevent the buildup of hydrostatic pressure against the walls. The drain should consist of a 4-inch diameter perforated PVC pipe, surrounded with $3 / 4$-inch clean crushed stone and wrapped in a geotextile fabric, Mirafi 140 N or equivalent. The drain should be installed behind the base or foundation of the retaining wall to collect the water behind the wall and be connected into the site stormwater collection system or extended to daylight beyond the wall area.

Backfill placed directly behind the retaining walls shall consist of either suitable onsite soil or imported sand and gravel containing less than 20% by weight passing a No. 200 sieve. Each layer shall be compacted using a hand guided mechanical tamper to 92% of its

Maximum Modified Dry Density (ASTM D1557). Excessive compaction adjacent to the retaining walls must be avoided. Layers shall be tested and approved before placing subsequent layers. Large compaction equipment must not be used within ten (10) feet of the new walls to prevent potential damage to the walls.

The soil adjacent to the site retaining walls will exert a horizontal pressure against the walls. This pressure is based on the soil density and the Coefficient of Active Earth Pressure (k_{a}). We estimate that the backfill material will have an in-place (moist) density of about 130 pcf and an angle of internal friction (ϕ) of 30°. For design, soil cohesion is assumed to be zero for the foundation soil, retained soil, and reinforced backfill. The active earth pressure coefficient $\left(\mathrm{k}_{\mathrm{a}}\right)$ is 0.33 provided the grade behind the wall is level. Based on these properties, the retained soil will produce an Equivalent Fluid Pressure of 42.9 pcf against the retaining walls. If a sloping grade exists behind the new walls, the k_{a} and the Equivalent Fluid Pressure must be adjusted accordingly. In addition, any surcharge loads from structures, vehicles, or other retaining walls (i.e. tiered walls) must be considered in the wall design.

For sliding, the friction coefficient between mass concrete and the virgin site soils or new compacted fill is 0.45 . For clean sound rock, a friction coefficient of 0.55 can be used. Where passive lateral earth pressure is to be included in the design of the wall, a maximum design value of $195 \mathrm{psf} / \mathrm{ft}$ may be used. This is based on a Coefficient of Passive Earth Pressure (k_{p}) of 3.0 , an in-place soil backfill density of 130 pcf , and a factor of safety of 2.0.

The Wall Design Engineer shall prepare a complete wall design (i.e. drawings, specifications, and calculations), which shall be designed and sealed by a Professional Engineer registered in the State of New York and submitted to Carlin-Simpson \& Associates for review and approval. MSE retaining walls shall be designed in accordance with the recommendations of the NCMA Design Manual for Segmental Retaining Walls (Current Edition).

The MSE wall design shall consider the internal stability of the reinforced soil mass and shall be in completed accordance with acceptable engineering practice. In addition, external stability, including sliding, overturning, and bearing, as well as global slope stability shall be evaluated in accordance with acceptable engineering practice.

The MSE Wall Designer Engineer shall be responsible for determining the required geogrid reinforcement lengths and elevations based on his stability analysis (including global stability) and the properties of the geogrid reinforcement used in the design. We anticipate that in the critical areas of the wall, global stability will be the controlling design criteria for the design of the geogrid reinforcement.

Stormwater Management Areas

We understand that the planned development will include one or more stormwater management areas. The preliminary grading plan shows a proposed infiltration basin with a forebay in the western portion of the project site. The plan also indicates that the basin will have a bottom elevation at +610.0 . We also understand that there is an alternate stormwater
management area in the southwestern portion of the site, near the proposed fairway residences building. In addition, stormwater management areas will likely be required throughout the golf course property. However, at the time this report was prepared, the proposed stormwater management system had not been designed and the location, grades, and invert elevations of the system had not been finalized.

During this study, four (4) borings, one (1) test pit, one (1) borehole permeability test, and four (4) percolation tests were performed within or near the planned stormwater management areas. An addition ten (10) test pits (TP-19 through TP-28) were excavated at potential stormwater management areas throughout the golf course property. The tests were performed at the locations shown on the attached Boring and Test Pit Location Plan. The proposed test depths were provided by the project Site Engineer. The test depths were modified, however, based on the depth to bedrock encountered at the test locations.

The soil conditions encountered within the proposed infiltration basin area consist of a surface layer of topsoil (Stratum 1), approximately 0 ' $6^{\prime \prime}$ to 0 ' $9^{\prime \prime}$ in thickness, followed by existing fill (Stratum 2) in boring B-6. Below the topsoil and fill is virgin soil that consists of layers of Sandy Silt, Silty Sand, Sandy Gravel, Gravelly Sand, or Silty Gravelly Sand (Strata 3 and 4) followed by Gneiss bedrock (Stratum 5). Bedrock was encountered in the proposed infiltration basin area at depths ranging from $2^{\prime} 8^{\prime \prime}$ to $8^{\prime} 6^{\prime \prime}$ beneath the ground surface. These depths correspond to bedrock elevations ranging between elevation +611.5 and elevation +617.3 , which is above the proposed bottom elevation of the infiltration basin.

In the alternate stormwater management area, the topsoil was underlain by approximately 5 ' 6 " of existing fill (Stratum 2) followed by layers of Sandy Silt and Silty Sand (Stratum 3). Groundwater was encountered in this portion of the site at depths ranging from $0^{\prime} 6 "$ to 3 ' 3 " below the ground surface, which corresponds to groundwater levels ranging from approximately elevation +608.3 to elevation +613.2 .

The subsurface soil and groundwater conditions encountered in the potential stormwater management areas throughout the golf course property vary across the site. The boring and test pit observations are summarized in Table 1 above.

In December 2012 and January 2013, permeability tests were performed within the proposed stormwater management areas. One (1) borehole permeability test (BP-4) and four (4) percolation tests ($\mathrm{P}-1$ through $\mathrm{P}-4$) were performed. The infiltration rates at the test locations are summarized in Table 3 below.

Table 3 - Field Permeability Test Results

Permeability Test No.	Permeability Test Depth (Elevation)	Permeability Rate	Soil Description
BP-4	$7^{\prime} 0^{\prime \prime}(+621.0)$	2.4 in/hour	Brown coarse to fine SAND, little Silt, some (+) coarse to fine Gravel
P-1	$3^{\prime} 6^{\prime \prime}(+616.5)$	>20 in/hour	Brown coarse to fine GRAVEL and, coarse to fine Sand, trace Silt
P-2	$1^{\prime} 8^{\prime \prime}(+610.3)$	NR	Groundwater encountered 0'6" below the ground surface

Permeability Test No.	Permeability Test Depth (Elevation)	Permeability Rate	Soil Description
P-3	$2^{\prime} 8^{\prime \prime}(+613.3)$	>20 in/hour	Brown coarse to fine SAND, some Silt, and (-) coarse to fine Gravel
P-4	$2^{\prime} 0^{\prime \prime}(+613.0)$	NR	Groundwater encountered l'l0' below the ground surface

NR - Not Recorded
Based on the field tests, the virgin soil in the areas of tests P-1 and P-3 has a permeability rate that exceeds 20 inches per hour. However, these tests were performed at elevations of +616.5 and +613.3 , which are approximately $6^{\prime} 6^{\prime \prime}$ and 3 ' 3 '" higher than the planned bottom of the proposed infiltration basin. Bedrock was encountered at depths of $4^{\prime} 9 \prime \prime(+615.3)$ and $5^{\prime} 6^{\prime \prime}(+611.5)$ below the surface at these test locations. In the event the virgin soil in the areas of tests P-1 and P-3 can be utilized for the stormwater management system, a permeability rate of 10 inches per hour should be used for preliminary design. This design permeability rate includes a factor of safety of 2.0.

Field permeability tests could not be performed at test locations P-2 and P-4 during this study since groundwater was encountered at depths of $0^{\prime} 6^{\prime \prime}(+611.5)$ and $1^{\prime} 10^{\prime \prime}(+613.2)$ below the ground surface, respectively. Should stormwater management areas be planned in other portions of the site, they must be evaluated on a case-by-case basis.

The stormwater management system should be designed in accordance with the applicable New York State Department of Conservation (NYSDEC) regulations and the New York State Stormwater Management Design Manual (August 2010). The testing requirements are outlined in Appendix D of the manual. The testing that was performed during this preliminary study was for initial feasibility testing for the stormwater management areas. Therefore, additional testing within the proposed subsurface system areas will be required to confirm the soil conditions and infiltration rates at the bottom of the system and to finalize the design of the system.

Pavement

We understand that the proposed construction will also include new asphalt paved driveways and parking areas. Based on the preliminary grading plan provided to this office, cuts ranging up to approximately $6^{\prime} 0^{\prime \prime}$ and fills ranging up to approximately $8^{\prime} 0^{\prime \prime}$ are anticipated to achieve the proposed pavement subgrade elevations. To prepare the new pavement areas, the existing surface materials (i.e. topsoil, vegetation, asphalt, etc.) must be removed from the planned pavement areas.

After all surface materials have been removed; the exposed subgrade that is either at or below the planned subgrade elevation shall be proofrolled with a large vibratory drum roller (i.e. Dynapac 250 or equivalent) to densify the underlying soils. The on-site representative from Carlin-Simpson \& Associates shall witness the proofrolling operation. If any excessive movement is noted during the proofrolling, the soft or unsuitable soil shall be removed and replaced with new compacted fill.

Areas where existing fill is encountered shall be compacted in place. Carlin-Simpson \& Associates must evaluate these areas for the presence of soft or unsuitable material within the existing fill matrix. Portions of this fill may have to be removed and replaced with new compacted fill. Carlin-Simpson \& Associates will determine this during construction.

Where new fill is required to achieve final grades, it shall consist of either suitable on-site soil or imported sand and gravel. Imported sand and gravel shall contain less than 20% by weight passing a No. 200 sieve. New fill shall be placed in layers not exceeding one (1) foot in loose thickness and each layer shall be compacted to at least 92% of its Maximum Modified Dry Density (ASTM D1557). After the planned subgrade has been proofrolled and new compacted fill has been placed as required, the new pavement subbase may be placed on the existing site soils and new compacted fill.

When new fill is placed on a sloped subgrade, the fill layers must be benched a minimum of three (3) feet into the existing embankment. Fill layers shall be placed in horizontal layers, beginning at the base of the slope. End dumping over the top of a slope is not permitted.

The new pavement subbase may be placed on engineer-approved densified existing fill, virgin soil, or new compacted fill. A minimum of six (6) inches of dense graded aggregate (DGA) is recommended for the subbase layer for drainage and additional pavement support. We recommend that the following pavement sections be used for the parking lots and driveways. These pavement sections are subject to local government approval.

Parking Lots (Light Duty)

$11 / 2 "$	Asphalt Wearing Surface Course	NYSDOT, Type 6F
$2 "$	Asphalt Base Course	NYSDOT, Type 1
$6 "$	Stone Subbase (DGA)	NYSDOT, Type 4
	Approved Compacted Subgrade (Minimum CBR = 10)	

Driveways (Medium Duty)

$11 / 2 "$	Asphalt Wearing Surface Course	NYSDOT, Type 6F
$21 / 2 "$	Asphalt Base Course	NYSDOT, Type 1
$8 "$	Stone Subbase (DGA)	NYSDOT, Type 4
	Approved Compacted Subgrade (Minimum CBR $=10$)	

Based on the boring and test pit data, we anticipate that the existing site soils and new compacted fill will provide a CBR value that is equal to or greater than 10 , which can adequately support the above pavement sections.

Utilities

New utilities may bear in the virgin soil, existing fill, new compacted fill, weathered rock, or rock. The bottom of all trenches should be excavated clean so a hard bottom is provided for pipe support. If any soft areas or unsuitable existing fill conditions are
encountered during the construction operation, these materials must be removed and replaced with new compacted fill.

In the event that the trench bottom becomes soft due to the inflow of surface or trapped water, the soft soil shall be removed and the excavation filled with a minimum of six (6) inches of $3 / 4$-inch clean crushed stone to provide a firm base for support of the pipe. Sump pits and pumps should be adequate to keep the excavations dry.

After the utility is installed, the trench must be backfilled with compacted fill. The fill shall consist of suitable on-site soil or imported sand and gravel containing less than 20% by weight passing a No. 200 sieve. Large rock fragments must not be placed directly against the pipe. Controlled compacted fill shall be placed in one (1) foot loose layers and each layer shall be compacted to at least 92% of its Maximum Modified Dry Density (ASTM D1557). The backfill must be free of topsoil, debris and large boulders or rock fragments.

Temporary Construction Excavations

Temporary construction excavations shall be conducted in accordance with the most recent OSHA guidelines or applicable federal, state, or local codes. Based on the results of the borings and test pits, we believe the site soils and rock would have the following classifications as defined by OSHA guidelines.

Soil/Rock Type
On Site Fill
Virgin Sandy Soils
Weathered or Intact Bedrock

Possible Classification

$$
\begin{gathered}
\text { Type "C" } \\
\text { Type "B" or "C" } \\
\text { Type "A" or Stable Rock }
\end{gathered}
$$

Further evaluation of the site soil deposits will be required in the field by a qualified person at the time of the excavation to determine the proper OSHA classification and allowable slope configuration. Temporary support (i.e. sheeting and shoring) should be used for any excavation that cannot be sloped or benched in accordance with the applicable regulations.

Suitability of the In-Situ Soils for Use as Compacted Fill

The suitability of each soil stratum for use as compacted fill is discussed below.
Stratum 1 Topsoil is not suitable for use as compacted fill. During construction, it Topsoil may be stockpiled on site for later use in the landscaped areas or removed from the site.

Stratum 2 The existing fill that was encountered at the site generally consists of Existing Fill brown coarse to fine Sand, little (to and) Silt, trace (to some) coarse to fine Gravel with occasional cobbles, boulders, topsoil, roots, and debris. Some of the existing fill may be suitable for use as compacted fill at the site
provided that it remains relatively dry for optimum compaction and that any debris (i.e. concrete, wood, etc.) and organic material (i.e. topsoil, roots, etc.) have been removed prior to its reuse.

Strata 3 \& 4 The virgin site soils that may be excavated during construction consist of

Sandy Silt, Silty Sand, Sand, or Sandy Gravel layers of Sandy Silt, Silty Sand, Sand or Sandy Gravel with occasional cobbles and boulders. This material is generally suitable for use as compacted fill, provided that it remains relatively dry for optimum compaction. Large cobbles and boulders shall not be used as new structural fill in the proposed building areas or in utility trenches.

Stratum 5 Excavated rock may also be used as fill material for the building and paved Gneiss Bedrock graded, and has been approved prior to use by Carlin-Simpson \& Associates. All rock fill must be well blended with smaller rock fragments and/or soil. Open voids within the rock fill matrix must be avoided. Small boulders up to 24 inches in diameter may be placed in parking lot fills deeper than ten (10) feet below the finished pavement. Boulders must not be clustered and must be sufficiently surrounded with soil fill. We recommend that the boulders and excavated rock be processed by a crusher to provide suitable fill material for the building and pavement areas.

Rock fill shall be placed in 12-inch loose layers and compacted with multiple passes of a large vibratory roller to a firm and non-yielding state as determined by the on-site representative from Carlin-Simpson \& Associates. Rock fill should not be used where it will interfere with the installation of foundations or utilities. Also, it shall not be used as backfill directly against concrete walls or utilities. Use of rock fill within the planned building and pavement areas shall be limited to the gradations limitations provided in Table 4 below.

Table 4 - Gradation Limitations for Rock Fill

Area	Location	Maximum Particle Size
Building Area	Within 4 feet of Finished Floor	3 inches
	More than 4 feet below Finished Floor	12 inches
Pavement Area	Within 4 feet of Finished Grade	6 inches
	More than 4 feet below Finished Grade	18 inches
	More than 10 feet below Finished Grade	24 inches

Proper moisture conditioning of the soil will be required. In the event that the on-site material is too wet at the time of placement and cannot be adequately compacted, the soil should be aerated and allowed to dry or the material removed and a drier cleaner fill material used. In the event that the on-site material is too dry at the time of placement and cannot be adequately compacted, water may be needed to increase the soil moisture content for proper compaction.

The in-situ soils which exist throughout the site may become soft and weave if exposed to excessive moisture and construction traffic. The instability will occur quickly when exposed to these elements and it will be difficult to stabilize the subgrade. We recommend that adequate site drainage be implemented early in the construction schedule and if the subgrade becomes wet, the Contractor should limit construction activity until the soil has dried.

GENERAL

The findings, conclusions and recommendations presented in this report represent our professional opinions concerning subsurface conditions at the site. The opinions presented are relative to the dates of our site work and should not be relied on to represent conditions at later dates or at locations not explored. The opinions included herein are based on information provided to us, the data obtained at specific locations during the study and our past experience. If additional information becomes available that might impact our geotechnical opinions, it will be necessary for Carlin-Simpson \& Associates to review the information, reassess the potential concerns, and re-evaluate our conclusions and recommendations. Additional subsurface exploration may be required.

Regardless of the thoroughness of a geotechnical exploration, there is the possibility that conditions between borings and test pits will differ from those encountered at specific boring or test pit locations, that conditions are not as anticipated by the designers and/or the contractors, or that either natural events or the construction process have altered the subsurface conditions. These variations are an inherent risk associated with subsurface conditions in this region and the approximate methods used to obtain the data. These variations may not be apparent until construction.

The professional opinions presented in this geotechnical report are not final. Field observations and foundation installation monitoring by the geotechnical engineer, as well as soil density testing and other quality assurance functions associated with site earthwork and foundation construction, are an extension of this report. Therefore, Carlin-Simpson \& Associates should be retained by the Owner to observe all earthwork and foundation construction, to document that the conditions anticipated in this study actually exist, and to finalize or amend our conclusions and recommendations Carlin-Simpson \& Associates is not responsible or liable for the conclusions and recommendations presented in this report if Carlin-Simpson \& Associates does not perform these observation and testing services.

Therefore, in order to preserve continuity in this project, the Owner must retain the services of Carlin-Simpson \& Associates to provide full time geotechnical related monitoring and testing during construction. At a minimum, this shall include the observation and testing of the following: 1) the removal of existing fill and unsuitable soil, where required; 2) the proofrolling of the subgrade soil prior to the placement of new compacted fill; 3) the placement and compaction of controlled fill; 4) the excavation for the building foundations; 5) the preparation of the subgrade for the floor slabs and pavement areas; and 6) the construction of the proposed retaining walls.

This report has been prepared in accordance with generally accepted geotechnical engineering practice. No other warranty is expressed or implied. The evaluations and
recommendations presented in this report are based on the available project information, as well as on the results of the exploration. Carlin-Simpson \& Associates should be given the opportunity to review the final drawings and site plans for this project to determine if changes to the recommendations outlined in this report are needed. Should the nature of the project change, these recommendations should be re-evaluated.

This report is provided for the exclusive use of Brynwood Partners, LLC and the project specific design team and may not be used or relied upon in connection with other projects or by other third parties. Carlin-Simpson \& Associates disclaims liability for any such third party use or reliance without express written permission. Use of this report or the findings, conclusions or recommendations by others will be at the sole risk of the user. Carlin-Simpson \& Associates is not responsible or liable for the interpretation by others of the data in this report, nor their conclusions, recommendations or opinions.

If the conditions encountered during construction vary significantly from those stated in this report, this office should be notified immediately so that additional recommendations can be made.

Thank you for allowing us to assist you with this project. Should you have any questions or comments, please contact this office.

Very truly yours,
CARLIN-SIMPSON \& ASSOCIATES

MEREDITH R. ANKE, P.E. Project Engineer

Robert Simpson
ROBERT B. SIMPSON, P.E.

File No. 12-175

TEST PIT LOGS

TP-1	Elevation +662		
0-0'9"	Brown Topsoil		
0'9"-2'0"	Brown coarse to fine SAND, and Silt, trace $(+)$ medium to fine Gravel	medium dense	moist
2'0"	Gneiss bedrock No water encountered		
TP-2	Elevation +672		
$0-1 \times 10$ "	FILL (Brown coarse to fine SAND, some silt, little (-) coarse to fine Gravel, with topsoil)	medium dense	moist
$1^{\prime} 10^{\prime \prime}-44^{\prime \prime}$	Light brown coarse to fine SAND, some (+) Silt	medium dense	moist
4'4"	Gneiss bedrock No water encountered		
TP-3	Elevation +672		
$0-0 \times{ }^{\prime \prime}$	Dark brown Topsoil with surface debris		
0'9"-2'2"	Brown coarse to fine SAND, some Silt	medium dense	moist
2'2"	Gneiss bedrock No water encountered		

TEST PIT LOGS

TP-4	Elevation +672		
0-0'6"	Brown Topsoil		
$06^{\prime \prime}-3{ }^{\prime} 6^{\prime \prime}$	Brown coarse to fine SAND, and (-) Silt, some coarse to fine Gravel	medium dense	moist
3'6"	Gneiss bedrock No water encountered		
TP-5	Elevation +670		
0-0'7'	Brown Topsoil		
$0^{\prime} 7^{\prime \prime}-3$ ' $8^{\prime \prime}$	Light brown coarse to fine SAND, some (+) Silt	medium dense	moist
3'8'-4'9"	Brown coarse to fine SAND, some Silt (completely weathered gneiss)	dense	moist
4'9"	Gneiss bedrock No water encountered		

TEST PIT LOGS

TP-6	Elevation +672		
0-0'10''	Brown Topsoil		
$0^{\prime} 10^{\prime \prime}-2^{\prime} 10^{\prime \prime}$	Light brown coarse to fine SAND, some (-) Silt, little coarse to fine Gravel	medium dense	moist
2'10"-4'7"	Brown coarse to fine SAND, some Silt, little coarse to fine Gravel (completely weathered gneiss)	dense	moist
4'7'	Gneiss bedrock No water encountered		
TP-7	Elevation +620		
0-0'9'	Brown Topsoil		
0'9'-2'8''	Brown coarse to fine SAND, some Silt, trace coarse to fine Gravel	medium dense	moist
2'8"	Probable Gneiss bedrock		
	Test pit abandoned No water encountered		
TP-8	Elevation +614		
0-0'8"	Dark brown Topsoil		
$0^{\prime} 8^{\prime \prime}-5{ }^{\prime}{ }^{\prime \prime}$	Mottled orange brown, gray coarse to fine SAND, and (-) Silt	medium dense	moist
	Groundwater encountered @ 4'1"	slow inflow	

TEST PIT LOGS

TP-9	Elevation +628		
0-0'4"	Topsoil		
$0^{\prime} 4^{\prime \prime}-6^{\prime} 9^{\prime \prime}$	FILL (Brown coarse to fine SAND, some (+) Silt, some (+) coarse to fine Gravel, with cobbles and boulders)	medium dense	moist
6'9'	FILL (Gray coarse to fine SAND, trace (+) Silt)	medium dense	moist
	Possible cover over for utility Test pit was abandoned		
	No water encountered		
TP-10	Elevation +625		
0-0'4"	Topsoil		
$0^{\prime} 4^{\prime \prime}-3^{\prime} 0^{\prime \prime}$	FILL (Boulders with topsoil)	loose	moist
$3^{\prime} 0^{\prime \prime}-8^{\prime} 0^{\prime \prime}$	Brown coarse to fine SAND, some (+) Silt	medium dense	moist

No water encountered

TEST PIT LOGS

TP-11	Elevation +642		
$0-0,6 "$	Brown Topsoil		
0'6"-3'9'	Brown coarse to fine SAND, some Silt, little coarse to fine Gravel, with occasional cobbles and boulders	medium dense	moist
3'9"-6'0"	Brown coarse to fine SAND, little (+) Silt, some coarse to fine Gravel (completely weathered gneiss)	dense	moist
6'0"	Weathered Gneiss bedrock No water encountered		
TP-12	Elevation +635		
0-0'6"	Brown Topsoil		
$0^{\prime} 6^{\prime \prime}-5^{\prime} 0{ }^{\prime \prime}$	FILL (Brown coarse to fine SAND, some (+) Silt, little (-) coarse to fine Gravel, with trace of debris)	loose	moist
5'0"-6' ${ }^{\prime \prime}$	Orange brown, gray coarse to fine SAND and Silt	dense	moist
	Refusal on boulder No water encountered		

TEST PIT LOGS

TP-13	Elevation +636		
0-0'9"	Brown Topsoil with roots		
0'9"-6'3"	Brown coarse to fine SAND, and Silt, little coarse to fine Gravel	medium dense	moist
6'3"-7'5"	Brown coarse to fine SAND, some (+) Silt, little (-) coarse to fine Gravel	dense	moist
7'5"	Gneiss bedrock Groundwater encountered @ 4'10"	slow inflow	
TP-14	Elevation +625		
0-0'3"	Brown Topsoil		
$0{ }^{\prime} 3^{\prime \prime}-3^{\prime} 4^{\prime \prime}$	FILL (Gray brown coarse to fine SAND, some Silt, little coarse to fine Gravel, with cobbles and boulders)	loose	moist
$3^{\prime} 4^{\prime \prime}-5^{\prime} 0 \prime$	FILL (Brown coarse to fine SAND, little Silt)	medium dense	moist
5'0"	Gneiss bedrock No water encountered		

TEST PIT LOGS

TP-15	Elevation +668		
0-0'3"	Brown Topsoil		
$0^{\prime} 3^{\prime \prime}-1{ }^{\prime} 8^{\prime \prime}$	Brown coarse to fine SAND, some (+) Silt, some (-) coarse to fine Gravel, with occasional cobbles and boulders	medium dense	moist
$1{ }^{\prime \prime}{ }^{\prime \prime}$	Gneiss bedrock No water encountered		
TP-16	Elevation +651		
0-0'8"	Dark brown Topsoil		
$0^{\prime} 8^{\prime \prime}-1 \times 10^{\prime \prime}$	FILL (Brown coarse to fine SAND, some (+) Silt, trace medium to fine Gravel, with cobbles)	medium dense	moist
$1^{\prime} 10^{\prime \prime}-4 \prime 10^{\prime \prime}$	Brown coarse to fine SAND, some (+) Silt, trace medium to fine Gravel	medium dense	moist
$4^{\prime} 10^{\prime \prime}$	Gneiss bedrock No water encountered		

TEST PIT LOGS

TP-17 Elevation +655
0-0'3" Topsoil
$0^{\prime} 3^{\prime \prime}-1$ ' $0^{\prime \prime} \quad$ Brown coarse to fine SAND, some (+)
Silt, little coarse to fine Gravel medium dense moist
Encountered irrigation pipes
Test pit abandoned
No water encountered

TP-18 Elevation +670
0-0'10" Brown Topsoil
0'10"-7'0" Brown SILT and, coarse to fine Sand, little (-) medium to fine Gravel medium dense moist

TEST PIT LOGS

TP-19

0-2'5" FILL (Brown coarse to fine SAND, some Silt, some coarse to fine Gravel,
with topsoil, cobbles, boulders)
loose
moist
2'5"-7'0" Brown coarse to fine SAND, some Silt, little coarse to fine Gravel

No water encountered

TP-20

0-0'6" Brown Topsoil
0'6"-4'3" Brown, orange brown coarse to fine SAND, some Silt, little coarse to fine Gravel

4'3"- $8^{\prime} 0^{\prime \prime} \quad$ Orange brown coarse to fine SAND, little (-) Silt, some coarse to fine Gravel, with occasional cobbles
medium dense moist
medium dense moist

No water encountered

Brynwood Club Development
Bedford Road
Town of North Castle, NY
(12-175)
13 September 2013

TEST PIT LOGS

TP-21

$0-0^{\prime} 6^{\prime \prime}$	Dark brown Topsoil		
$0^{\prime} 6^{\prime \prime}-1 ' 4 \prime$	FILL (Brown coarse to fine SAND, some (-) Silt, trace medium to fine Gravel, with few roots)	medium dense	moist
$1^{\prime} 4^{\prime \prime}-77^{\prime} 0^{\prime \prime}$	Brown coarse to fine SAND, little Silt, trace (+) coarse to fine Gravel, with occasional cobbles	medium dense	moist
$77^{\prime} 0 \prime$	Possible weathered bedrock		

No water encountered

TP-22

0-1'6" Dark brown Topsoil, with roots
1'6"-2'8" Mottled gray brown, orange brown Clayey SILT, little medium to fine Sand
medium dense moist
2'8"-3'6" Brown coarse to fine SAND, some (+) Silt, little medium to fine Gravel
medium dense moist
3'6"-6'0' Brown coarse to fine SAND, little (+) Silt, come coarse to fine Gravel

6'0"-7'6" Gray brown SILT little, coarse to fine Sand, trace medium to fine Gravel

Groundwater encountered @ 4'6"
medium dense wet
medium dense wet
slow inflow

TEST PIT LOGS

TP-23

0-0'7" Brown Topsoil
$0^{\prime} 7^{\prime \prime}-3^{\prime} 10^{\prime \prime} \quad$ Brown coarse to fine SAND, and (-) Silt, little (-) coarse to fine Gravel
dense
moist

3'10" Weathered bedrock
No water encountered

TP-24

0-0'8" Brown Topsoil
0'8"-6' $8^{\prime \prime} \quad$ Brown coarse to fine SAND, some (+) Silt, little (-) coarse to fine Gravel, with occasional cobbles

6'8" Possible weathered bedrock or boulder
No water encountered

TP-25

0-0'4" Brown Topsoil
$0^{\prime} 4^{\prime \prime}-33^{\prime} 4^{\prime \prime} \quad$ Brown coarse to fine SAND, and Silt, trace medium to fine Gravel

3'4" Possible bedrock or boulder
No water encountered
medium dense moist
medium dense moist
medium dense moist

TEST PIT LOGS

TP-26

$0-0 \cdot 6$ "	Brown Topsoil	
0'6"-2' ${ }^{\prime \prime}$	FILL (Brown coarse to fine SAND, some (-) Silt, little coarse to fine Gravel, with cobbles and boulders)	medium dense
$2^{\prime} 8^{\prime \prime}-4^{\prime} 0{ }^{\prime \prime}$	FILL (Brown Topsoil, with trace roots)	
4'0"-5'6"	FILL (Dark gray brown Clayey SILT, and, coarse to fine Sand, with trace roots, trace debris)	medium stiff
5'6"-8'0"	Brown coarse to fine SAND, and (-) Silt, trace coarse to fine Gravel	medium dense

No water encountered

TP-27

0-0'9" Brown Topsoil, with roots
0'9"-4'4" Light brown coarse to fine SAND, little Silt, trace coarse to fine Gravel medium dense dry

4'4" Probable weathered bedrock

No water encountered

Brynwood Club Development

Bedford Road
Town of North Castle, NY
(12-175)
13 September 2013

TEST PIT LOGS

TP-28

0-0'4" Brown Topsoil
0'4"-8‘6" FILL (Brown coarse to fine SAND, little Silt, little coarse to fine Gravel, with organics, debris)
$8^{\prime} 6^{\prime \prime}-9^{\prime} 0^{\prime \prime} \quad$ FILL (Gray coarse to fine SAND, some Silt, little coarse to fine Gravel, with organics)
loose
moist
medium dense wet
Groundwater encountered @ $8^{\prime} 0^{\prime}$

Borehole Permeability Test (B-4)

Ground Surface Elevation: +628.0
Top of Casing Elevation: +631.5
Bottom of Test Hole Elevation: +621.0
Test Hole Depth from Ground Surface Elevation: 7’0" (84")

Pre-Soak:

Start Date: 18 Dec 2012
End Date: 19 Dec 2012

Time: 1545 Water Level*: 4’4"
Time: 0900 Water Level*: 7’1"

33" drop $\mathrm{H}_{2} \mathrm{O}$ in 1035 minutes (17 hr .15 min.) $=\underline{0.03 \text { inches } p e r ~ m i n u t e ~}$

Test:

Start Date: 19 Dec 2012
End Date: 19 Dec 2012

Time: 1000 Water Level*: 4’3"
Time: 1515 Water Level*: 5'3.5"
$12.5 "$ drop $\mathrm{H}_{2} \mathrm{O}$ in 315 minutes (5 hr .15 min.) = 0.04 inches per minute

Time	Water Level*	Interval Water Level Drop (Inches)	Cumulative Water Level Drop (Inches)
1000	$4^{\prime} 3^{\prime \prime}$	0	0
1100	$4^{\prime} 6^{\prime \prime}$	3	3
1200	$4^{\prime} 8^{\prime \prime}$	2	5
1300	$4^{\prime} 10^{\prime \prime}$	2	7
1400	$5^{\prime} 1^{\prime \prime}$	3	10
1515	$5^{\prime} 3.5^{\prime \prime}$	2.5	12.5

Water Level* - Depth below top of casing (elevation +631.5)

Percolation Test P-1

(Elevation +620)
Test hole depth 42 " from ground surface elevation

Pre-Soak

$0-10 \mathrm{~min}, 22$ " drop of H2O (pipe drained)
22 " drop H2O in 10 minutes $=2.20$ inches per minute
Test Run \#1
$5 \mathrm{~min}, 15 "$ drop H2O (re-filled pipe)
Test Run \#2
5 min, 14" drop H2O (re-filled pipe)
Test Run \#3
5 min, 12" drop H2O (re-filled pipe)

Final Test Reading

Start @ 1245, 14" from top of pipe Finish @ 1300, 36" drop from top of pipe (pipe drained) 22 "drop H2O in 15 minutes $=1.46$ inches per minute

Percolation Hole P-2

(Elevation + 612)

Test hole depth 20 " from ground elevation
Groundwater @ 0'6" below surface
Percolation test unable to be performed

Percolation Test P-3

(Elevation + 616)
Test hole depth 32 " from ground surface elevation

Pre-Soak

0-24 min, 17" drop of H2O (pipe drained)
17 " drop H2O in 24 minutes $=0.71$ inches per minute
Test Run \#1
$5 \mathrm{~min}, 5^{\prime \prime}$ drop H2O (re-filled pipe)
Test Run \#2
5 min, 5" drop H2O (re-filled pipe)
Test Run \#3
5 min, 4" drop H2O (re-filled pipe)

Final Test Reading

Start @ 1535, 15" from top of pipe
Finish @ 1605, 28" drop from top of pipe
13 " drop H2O in 30 minutes $=0.43$ inches per minute

Percolation Hole P-4

(Elevation + 615)

Test hole depth 24 " from ground elevation
Groundwater @ 1'10" below surface
Percolation test unable to be performed

APPENDIX B

PUMP PERFORMANCE CURVES

EQUALIZATION TANK

RAW SEWAGE PUMPS

TDH CALCULATIONS

RAW SEWAGE PUMPS
7. TOTAL DYNAMIC HEAD (TDH)

WS_BF Series
 Model 3887BF

FEATURES

Impeller: Cast iron, semi-open, non-clog, dynamically balanced with pump out vanes for mechanical seal protection.

Casing: Cast iron flanged volute type for maximum efficiency. Designed for easy installation on A10-20 slide rail or base elbow rail systems.
Mechanical Seal: SILICON CARBIDE VS. SILICON CARBIDE sealing faces for superior abrasive resistance, stainless steel metal parts, BUNA-N elastomers.

Shaft: Corrosion-resistant, 300 series stainless steel. Threaded design. Locknut on all models to guard against component damage on accidental reverse rotation.

APPLICATIONS

Specifically designed for the following uses:

- Homes
- Water transfer
- Sewage systems
- Light industrial
- Dewatering/Effluent • Commercial applications Anywhere waste or drainage must be disposed of quickly, quietly and efficiently.

SPECIFICATIONS

Pump

- Solids handling capabilities: 2" maximum
- Capacities: up to 185 GPM
- Total heads: up to 38 feet TDH
- Discharge size: 2" NPT threaded companion flange as standard. 3" option available but must be ordered separately. (Order no. A1-3)
- Temperature: $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ continuous $140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)$ intermittent.

MOTORS

- Fully submerged in high grade turbine oil for lubrication and efficient heat transfer. All ratings are within the working limits of the motor.
- Class B insulation

Fasteners: 300 series stainless steel.
Capable of running dry without damage to components.

Designed for continuous operation when fully submerged.

EXTENDED WARRANTY AVAILABLE FOR RESIDENTIAL APPLICATIONS.

AGENCY LISTINGS

Tested to UL 778 and CSA 22.2 108 Standards
By Canadian Standards Association
File \#LR38549

Single phase (60 Hz):

- Capacitor start motors for maximum starting torque.
- Built-in overload with automatic reset.
- SJTOW or STOW severe duty oil and water resistant power cords.
- 1⁄3-1 HP models have NEMA three prong grounding plugs.

Three phase (60 Hz):

- Class 10 overload protection must be provided in separately ordered starter unit.
- STOW power cords all have bare lead cord ends.
- Bearings: Upper and lower heavy duty ball bearing construction.
- Designed for Continuous Operation: Pump ratings are within the motor manufacturer's recommended working limits, can be operated continuously without damage when fully submerged.
- Power Cable: Severe duty rated, oil and water resistant. Epoxy seal on motor end provides secondary moisture barrier in case of outer jacket damage and to prevent oil wicking. Standard cord is 20'. Optional lengths are available.
- Motor Cover O-ring: Assures positive sealing against contaminants and oil leakage.

Wastewater

MOTOR AND MODEL INFORMATION

Order Number	HP	Phase	Volts	RPM	Impeller Diameter (in.)	Maximum Amps	Locked Rotor Amps	KVA Code	Full Load Efficiency	Resistance		Weight (lbs.)
										Start	Line-Line	
WS0311BF	0.33	1	115	4.69		10.7	30.0	M	54	11.9	1.7	63
WS0318BF			208			6.8	19.5	K	51	9.1	4.2	
WS0312BF			230			4.9	14.1	L	53	14.5	8.0	
WS0511BF	0.5		115	1750	5.00	14.5	31.1	J	55	9.3	1.4	65
WS0518BF			208			8.0	19.5	K	51	9.1	4.2	
WS0512BF			230			7.3	16.5	J	54	11.7	5.6	
WS0538BF		3	200			3.8	12.3	K	75	-	6.7	
WS0532BF			230			3.3	9.7	K	75	-	9.9	
WS0534BF			460			1.7	4.9	K	75	-	39.4	
WS0537BF			575			1.4	4.3	K	68	-	47.8	
WS0718BF	0.75	1	208		5.38	11.0	39.0	K	65	2.6	1.4	85
WS0712BF			230			9.4	24.8	J	57	4.8	2.3	
WS0738BF		3	200			4.1	21.2	H	74	-	4.3	
WS0732BF			230			3.6	17.3	J	76	-	5.6	
WS0734BF			460			1.8	8.9	J	76	-	22.4	
WS0737BF			575			1.5	7.3	J	71	-	29.2	
WS1018BF	1	1	208		5.75	14.0	39.0	K	65	2.6	1.4	
WS1012BF			230			12.3	30.5	H	60	4.3	1.8	
WS1038BF		3	200			6.0	21.2	H	74	-	4.3	
WS1032BF			230			5.8	17.3	J	76	-	5.6	
WS1034BF			460			2.9	8.9	J	76	-	22.4	
WS1037BF			575			2.4	7.3	J	71	-	29.2	

METERS FEET

PERFORMANCE RATINGS (gallons per minute)

Order No.		WS03BF	WS05BF	WS07BF	WS10BF
HP ${ }^{\text {- }}$		1/3	1/2	$3 / 4$	1
RPM -		1750	1750	1750	1750
	10 -	80	122	145	183
	15	36	90	116	152
	20	-	50	86	123
	25	-	-	48	95
	30	-	-	-	58
	35	-	-	-	20

COMPONENTS

Item No.	Description
1	Impeller
2	Casing
3	Mechanical Seal
4	Motor Shaft
5	Motor
6	Ball Bearings
7	Power Cable
8	Casing O-Ring

* For available repair parts, see repair parts book.

DIMENSIONS

(All dimensions are in inches. Do not use for construction purposes.)

Discharge Flange:

(1) 2" NPT standard
(2) 3" NPT optional (order an A1-3)

Let's Solve Water

Xylem Inc.
2881 East Bayard Street Ext., Suite A
Seneca Falls, NY 13148
Phone: (866) 325-4210
Fax: (888) 322-5877
www.gouldswatertechnology.com
Goulds is a registered trademark of Goulds Pumps, Inc. and is used under license.
© 2016 Xylem Inc. B3887BF R2 September 2016

SLUDGE DECANT PUMP

SHT DECANT PUMPS

TDH CALCULATIONS

SHT DECANT PUMPS

WS_BF Series
 Model 3887BF

FEATURES

Impeller: Cast iron, semi-open, non-clog, dynamically balanced with pump out vanes for mechanical seal protection.

Casing: Cast iron flanged volute type for maximum efficiency. Designed for easy installation on A10-20 slide rail or base elbow rail systems.
Mechanical Seal: SILICON CARBIDE VS. SILICON CARBIDE sealing faces for superior abrasive resistance, stainless steel metal parts, BUNA-N elastomers.

Shaft: Corrosion-resistant, 300 series stainless steel. Threaded design. Locknut on all models to guard against component damage on accidental reverse rotation.

APPLICATIONS

Specifically designed for the following uses:

- Homes
- Water transfer
- Sewage systems
- Light industrial
- Dewatering/Effluent • Commercial applications Anywhere waste or drainage must be disposed of quickly, quietly and efficiently.

SPECIFICATIONS

Pump

- Solids handling capabilities: 2" maximum
- Capacities: up to 185 GPM
- Total heads: up to 38 feet TDH
- Discharge size: 2" NPT threaded companion flange as standard. 3" option available but must be ordered separately. (Order no. A1-3)
- Temperature: $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ continuous $140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)$ intermittent.

MOTORS

- Fully submerged in high grade turbine oil for lubrication and efficient heat transfer. All ratings are within the working limits of the motor.
- Class B insulation

Fasteners: 300 series stainless steel.
Capable of running dry without damage to components.

Designed for continuous operation when fully submerged.

EXTENDED WARRANTY AVAILABLE FOR RESIDENTIAL APPLICATIONS.

AGENCY LISTINGS

Tested to UL 778 and CSA 22.2 108 Standards
By Canadian Standards Association
File \#LR38549

Single phase (60 Hz):

- Capacitor start motors for maximum starting torque.
- Built-in overload with automatic reset.
- SJTOW or STOW severe duty oil and water resistant power cords.
- 1⁄3-1 HP models have NEMA three prong grounding plugs.

Three phase (60 Hz):

- Class 10 overload protection must be provided in separately ordered starter unit.
- STOW power cords all have bare lead cord ends.
- Bearings: Upper and lower heavy duty ball bearing construction.
- Designed for Continuous Operation: Pump ratings are within the motor manufacturer's recommended working limits, can be operated continuously without damage when fully submerged.
- Power Cable: Severe duty rated, oil and water resistant. Epoxy seal on motor end provides secondary moisture barrier in case of outer jacket damage and to prevent oil wicking. Standard cord is 20'. Optional lengths are available.
- Motor Cover O-ring: Assures positive sealing against contaminants and oil leakage.

Wastewater

MOTOR AND MODEL INFORMATION

Order Number	HP	Phase	Volts	RPM	Impeller Diameter (in.)	Maximum Amps	Locked Rotor Amps	KVA Code	Full Load Efficiency	Resistance		Weight (lbs.)
										Start	Line-Line	
WS0311BF	0.33	1	115	4.69		10.7	30.0	M	54	11.9	1.7	63
WS0318BF			208			6.8	19.5	K	51	9.1	4.2	
WS0312BF			230			4.9	14.1	L	53	14.5	8.0	
WS0511BF	0.5		115	1750	5.00	14.5	31.1	J	55	9.3	1.4	65
WS0518BF			208			8.0	19.5	K	51	9.1	4.2	
WS0512BF			230			7.3	16.5	J	54	11.7	5.6	
WS0538BF		3	200			3.8	12.3	K	75	-	6.7	
WS0532BF			230			3.3	9.7	K	75	-	9.9	
WS0534BF			460			1.7	4.9	K	75	-	39.4	
WS0537BF			575			1.4	4.3	K	68	-	47.8	
WS0718BF	0.75	1	208		5.38	11.0	39.0	K	65	2.6	1.4	85
WS0712BF			230			9.4	24.8	J	57	4.8	2.3	
WS0738BF		3	200			4.1	21.2	H	74	-	4.3	
WS0732BF			230			3.6	17.3	J	76	-	5.6	
WS0734BF			460			1.8	8.9	J	76	-	22.4	
WS0737BF			575			1.5	7.3	J	71	-	29.2	
WS1018BF	1	1	208		5.75	14.0	39.0	K	65	2.6	1.4	
WS1012BF			230			12.3	30.5	H	60	4.3	1.8	
WS1038BF		3	200			6.0	21.2	H	74	-	4.3	
WS1032BF			230			5.8	17.3	J	76	-	5.6	
WS1034BF			460			2.9	8.9	J	76	-	22.4	
WS1037BF			575			2.4	7.3	J	71	-	29.2	

METERS FEET

PERFORMANCE RATINGS (gallons per minute)

Order No.		WS03BF	WS05BF	WS07BF	WS10BF
HP ${ }^{\text {- }}$		1/3	1/2	$3 / 4$	1
RPM -		1750	1750	1750	1750
	10 -	80	122	145	183
	15	36	90	116	152
	20	-	50	86	123
	25	-	-	48	95
	30	-	-	-	58
	35	-	-	-	20

COMPONENTS

Item No.	Description
1	Impeller
2	Casing
3	Mechanical Seal
4	Motor Shaft
5	Motor
6	Ball Bearings
7	Power Cable
8	Casing O-Ring

* For available repair parts, see repair parts book.

DIMENSIONS

(All dimensions are in inches. Do not use for construction purposes.)

Discharge Flange:

(1) 2" NPT standard
(2) 3" NPT optional (order an A1-3)

Let's Solve Water

Xylem Inc.
2881 East Bayard Street Ext., Suite A
Seneca Falls, NY 13148
Phone: (866) 325-4210
Fax: (888) 322-5877
www.gouldswatertechnology.com
Goulds is a registered trademark of Goulds Pumps, Inc. and is used under license.
© 2016 Xylem Inc. B3887BF R2 September 2016

APPENDIX C

MANUFACTURER'S PROCESS CALCULATIONS

PES Project \# Job Name: QTY \& Flow	BJB-022522-SC(Rev5)	Date:	4/7/22
	Summit Club		

BESST DESIGN CALCULATIONS

1) $\mathbf{B}_{\mathbf{x}} \quad$ Actual Sludge Load $\left[\mathrm{kg} \mathrm{BOD}_{5} / \mathrm{kg}\right.$ VSS / d]

$$
\begin{aligned}
& \mathbf{B}_{\mathbf{x}}=\mathbf{B} \times 1.02^{(\text {tmin }-20)} \\
& \mathbf{B}_{\mathbf{x}}=0.120 \times 1.02(10-20) \\
& \mathbf{B}_{\mathbf{x}}=0.0984 \mathrm{~kg} \mathrm{BOD} \\
& 5
\end{aligned} \mathrm{~kg} \mathrm{VSS} / \mathrm{d}
$$

2) A Sludge Age [days]

$$
\begin{aligned}
\mathbf{A}= & \left(1 /\left(\mathrm{YB}_{\mathrm{x}}\right)\right) \times\left(1-0.5\left(\left(\mathrm{YB}_{\mathrm{x}}\right) / \mathrm{k}_{\mathrm{ac}}\right)\right)+\left(\operatorname{Sqrt}\left(1+\left(\left(\mathrm{YB}_{\mathrm{x}}\right) / 2 \mathrm{k}_{\mathrm{ac}}\right)^{2}\right)\right) \\
\mathbf{A}= & (1 /(0.60 \times 0.0984)) \times(1-0.5 \times((0.60 \times 0.0984) / 0.090))+ \\
& \left(\text { Sqrt }\left(1+(0.60 \times 0.0984) /(2 \times 0.090)^{2}\right)\right) \\
\mathbf{A}= & 29.1936 \text { days }
\end{aligned}
$$

3) $\mathbf{k}_{\mathbf{d}} \quad$ Actual Rate of Decay $\left[\mathrm{d}^{-1}\right]$

$$
\begin{aligned}
& \mathbf{k}_{\mathrm{d}}=\mathrm{k}_{\mathrm{ac}} /\left(1+\mathrm{A} \mathrm{k}_{\mathrm{ac}}\right) \\
& \mathbf{k}_{\mathrm{d}}=0.090 /(1+(29.1936)(0.090)) \\
& \mathbf{k}_{\mathrm{d}}=0.0248 \quad \mathrm{~d}^{-1}
\end{aligned}
$$

4) $X \quad$ Sludge Concentration [$\mathrm{kg} \mathrm{ss} / \mathrm{m}^{3}$]

$$
\begin{aligned}
& \mathbf{X}=1000 \times \mathrm{V}_{\mathrm{x}} / \mathrm{KI} \\
& \mathbf{X}=1000 \times 0.600) / 100 \\
& \mathbf{X}=6.0000 \mathrm{~kg} \mathrm{ss} / \mathrm{m}^{3}
\end{aligned}
$$

PES Project \#	BJB-022522-SC(Rev5)	Date:	4/7/22
Job Name:	Summit Club		
QTY \& Flow	0		

BESST DESIGN CALCULATIONS, Cont'd.

5) X_{v} Volatile Suspended Solids Concentration [kg VSS / m ${ }^{3}$]

$$
\begin{aligned}
& \mathbf{X}_{\mathrm{v}}=(\mathrm{X})(\mathrm{p}) \\
& \mathbf{X}_{\mathrm{v}}=6.0000 \times 0.65 \\
& \mathbf{X}_{\mathrm{v}}=3.9000 \quad \mathrm{~kg} \mathrm{VSS} / \mathrm{m}^{3}
\end{aligned}
$$

6) v Actual Hydraulic Loading [m/h]

$$
\begin{aligned}
& \mathbf{v}=\text { Lesser of } \mathbf{v}_{\mathbf{l}} \text { or } \mathbf{v}_{\mathbf{v}_{\mathrm{c}}} \text {, where } \mathrm{v}_{\mathrm{l}}=1 \\
& \mathbf{v}_{\mathbf{c}}=\left(N_{x} / X\right) \times \mathrm{e}^{0.03(\min -20)} \\
& \mathbf{v}_{\mathbf{c}}=(6.0000 / 6.0000)\left(\mathrm{e}^{0.03 *(10-20)}\right) \\
& \mathbf{v}_{\mathbf{c}}=0.7408 \mathrm{~m} / \mathrm{h}
\end{aligned}
$$

7) V_{B} Aeration Volume $\left[\mathrm{m}^{3}\right]$

$$
\begin{aligned}
& \mathbf{S}_{\mathrm{R}}=\mathrm{S}_{\mathrm{T}}-(0.966(\mathrm{p})(\mathrm{NL})) \\
& \mathbf{V}_{\mathrm{B}}=\left(\mathrm{Q}\left(\mathrm{~S}_{\mathrm{O}}-\mathrm{S}_{\mathrm{R}}\right)\right) / \mathrm{X}_{\mathrm{V}} \mathrm{~B}_{\mathrm{x}} \\
& \mathbf{V}_{\mathbf{B}}=((170.326)(0.2400-0.0037) \cdot /(3.900)(0.0984) \\
& \mathbf{V}_{\mathbf{B}}=104.82 \mathrm{~m}^{3}
\end{aligned}
$$

8) S_{s} Clarifier Surface Area $\left[\mathrm{m}^{2}\right]$

$$
\begin{aligned}
& \mathbf{S}_{\mathbf{s}}=\left(\left(\mathrm{Q}_{\mathrm{Q}}\right)(\mathrm{Q}) / 24 \mathrm{v}\right. \\
& \mathbf{S}_{\mathbf{s}}=((3))(170.326) /(24 * 0.7408) \\
& \mathbf{S}_{\mathbf{s}}=28.739 \mathrm{~m}^{2}
\end{aligned}
$$

9) $\mathbf{V}_{\mathbf{S}}$ Clarifier Volume $\left[\mathrm{m}^{3}\right.$]

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{s}}=\mathrm{S}_{\mathrm{S}} / \mathrm{SV} \\
& \mathbf{V}_{\mathbf{s}}=28.739 \quad / \quad 0.63 \\
& \mathbf{V}_{\mathbf{S}}=45.618 \quad \mathrm{~m}^{3}
\end{aligned}
$$

PES Project \#	BJB-022522-SC(Rev5)	Date:	4/7/22
Job Name:	Summit Club		
QTY \& Flow	0		

BESST DESIGN CALCULATIONS, Cont'd.

10) \mathbf{P}_{x} Net Mass of Volatile Suspended Solids Produced [kg VSS / d]

$$
\begin{aligned}
& \mathbf{P}_{\mathbf{x}}=\left(\mathrm{Y} /\left(1+\mathrm{Ak}_{\mathrm{d}}\right)\right)(\mathrm{Q})\left(\mathrm{S}_{\mathrm{O}}-\mathrm{S}_{\mathrm{R}}\right) \\
& \mathbf{P}_{\mathbf{x}}=(0.60 /(1+(29.1936)(0.0248))(170.33)(0.2400-0.0037) \\
& \mathbf{P}_{\mathbf{x}}=14.004 \mathrm{~kg} \mathrm{VSS} / \mathrm{d}
\end{aligned}
$$

11) $\mathbf{P}_{\mathbf{t}}$ Sludge Production [kg ss / d]

$$
\begin{array}{lll}
\mathbf{P}_{\mathbf{t}}=\mathbf{P}_{\mathrm{x}} / \mathrm{p} & \\
\mathbf{P}_{\mathbf{t}}=14.004 & / 0.6500 \\
\mathbf{P}_{\mathbf{t}}=21.544 & \mathrm{~kg} \mathrm{ss} / \mathrm{d}
\end{array}
$$

12) \mathbf{V}_{N} Nitrification Volume $\left[\mathrm{m}^{3}\right]$

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{N}}=\left(Q\left(\mathrm{~N}_{\mathrm{O}}-\mathrm{N}\right)\right) /\left(\mathrm{p}_{\mathrm{N}} \mathrm{~m}_{\mathrm{U}} \mathrm{X}_{\mathrm{V}}\right) \\
& \mathbf{V}_{\mathbf{N}}=(170.326(0.0400-0.0010)) /((0.0450)(0.6085)(3.9000)) \\
& \mathbf{V}_{\mathbf{N}}=62.149 \mathrm{~m}^{3}
\end{aligned}
$$

13) V_{D} Denitrification Volume $\left[\mathrm{m}^{3}\right]$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{D}}=\left(\mathrm{QN}_{\mathrm{O}} \mathrm{Y}\right) /\left(0.75 \mathrm{~m}_{\mathrm{z}} \mathrm{X}_{\mathrm{V}}\right) \\
& \mathrm{V}_{\mathrm{D}}=(170.33((0.0400)(0.60))) /(0.75(0.0750)(3.9000)) \\
& \mathrm{V}_{\mathrm{D}}=18.634 \mathrm{~m}^{3}
\end{aligned}
$$

14) V_{A} Volume of Aeration [m^{3}]

$$
\begin{aligned}
\mathrm{V}_{\mathrm{A}} & =\operatorname{Larger} \text { of } \mathrm{V}_{\mathrm{AB}} \text { or } \mathrm{V}_{\mathrm{N}} \\
\mathrm{~V}_{\mathrm{AB}} & =\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{D}}\left(\left(1+\mathrm{Ak}_{\mathrm{d}}\right) /\left(2.77\left(\mathrm{Am}_{\mathrm{Z}}\right)\right)\right) \\
\mathrm{V}_{\mathrm{AB}} & =104.82-18.634((1+(29.1936)(0.0248)) / \\
\mathrm{V}_{\mathrm{AB}} & =99.77(29.1936)(0.0750)) \\
\mathrm{V}_{\mathrm{A}} & =99.526 \mathrm{~m}^{3}
\end{aligned}
$$

15) \mathbf{V}_{T} Total Volume of Reactor $\left[\mathrm{m}^{3}\right]$

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{T}}=\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{D}}+\mathrm{V}_{\mathrm{S}} \\
& \mathbf{V}_{\mathbf{T}}=99.526+18.634+45.618 \\
& \mathbf{V}_{\mathbf{T}}=163.78 \mathrm{~m}^{3}
\end{aligned}
$$

16) O_{2} Oxygen Consumption [$\mathrm{kg} \mathrm{O}_{2} / \mathrm{d}$]

$$
\begin{aligned}
\mathbf{O}_{2}= & \mathrm{Q}\left(\left(\mathrm{~S}_{\mathrm{O}}-\mathrm{S}_{\mathrm{R}}\right) / 0.68\right)-1.42 \mathrm{P}_{\mathrm{x}}+4.57 \mathrm{Q}\left(\mathrm{~N}_{\mathrm{O}}-\mathrm{N}\right) \\
\mathbf{O}_{2}= & 170.33((0.2400-0.0037) / 0.68)-1.42(14.004) \\
& +4.57(170.33)(0.0400-0.0010) \\
\mathbf{O}_{2}= & 69.655 \quad \mathrm{~kg} \mathrm{O}_{2} / \mathrm{d}
\end{aligned}
$$

17) $\mathbf{N m}$ Air Consumption $\left[\mathrm{Nm}^{3} / \mathrm{h}\right.$]

$$
\begin{aligned}
& \mathbf{N m}= \mathrm{O}_{2}\left(\mathrm{c}_{\mathrm{s}} /\left(\mathrm{c}_{\mathrm{s}}-2\right)\right)\left(\mathrm{o}_{\mathrm{k}} /(0.024 \mathrm{a})\right) \\
& \mathrm{Nm}= 69.655 \quad(8.1224 /(8.1224-2)) \\
&(1.3000 /(0.024(130))) \\
& \mathbf{N m}=166.85 \mathrm{Nm}^{3} / \mathrm{h}
\end{aligned}
$$

BESST PROGRAM AND FORMULA LISTING

The following variable and formula lists represent the program listing for the computer model used to design and size the BESST system. Not all of the formulas are listed due to copyright and patent protection.
Formulas that are NOT shown are mainly sub-formulas of those listed. For formula verification see Metcalf δ Eddy: Wastewater Engineering; and K.R. Imhoff: Taschenbuch def Stadtenwasterung. 28. Auflage, Oldenbo। Munchen - Wien 1993.

INPUT VALUES

1.)	B	Sludge Load (kg BOD / kg VSS)	0.03 to 0.20
2.)	N_{X}	Flux Flow (kg ds / m ${ }^{2} / \mathrm{h}$) function of temperature (use @ 20 degrees Celsius)	6.00
3.)	V_{L}	Limit Hydraulic Loading (m/h)	0.99 to 1.1
4.)	V_{x}	Sludge Volume (mL / L)	4.0 to 0.7
5.)	KI	Sludge Index (mL / g)	70 to 120
6.)	p	Volatile Suspended Solids (\%)	0.62 to 0.68
7.)	Y	Maximum Yield Coefficient (kg VSS / kg BOD)	0.53 to 0.6
8.)	$\mathrm{k}_{\text {ac }}$	Decay Rate (d) constant	0.09
9.)	Q	Flow Rate ($\mathrm{m}^{3} / \mathrm{d}$)	
10.)	Q_{Q}	Flow Variation	1.5 to 3
11.)	S_{0}	Influent BOD (kg / m ${ }^{\mathbf{3}}$)	
12.)	S_{T}	Effluent BOD (kg / m${ }^{\mathbf{3}}$)	
13.)	N_{0}	Influent Ammonia (kg / m ${ }^{\mathbf{3}}$)	
14.)	N	Effluent Ammonia (kg / m ${ }^{\mathbf{3}}$) typically	0.005

INPUT VALUES

15.)	N_{3}	Effluent Nitrates $\mathrm{N}-\mathrm{NO}_{3}\left(\mathrm{~kg} / \mathrm{m}^{\mathbf{3}}\right)$	typically	0.001 to 0.015
16.)	NLo	Influent TSS (kg / m ${ }^{\mathbf{3}}$)		
17.)	NL	Effluent TSS (kg / m ${ }^{\mathbf{3}}$		
18.)	min	Minimum Water Temperature (${ }^{\circ} \mathrm{C}$)		
19.)	max	Maximum Water Temperature (${ }^{\circ} \mathrm{C}$)		
20.)	a	Oxygen Transfer Coefficient ($\mathrm{g} / \mathrm{Nm}^{\mathbf{3}}$)		15 to 50
21.)	SV	Ratio, Separation Surface to Separation	Volume	
22.)	m_{i}	Specific Growth Rate of Nitrificants	constant	1.37
23.)	pH	pH		6.0 to 8.0
24.)	$\mathrm{m}_{\text {id }}$	Specific Growth Rate of Denitrificants	constant	0.1 to 0.3
25.)	O_{k}	Peak Load of Aeration	constant	1.3

Nitrification and Denitrification

Nitrogen is removed by the nitrification and denitrification processes. Nitrification is autotropic and all Purestream ES, LLC integrated bioreactors are designed for complete nitrification of ammonia to NO_{3} (pleas see Metcalf \& Eddy, Third Edition, Chapter 11-6).

Denitrification, however, is heterotropic and requires a carbon source. Conventional plants' "separate sludge denitrification" requires that carbon is added, typically in the form of methanol. This adds to operating costs, and if used in excess, to increased BOD_{5} content. BESST technology's "single-sludge denitrification" approach uses an endogenous carbon source to maintain dentrifiers. Influent is combined with nitrified mixe liquor in the anoxic compartment providing the carbon source needed for denitrification. Relatively high mixe liquor recycle rates are employed and sufficient denitrification retention times provided.

Total nitrogen reduction $\left(\mathbf{N}_{\mathrm{T}}\right)$ is a subject of not only providing sufficient anoxic volume for denitrification and keeping temperature above a certain minimum, but also a function of Recycled Activated Sludge (RAS) flow rate. The efficiency of \mathbf{N}_{T} reduction is expressed as follows:

$$
\eta=(1-1 /(1+n)) \times 100
$$

Where $\mathrm{n}=$ RAS flow multiple of average flow Q .
The following are typical efficiencies and RAS flow multiples used / required:
n
2
3
4

Slaughterhouse Wastewater 14
Hog Manure 29
η (\%)

Domestic
.
66
75
80
93
97

BESST technology delivers not only high efficiency reduction of organic matter, but also increased efficiency of phosphorous removal. Two processes, biological and chemical precipitation are employed with advantage

The mechanics of biological phosphorous removal, known as "Luxury Uptake", are due to exposure of activated sludge to alternating oxic and anoxic conditions. Under these conditions, the cells store more energy in the form of phosphorous than needed for their survival. If strictly oxic conditions are maintained during subsequent clarification, phosphorous will be retained by the cells and will eventually be removed with the excess sludge. Unlike most other methods of clarification, these conditions are maintained by the BESS process, and biological phosphorous reduction to less than $3 \mathrm{mg} / \mathrm{L}$ are readily achievable.

The basic reaction involved in the precipitation of phosphorous with iron is as follows:

$$
\mathrm{Fe}^{+3}+\mathrm{H}_{\mathrm{n}}\left(\mathrm{PO}_{4}\right)^{\mathrm{n}-3} \cdot \mathrm{FePO}_{4}+\mathrm{nH}^{+}
$$

In the case of iron, 1 mole will precipitate 1 mole of phosphate. The advantage of the process is its low chemical consumption, close to stoichiometric, and consequently, the reduction of ballast sludge production. Followed by microfiltration, reductions to $0.5 \mathrm{mg} / \mathrm{L}$ are possible.

If yet further reduction of phosphorous is required, ferric sulfate precipitation after the bioreactor followed by microfiltration must be used.

February 28, 2022
Project: Summit Club 45,000 gpd

SLUDGE AIRLIFT CALCULATIONS AND DATA

A. Maximum flow at six times average daily flow
$\frac{45,000 \times 6}{1440}=188$ GPM total
B. Two (2) 4" airlifts provided, each rated at 94 GPM
C. See performance curve attached for 4 " airlift

At Lift (HL) = 1,
Flow $=94$ GPM
Submergence (Hs) $=9^{\text {, }}$
$\%$ Subm. $=\frac{9}{10} \times 100=90 \%$
Required Air $=12 \mathrm{CFM}$ per airlift

At Lift (HL) = 2'
Flow $=94$ GPM
Submergence (Hs) =9,
$\%$ Subm. $=\frac{9}{11} \times 100=81.8 \%$
Required Air $=18$ CFM per airlift

At actual lift $(\mathrm{HL})=1.5^{\prime}$, use 15 CFM per sludge airlift
D. Minimum flow at four times average daily flow
$\frac{45,000 \times 4}{1440}=125$ GPM total
E. Two (2) 4" airlifts provided, each rated at 63 GPM
F. See performance curve attached for 4 " airlift

At Lift (HL) = 1,
Flow $=63$ GPM
Submergence (Hs) $=9^{\prime}$
$\%$ Subm. $=\frac{9}{10} \times 100=90 \%$
Required Air $=10 \mathrm{CFM}$ per airlift

At Lift (HL) $=2$,
Flow $=63$ GPM
Submergence (Hs) $=9^{\prime}$
$\%$ Subm. $=\frac{9}{11} \times 100=81.8 \%$
Required Air $=16$ CFM per airlift

At actual lift $(\mathrm{HL})=1.5^{\prime}$, use 13 CFM per sludge airlift

February 28, 2022
Project: Summit Club 45,000 gpd

SKIMMER AIRLIFT CALCULATIONS AND DATA

A. Maximum flow at two times average daily flow
$\frac{45,000 \times 2}{1440}=63$ GPM total
B. Two (2) 2.5 " airlifts provided, each rated at 32 GPM
C. See performance curve attached for $2.5 "$ airlift

At Lift $\left(\mathrm{H}_{\mathrm{L}}\right)=1$,
Flow $=32$ GPM
Submergence (Hs) $=5^{\text {, }}$
$\%$ Subm. $=\frac{5}{6} \times 100=83.3 \%$
Required Air $=3 \mathrm{CFM}$ per airlift

At Lift (HL) $=2^{\prime}$
Flow $=32$ GPM
Submergence (Hs) $=5$,
$\%$ Subm. $=\frac{5}{7} \times 100=71.4 \%$
Required Air $=7 \mathrm{CFM}$

At actual lift (HL) $=1.5^{\prime}$, use 5 CFM per sludge airlift

NOTES:

I. THE AN LIFT PERFORMANCE CURVES ON THIS CHART ARE TYPICAL FOR PUMPING CLEAR WATER ANO ARE INTENDED TO BE USED FOR ESTIMATING
2 THE PER CENT SUQMERGENCE $=\frac{\mathrm{H}_{3}}{\mathrm{H}_{\mathrm{s}}+\mathrm{H}_{2}} \times 100$.
3. IT is suggested that the curves be not EXTENDED BEYOND THE LIMITS SHOWN BECAUSE THE APPROXOMATE MAXIMUM DISCHARGE FOR EACH CONDITION IS INDICATED.
4 FOR LIFTS BETWEEN THOSE INDICATED ON THIS CHART USE A STRANGHT ARITHMETIC PROPORTION WHEN INTERPOLATING VALUES.
EXAMPLE 1:
GVEN: LFT, $H_{2}=5^{\circ}$: SUBM, $H_{3}=13^{\circ}$. DESRED DSCH. $=100$ G.P.M.
FIND: PER CENT SUBMERGENCE: $\frac{13}{13+5} \times 100=72$ AIR RECDR $=24$ CF.M. (FREE AIR) VELOCTY IN $4^{\prime \prime}$ TAML PIPE $=2.6$ F.P.S.

EXAMPLE 2:

GIVEN: LIFT, $H_{L}=5.5^{\prime}$; SUBM, $H_{s}=12.5^{\prime}$. DESIRED VEL. IN 4^{*} TALL PIPE $=3.0$ F.P.S.
FIND: DISCH. FROM $4^{\prime \prime}$ ARR LFT $=117$ G.P.M
PER CENT SUBM. $=\frac{12.5}{125+53} \times 100=69.3$.
AIR REOD.
$=$ (ANR $\odot H=5)^{\circ}-\frac{5.5-50}{7.0-5.0}$ (DIFF. AN O $O=5^{\prime} B 7^{\prime}$.

- 40-0.25(40-30)
- 38 GF.M. (FREE ANR).

TYPICAL AIR LIFTS FOR WHICH CURVES ARE APPLICABLE

engineering
data sheet

TYPICAL PERFORMANCE CURVES

NOTES：

1．TME ARR LIFT PERFORMANCE CURVES ON THES CHART ARE TYPICAL FOR PUMPING CIEAR WATER AND ARE INTENOED TO EE USED FOR ESTIMATING．
2．THE PER CENT SUQMEROENCE $=\frac{\mathrm{H}_{\mathrm{S}}}{\mathrm{H}_{\mathrm{S}}+\mathrm{H}_{\mathrm{L}}} \times 100$
3．IT S SUGGESTED THAT THE CURVES NOT BE EXTENDED BEYOND THE LIMITS SHOWN gECAUSE THE APPROXIMATE MAXIMUM OISCHARGE FOR EACH CONDITION IS INDICATED．
4．FOR LIFTS BETWEEN THOSE NOICATED ON THS CHART USE A STRAIGHT ARITHMETIC PGOPORTION WHEN INTERAOLATING VALUES．

ЕメAんが튼

GIVEN： $\operatorname{LIFT} \mathrm{H}_{2}=3^{4}, S U B M_{i} H_{S}=12^{*}$
OESIRED OISCH， 40 GPM
FIND：PER CENT SUEMERGENCE $=\frac{12}{12^{2}+3} \times 100=80 \%$
AIP REOLO 4 SCFM
VELOCITY IN $2 \frac{1}{2}$ TAIL PIPE $=2.5 \mathrm{FPS}$
＊standaro cuble feet of air per minute at 14.7 PSIA AND $70^{\circ} \mathrm{F}$ ．

APPENDIX D
 BLOWER PERFORMANCE DATA

Customer: Summit Club-Process/Airlift INPUT DATA:

Operating mode:	Gauge pressure
Kind of package:	Com-paK Plus
Inlet temperature:	$90^{\circ} \mathrm{F}$
Inlet pressure:	14.7 psia
Inlet flow:	$\mathbf{1 6 0} \mathbf{~ i c f m}$

Prepared By: David W. Martine

	Flow medium : Humid Air
on frequency control \quad Specific heat constantk : 1.40	

Specific weight at standard conditions $: 0.0760$
 $\mathrm{lb} / \mathrm{ft}^{3}$
 Pressure difference : 6.0 psig

Discharge pressure : 20.7 psia

Technical data:

The stated control range can vary depending on manufacturer and type of the frequency converter. Standard motor with impulse peak resistance in accordance with IEC 60034-1 for operation with a IGBT frequency converter.

[^2]
Customer：Summit Club－Process／Airlift

Kind of package：Com－paK Plus on frequency control

Prepared By：David W．Martine
Operating mode：Gauge pressure

Inlet temperature：	$90^{\circ} \mathrm{F}$	Valve set	$\mathbf{1 0 . 4}$	psig
Inlet pressure：	14.7 psia	pressure：		

Input inlet flow：$\quad 160 \mathrm{icfm}$

Package：BB 69C
Blower：OMEGA 22P
Motor power： 10.0 hp
Operating voltage： $208 \mathrm{~V} / 60 \mathrm{~Hz}$

Blower speed（60Hz）：5125 rpm
Connection ANSI2
\％of maximum speed： 86
Fan voltage $208 \mathrm{~V} / 3 \mathrm{Ph} / 60 \mathrm{~Hz}$

Accessories：	yes no	NOTE：ACCESSORIES SHOWN ARE INTENDED F		USE ONLY no
Unloaded start up valve：AFM5	\square 区	Sound enclosure：	区	\square
Check plate： $21 / \mathbf{2}^{\prime \prime}$	X \square	Suction from ambient：	区	\square
		Suction from pipe：	\square	X
Instrument／sensor：		Optional for package with sound enclosure		
Temperature gauge with switch point：	X \square	Sound enclosure for outdor installation：	\square	区
Pressure gauge：	X \square			
Filter differential pressure switch：	\square 区			
oil level sensor	X			
speed monitor	X	Frequency converter（FC）：		
Auxiliary heating：	\square X	Frequency converter（FC）by customer：	X	\square
Omega P－GRD：	$\square \mathbf{X}$	Kaeser FC type OFC：	\square	区

Standard equipment with s．encl．：1x 2＂
Standard equipment without s．encl．：1x 2＂

Blowoff valve，pressure gauge，filter with maintenance indicator
Blowoff valve，filter with maintenance indicator

Comments for project：

Kaeser Com-paK Installation Data Sheet

BB52C

Package	Blower	Horsepower
BB52C	Omega 21P	$3,5,7.5,10$

Electrical Data Drive Motor											
						wye-delta starting (2-wire per phase)			direct online (1-wire per phase)		
Hp	Voltage (3ph/60Hz)	$\begin{gathered} \text { FLA +/- } \\ 10 \% \end{gathered}$	Nominal Eff	Insulation Class	Enclosure Type	Jumper Connection	Disconnect Fuse	Wire Size ($75^{\circ} \mathrm{C}$ or higher)	Jumper Connection	Disconnect Fuse	Wire Size ($75^{\circ} \mathrm{C}$ or higher)
3	208	9.1	86.5	F	TEFC	YY \rightarrow - $\Delta \Delta$	10 AMP	14 AWG	$\Delta \triangle$	10 AMP	14 AWG
	230	8.2				$Y Y$-> $\Delta \Delta$	10 AMP	14 AWG	$\Delta \Delta$	10 AMP	14 AWG
	460	4.1				$Y \rightarrow \Delta$	6 AMP	14 AWG	Δ	6 AMP	14 AWG
5	208	13.5	88.5	F	TEFC	$Y Y \rightarrow \Delta \Delta$	20 AMP	14 AWG	$\Delta \triangle$	20 AMP	12 AWG
	230	12.2				$Y Y \rightarrow \Delta \Delta$	15 AMP	14 AWG	$\Delta \Delta$	20 AMP	14 AWG
	460	6.1				$\mathrm{Y} \rightarrow \Delta$	10 AMP	14 AWG	Δ	10 AMP	14 AWG
7.5	208	18.4	89.9	F	TEFC	$Y Y \rightarrow \Delta \Delta$	25 AMP	14 AWG	$\Delta \Delta$	30 AMP	10 AWG
	230	17.6				$Y Y ~->\Delta \Delta$	25 AMP	14 AWG	$\Delta \Delta$	30 AMP	10 AWG
	460	8.8				$Y \rightarrow \Delta$	10 AMP	14 AWG	Δ	15 AMP	14 AWG
10	208	25	90.8	F	TEFC	$Y Y \rightarrow \Delta \Delta$	35 AMP	14 AWG	$\Delta \Delta$	40 AMP	8 AWG
	230	23				YY \rightarrow - $\Delta \Delta$	30 AMP	14 AWG	$\Delta \Delta$	35 AMP	8 AWG
	460	11.5				Y-> Δ	20 AMP	14 AWG	Δ	20 AMP	12 AWG

Electrical Data Drive Motor

Notes: 1. Disconnect fuses should be of dual element time delay design.
2. Breaker should be suitable for a heavy duty starting load and of inverse time delay design that complies to regulations outlined in NEC 430.52
3. Fuse and wire sizes determined in accordance to NEC $240.6,430.52$ and tables 250.122, 430.248, 430.250, 430.252.

Enclosure Fan Data

Power	Voltage $(60 \mathrm{~Hz})$	Phase $(60 \mathrm{~Hz})$	Current Draw	Jumper Connection	Quantity	Enclosure Type	Fan Type	Flow
110 W	115	1	3.42	Capacitor	1	TEFC	Radial	280 CFM
80 W	230	1	0.60	Capacitor	1	TEFC	Radial	280 CFM
80 W	208	3	0.61	Δ	1	TEFC	Radial	280 CFM
120 W	230	3	0.68	Δ	1	TEFC	Radial	280 CFM
120 W	460	3	0.37	Y	1	TEFC	Radial	280 CFM
120 W	575	3	0.28	Y	1	TEFC	Radial	280 CFM

Notes: 1.) Nominal power in Watts.
2.) Current in $A(+/-10 \%)$.
3.) Default fan selection is $230 / 460 \mathrm{~V}$. If other voltage is required, it must be noted at time of order.
4.) Fan requires separate power supply.
5.) Fan should run at the same time as main motor. If fan is able to run for 15 minutes after machine is turned off, it will improve thermal conditions inside enclosure.

BB52C

Oil System Data	
Drive End Capacity	0.15 quarts
Gear End Capacity	0.13 quarts
Oil Type (Synthetic)	SB 220

Package Connections									
Hp	Cable Entry		$\begin{gathered} \text { Length (in.) } \\ \mathrm{L} \end{gathered}$	Width (in.) W	$\begin{gathered} \text { Height (in.) } \\ H \end{gathered}$	Floor (sq ft)	Weight (lb)	Connection Size (in.)	Type
	Drive Motor	Fan Motor							
3	3×17 NPT	$2 \times \mathrm{M} 16$	31 1/2	$283 / 8$	44	$61 / 5$	382	2	Tube
5							424	2	Tube
7.5							463	2	Tube
10							474	2	Tube

Safety Devices

Discharge Temperature Gauge with Switch	Motor Winding PTC's
Range: $120-400^{\circ} \mathrm{F}\left(50-200^{\circ} \mathrm{C}\right)$ Switching point: adjustable Switching: 1 = common, 2 = NC, 4 = NO Contacts: 5A / 24VDC non-inductive Blower discharge temperature switch should be wired into control system to shut down blower operation when switch point is achieved.	 Motor winding PTC's require use of a control module. Kaeser part number 7.2710 .2 can be purchased and integrated into control scheme for this purpose.

BB52C

Ventilation of Blower Room	
Air Inlet Opening	1
Cooling Fan Capacity (forced ventilation)	2
Max Heat Rejection	3

Ventilation values based on 190 CFM @ 15 PSIG $\Delta \mathrm{P}, 20 \mathrm{Hp}$ and ambient inlet. Max. room temp. $=104^{\circ} \mathrm{F}$ and cooling air temp $=95^{\circ} \mathrm{F}$. Discharge piping length $=5 \mathrm{ft}$.

It is recommended to extract the exhaust air from the upper third of the room as this is where the heat collects. The room ventilation openings should be arranged that the current of cooling air flowing through the room passes over the blower inlet and exhaust ports and, if possible, should leave no stagnant air in the room. (A thermal short circuit must be avoided, i.e. discharged cooling air must not find its way to the cooling air inlet.)
The blower must not be positioned so near to a wall that the inflow of cooling air is obstructed.

Pipework should be insulated against heat emission.
If the blower station is located in the middle of a large hall its exhaust air can be extracted by means of a duct positioned above the exhaust port (illustrated in broken lines).

EQUALIZATION TANK \& SLUDGE HOLDING TANK BLOWER

Customer: Summit Club-EQ_Sludge Holding INPUT DATA:

Prepared By: David W. Martine

Operating mode:	Gauge pressure
Kind of package:	Com-paK Plus
Inlet temperature:	$90^{\circ} \mathrm{F}$
Inlet pressure:	14.7 psia
Inlet flow:	$\mathbf{8 0} \mathbf{~ i c f m}$

Flow medium : Humid Air
Specific heat constantк : 1.40
Specific weight at standard conditions $0.0760 \mathrm{lb} / \mathrm{ft}^{3}$
Pressure difference : 6.0 psig

Discharge pressure : 20.7 psia
Air humidity: 80 [\%]

Technical data:

The stated control range can vary depending on manufacturer and type of the frequency converter. Standard motor with impulse peak resistance in accordance with IEC 60034-1 for operation with a IGBT frequency converter.

[^3]Customer：Summit Club－EQ＿Sludge Holding
Kind of package：Com－paK Plus on frequency control

Prepared By：David W．Martine
Operating mode：Gauge pressure

Inlet temperature：	$90^{\circ} \mathrm{F}$	Valve set	$\mathbf{9 . 6}$	psig
Inlet pressure：	14.7 psia	pressure：		

Input inlet flow： 80 icfm

Package：BB 52C
Blower：OMEGA 21P
Motor power： 5.0 hp
Operating voltage： $208 \mathrm{~V} / 60 \mathrm{~Hz}$

Blower speed（60Hz）：3490 rpm
Connection ANSI2＂
\％of maximum speed： 56
Fan voltage208V／3Ph／60Hz

Accessories：	yes no	NOTE：ACCESSORIES SHOWN ARE INTENDED F		USE ONLY no
Unloaded start up valve：AFM4	\square 区	Sound enclosure：	区	\square
Check plate：G2＂	X \square	Suction from ambient：	区	\square
		Suction from pipe：	\square	X
Instrument／sensor：		Optional for package with sound enclosure		
Temperature gauge with switch point：	X \square	Sound enclosure for outdor installation：	\square	区
Pressure gauge：	X \square			
Filter differential pressure switch：	\square 区			
oil level sensor	X			
speed monitor	\square X	Frequency converter（FC）：		
Auxiliary heating：		Frequency converter（FC）by customer：	X	\square
Omega P－GRD：	$\square \mathbf{X}$	Kaeser FC type OFC：	\square	区

Standard equipment with s．encl．： $1 x 1$ 1／4＂
Standard equipment without s．encl．：1x 1 1／4＂

Blowoff valve，pressure gauge，filter with maintenance indicator
Blowoff valve，filter with maintenance indicator

Comments for project：

Kaeser Com-paK Installation Data Sheet

BB52C

Package	Blower	Horsepower
BB52C	Omega 21P	$3,5,7.5,10$

Electrical Data Drive Motor											
						wye-delta starting (2-wire per phase)			direct online (1-wire per phase)		
Hp	Voltage (3ph/60Hz)	$\begin{gathered} \text { FLA +/- } \\ 10 \% \end{gathered}$	Nominal Eff	Insulation Class	Enclosure Type	Jumper Connection	Disconnect Fuse	Wire Size ($75^{\circ} \mathrm{C}$ or higher)	Jumper Connection	Disconnect Fuse	Wire Size ($75^{\circ} \mathrm{C}$ or higher)
3	208	9.1	86.5	F	TEFC	YY \rightarrow - $\Delta \Delta$	10 AMP	14 AWG	$\Delta \triangle$	10 AMP	14 AWG
	230	8.2				$Y Y$-> $\Delta \Delta$	10 AMP	14 AWG	$\Delta \Delta$	10 AMP	14 AWG
	460	4.1				$Y \rightarrow \Delta$	6 AMP	14 AWG	Δ	6 AMP	14 AWG
5	208	13.5	88.5	F	TEFC	$Y Y \rightarrow \Delta \Delta$	20 AMP	14 AWG	$\Delta \triangle$	20 AMP	12 AWG
	230	12.2				$Y Y \rightarrow \Delta \Delta$	15 AMP	14 AWG	$\Delta \Delta$	20 AMP	14 AWG
	460	6.1				$\mathrm{Y} \rightarrow \Delta$	10 AMP	14 AWG	Δ	10 AMP	14 AWG
7.5	208	18.4	89.9	F	TEFC	$Y Y \rightarrow \Delta \Delta$	25 AMP	14 AWG	$\Delta \Delta$	30 AMP	10 AWG
	230	17.6				$Y Y ~->\Delta \Delta$	25 AMP	14 AWG	$\Delta \Delta$	30 AMP	10 AWG
	460	8.8				$Y \rightarrow \Delta$	10 AMP	14 AWG	Δ	15 AMP	14 AWG
10	208	25	90.8	F	TEFC	$Y Y \rightarrow \Delta \Delta$	35 AMP	14 AWG	$\Delta \Delta$	40 AMP	8 AWG
	230	23				YY \rightarrow - $\Delta \Delta$	30 AMP	14 AWG	$\Delta \Delta$	35 AMP	8 AWG
	460	11.5				Y-> Δ	20 AMP	14 AWG	Δ	20 AMP	12 AWG

Electrical Data Drive Motor

Notes: 1. Disconnect fuses should be of dual element time delay design.
2. Breaker should be suitable for a heavy duty starting load and of inverse time delay design that complies to regulations outlined in NEC 430.52
3. Fuse and wire sizes determined in accordance to NEC $240.6,430.52$ and tables 250.122, 430.248, 430.250, 430.252.

Enclosure Fan Data

Power	Voltage $(60 \mathrm{~Hz})$	Phase $(60 \mathrm{~Hz})$	Current Draw	Jumper Connection	Quantity	Enclosure Type	Fan Type	Flow
110 W	115	1	3.42	Capacitor	1	TEFC	Radial	280 CFM
80 W	230	1	0.60	Capacitor	1	TEFC	Radial	280 CFM
80 W	208	3	0.61	Δ	1	TEFC	Radial	280 CFM
120 W	230	3	0.68	Δ	1	TEFC	Radial	280 CFM
120 W	460	3	0.37	Y	1	TEFC	Radial	280 CFM
120 W	575	3	0.28	Y	1	TEFC	Radial	280 CFM

Notes: 1.) Nominal power in Watts.
2.) Current in $A(+/-10 \%)$.
3.) Default fan selection is $230 / 460 \mathrm{~V}$. If other voltage is required, it must be noted at time of order.
4.) Fan requires separate power supply.
5.) Fan should run at the same time as main motor. If fan is able to run for 15 minutes after machine is turned off, it will improve thermal conditions inside enclosure.

BB52C

Oil System Data	
Drive End Capacity	0.15 quarts
Gear End Capacity	0.13 quarts
Oil Type (Synthetic)	SB 220

Package Connections									
Hp	Cable Entry		$\begin{gathered} \text { Length (in.) } \\ \mathrm{L} \end{gathered}$	Width (in.) W	$\begin{gathered} \text { Height (in.) } \\ H \end{gathered}$	Floor (sq ft)	Weight (lb)	Connection Size (in.)	Type
	Drive Motor	Fan Motor							
3	3×17 NPT	$2 \times \mathrm{M} 16$	31 1/2	$283 / 8$	44	$61 / 5$	382	2	Tube
5							424	2	Tube
7.5							463	2	Tube
10							474	2	Tube

Safety Devices

Discharge Temperature Gauge with Switch	Motor Winding PTC's
Range: $120-400^{\circ} \mathrm{F}\left(50-200^{\circ} \mathrm{C}\right)$ Switching point: adjustable Switching: 1 = common, 2 = NC, 4 = NO Contacts: 5A / 24VDC non-inductive Blower discharge temperature switch should be wired into control system to shut down blower operation when switch point is achieved.	 Motor winding PTC's require use of a control module. Kaeser part number 7.2710 .2 can be purchased and integrated into control scheme for this purpose.

BB52C

Ventilation of Blower Room	
Air Inlet Opening	1
Cooling Fan Capacity (forced ventilation)	2
Max Heat Rejection	3

Ventilation values based on 190 CFM @ 15 PSIG $\Delta \mathrm{P}, 20 \mathrm{Hp}$ and ambient inlet. Max. room temp. $=104^{\circ} \mathrm{F}$ and cooling air temp $=95^{\circ} \mathrm{F}$. Discharge piping length $=5 \mathrm{ft}$.

It is recommended to extract the exhaust air from the upper third of the room as this is where the heat collects. The room ventilation openings should be arranged that the current of cooling air flowing through the room passes over the blower inlet and exhaust ports and, if possible, should leave no stagnant air in the room. (A thermal short circuit must be avoided, i.e. discharged cooling air must not find its way to the cooling air inlet.)
The blower must not be positioned so near to a wall that the inflow of cooling air is obstructed.

Pipework should be insulated against heat emission.
If the blower station is located in the middle of a large hall its exhaust air can be extracted by means of a duct positioned above the exhaust port (illustrated in broken lines).

Customer: Summit Club-Tertiary Filter Prepared By: David W. Martine

INPUT DATA:

Operating mode: Gauge pressure Kind of package: Com-paK Plus			Flow medium: Humid Air	
			Specific heat constant	1.40
Inlet temperature :	90	${ }^{\circ} \mathrm{F}$	Specific weight at standard conditio	$0.076 \mathrm{lb} / \mathrm{ft}^{3}$
Inlet pressure :	14.7		Pressure differe	7.0 psig
Air humidity:		[\%]	Discharge press	21.7 psi

| Technical data: | | NOTE: ACCESSORIES SHOWN ARE INTENDED FOR AIR USE ONLY. |
| :--- | :--- | :--- | :--- | :--- |

[^4]Customer: Summit Club-Tertiary Filter
Kind of package:Com-paK Plus
Inlet temperature : 90
Inlet pressure: 14.7 psi
Input inlet flow: 160 icfm

Package: BB 69C

Blower: OMEGA 22P
Motor power: 10.0 hp
Operating voltage: $208 \mathrm{~V} / 60 \mathrm{~Hz}$

Prepared By: David W. Martine
Operating mode: Gauge pressure

Blower speed: 5125 rpm
Connection ANSI: 2 1/2"
\% of maximum speed: 85
Fan voltage: $208 \mathrm{~V} / 3 \mathrm{Ph} / 60 \mathrm{~Hz}$

Accessories:

Unloaded start up valve: AFM5
Check plate: $21 / 2^{\prime \prime}$
Instruments/ sensor:
Temperature gauge with switch point:
Pressure gauge:
Filter differential pressure switch:
oil level sensor:
speed monitor:

Standard equipment with s. encl.: 1x 2"
Standard equipment without s. encl.: 1x 2"

NOTE: ACCESSORIES SHOWN ARE INTENDED FOR AIR USE ONLY.

yes no		yes no		
\square	\mathbf{X}	Sound enclosure:	\mathbf{X}	\square
\mathbf{X}	\square	Inlet silencer-suction from ambient:	\mathbf{X}	\square
\mathbf{X}	\square	Inlet silencer-suction from pipe:	\square	\mathbf{X}
\mathbf{X}	\square	Optional for package with sound enclosure		
\square	\mathbf{X}	Sound enclosure for outdor installation:	\square	\mathbf{X}
\square	\mathbf{X}			
\square	\mathbf{X}			
		Auxiliary heating:	\square	\mathbf{X}
		Omega P-GRD:	\square	\mathbf{X}

Blowoff valve, pressure gauge, filter with maintenance indicator

Blowoff valve, filter with maintenance indicator

Comments for project:

Kaeser Com-paK Installation Data Sheet

BB52C

Package	Blower	Horsepower
BB52C	Omega 21P	$3,5,7.5,10$

Electrical Data Drive Motor											
						wye-delta starting (2-wire per phase)			direct online (1-wire per phase)		
Hp	Voltage (3ph/60Hz)	$\begin{gathered} \text { FLA +/- } \\ 10 \% \end{gathered}$	Nominal Eff	Insulation Class	Enclosure Type	Jumper Connection	Disconnect Fuse	Wire Size ($75^{\circ} \mathrm{C}$ or higher)	Jumper Connection	Disconnect Fuse	Wire Size ($75^{\circ} \mathrm{C}$ or higher)
3	208	9.1	86.5	F	TEFC	YY \rightarrow - $\Delta \Delta$	10 AMP	14 AWG	$\Delta \triangle$	10 AMP	14 AWG
	230	8.2				$Y Y$-> $\Delta \Delta$	10 AMP	14 AWG	$\Delta \Delta$	10 AMP	14 AWG
	460	4.1				$Y \rightarrow \Delta$	6 AMP	14 AWG	Δ	6 AMP	14 AWG
5	208	13.5	88.5	F	TEFC	$Y Y \rightarrow \Delta \Delta$	20 AMP	14 AWG	$\Delta \triangle$	20 AMP	12 AWG
	230	12.2				$Y Y \rightarrow \Delta \Delta$	15 AMP	14 AWG	$\Delta \Delta$	20 AMP	14 AWG
	460	6.1				$\mathrm{Y} \rightarrow \Delta$	10 AMP	14 AWG	Δ	10 AMP	14 AWG
7.5	208	18.4	89.9	F	TEFC	$Y Y \rightarrow \Delta \Delta$	25 AMP	14 AWG	$\Delta \Delta$	30 AMP	10 AWG
	230	17.6				$Y Y ~->\Delta \Delta$	25 AMP	14 AWG	$\Delta \Delta$	30 AMP	10 AWG
	460	8.8				$Y \rightarrow \Delta$	10 AMP	14 AWG	Δ	15 AMP	14 AWG
10	208	25	90.8	F	TEFC	$Y Y \rightarrow \Delta \Delta$	35 AMP	14 AWG	$\Delta \Delta$	40 AMP	8 AWG
	230	23				YY \rightarrow - $\Delta \Delta$	30 AMP	14 AWG	$\Delta \Delta$	35 AMP	8 AWG
	460	11.5				Y-> Δ	20 AMP	14 AWG	Δ	20 AMP	12 AWG

Electrical Data Drive Motor

Notes: 1. Disconnect fuses should be of dual element time delay design.
2. Breaker should be suitable for a heavy duty starting load and of inverse time delay design that complies to regulations outlined in NEC 430.52
3. Fuse and wire sizes determined in accordance to NEC $240.6,430.52$ and tables 250.122, 430.248, 430.250, 430.252.

Enclosure Fan Data

Power	Voltage $(60 \mathrm{~Hz})$	Phase $(60 \mathrm{~Hz})$	Current Draw	Jumper Connection	Quantity	Enclosure Type	Fan Type	Flow
110 W	115	1	3.42	Capacitor	1	TEFC	Radial	280 CFM
80 W	230	1	0.60	Capacitor	1	TEFC	Radial	280 CFM
80 W	208	3	0.61	Δ	1	TEFC	Radial	280 CFM
120 W	230	3	0.68	Δ	1	TEFC	Radial	280 CFM
120 W	460	3	0.37	Y	1	TEFC	Radial	280 CFM
120 W	575	3	0.28	Y	1	TEFC	Radial	280 CFM

Notes: 1.) Nominal power in Watts.
2.) Current in $A(+/-10 \%)$.
3.) Default fan selection is $230 / 460 \mathrm{~V}$. If other voltage is required, it must be noted at time of order.
4.) Fan requires separate power supply.
5.) Fan should run at the same time as main motor. If fan is able to run for 15 minutes after machine is turned off, it will improve thermal conditions inside enclosure.

BB52C

Oil System Data	
Drive End Capacity	0.15 quarts
Gear End Capacity	0.13 quarts
Oil Type (Synthetic)	SB 220

Package Connections									
Hp	Cable Entry		$\begin{gathered} \text { Length (in.) } \\ \mathrm{L} \end{gathered}$	Width (in.) W	$\begin{gathered} \text { Height (in.) } \\ H \end{gathered}$	Floor (sq ft)	Weight (lb)	Connection Size (in.)	Type
	Drive Motor	Fan Motor							
3	3×17 NPT	$2 \times \mathrm{M} 16$	31 1/2	$283 / 8$	44	$61 / 5$	382	2	Tube
5							424	2	Tube
7.5							463	2	Tube
10							474	2	Tube

Safety Devices

Discharge Temperature Gauge with Switch	Motor Winding PTC's
Range: $120-400^{\circ} \mathrm{F}\left(50-200^{\circ} \mathrm{C}\right)$ Switching point: adjustable Switching: 1 = common, 2 = NC, 4 = NO Contacts: 5A / 24VDC non-inductive Blower discharge temperature switch should be wired into control system to shut down blower operation when switch point is achieved.	 Motor winding PTC's require use of a control module. Kaeser part number 7.2710 .2 can be purchased and integrated into control scheme for this purpose.

BB52C

Ventilation of Blower Room	
Air Inlet Opening	1
Cooling Fan Capacity (forced ventilation)	2
Max Heat Rejection	3

Ventilation values based on 190 CFM @ 15 PSIG $\Delta \mathrm{P}, 20 \mathrm{Hp}$ and ambient inlet. Max. room temp. $=104^{\circ} \mathrm{F}$ and cooling air temp $=95^{\circ} \mathrm{F}$. Discharge piping length $=5 \mathrm{ft}$.

It is recommended to extract the exhaust air from the upper third of the room as this is where the heat collects. The room ventilation openings should be arranged that the current of cooling air flowing through the room passes over the blower inlet and exhaust ports and, if possible, should leave no stagnant air in the room. (A thermal short circuit must be avoided, i.e. discharged cooling air must not find its way to the cooling air inlet.)
The blower must not be positioned so near to a wall that the inflow of cooling air is obstructed.

Pipework should be insulated against heat emission.
If the blower station is located in the middle of a large hall its exhaust air can be extracted by means of a duct positioned above the exhaust port (illustrated in broken lines).

APPENDIX E

DISINFECTION EQUIPMENT CUTS

Non-contact UV disinfection systems

Dry • Simple • Intelligent • Energy Efficient

The right choice

UV is the most cost effective and environmental friendly disinfection solution for wastewater.

About UV Disinfection

Ultraviolet light irradiation is a proven disinfection process using short wave length 254 nm Ultraviolet (UV) energy to inactivate harmful microorganisms. UV radiation disrupts the DNA of pathogenic organisms such as bacteria, viruses and molas, leaving mes of effluent from low-quality combined sewer overflow (CSO) types of effluent from low-quality combined sewer overfiow (CSO) hish-quality tertiary effluent since early 1900 's.

UV - The preferred disinfection method in municipal wastewater
To comply federal Clean Water Act, and other regulations for indicator organisms, municipal wastewater must be disinfected before discharging or reusing. There are multiple options for chemical disinfection, but only one non-chemical disinfection technology. UV is the preferred disinfection method for municipal wastewater discharge or water reuse applications various chemical disinfection technologies. Currently more than 20% of wastewater treatment plants in the United States use UV as their preferred disinfection technology and this percentage has been increasing year over year.

$$
80 \cdot 8 / f^{20}
$$

${ }^{\circ}$

Enaqua - a history of innovation

1985	1990	1992	1993	1997	1999	2003	2007	2009	2012	2013	2015	2017
Enaqua founded									Acquisition by Grundfos			
First Non-Contact UV System Water Technology Consulting	Patented Non-Contact Opaque Fluid UV System	Chemical Recovery RO Systems Brackish Water RO Systems	Municipal UV Waste-water System	Distribution of Membrane Products	Large Municipal UV Wastewater Systems	Seawater De-salination RO Systems	UV Web-based Control System	UV / UF / RO Municipal Waste-water Systems	Ensure Dosing System(EDS)* SMART Lamps*	\$11 Million UV/ UF/ RO Chemical Recovery System	Validation test NWRI Title 22 and T1	Approval for CA Title 22 recycled water
Sersaus						-			Encelis			

Advantages \& benefits

	Ultraviolet light	Sodium hypochlorite	Chlorine gas
Disinfection effectiveness	High	High*	High*
Disinfection by products	No	Yes	Yes
Safety risks	Low	High	High
De-chlorination required	No	Yes	Yes
Contact channel	Small	Large	Large
pH dependency, Corrosion	No	Yes	Yes
O\&M Cost	Low	High	Medium
Capital Investment	Medium	Low	High
*Crypotosoridium and Girardia are resistantagainst chlorination			

Third party validated technology, approved for

 CA Title 22 Recycled Water.Enaqua is the first non-contact UV system supplier to have applied and received Third Party Validation, as a result of continuous efforts improving the Non-Contact UV disinfection technology.
The validation testing and reports were conducted in 2015 by Carollo Engineers in accordance with the following protocols:
UV - Disinfection Guidelines for Drinking Water and Water 1. UV - Disinfection Guidelines for Drinking Water and Water
Reuse (National Water Research Institute [NWRI], August 2012 . 53% to 80.0% UVT range validated* ${ }^{*}$
2. Uniform Protocol for Wastewater UV Validation Applications (International Ultraviolet Association [IUVA], 2011) - 36.0\% to 81.0% UVT validated range ${ }^{*}$

- MS2 Bacteriophage
- T1 Coliphage

[^5]
UV made simple - features at a glance

All of Enaqua's Non-Contact UV disinfection systems are built
out of standard modules with high customization flexibility. The UV reactors are offered for both In-pipe or In-Channel configurations with variable plug \& play inlets and outlets (page 10).

The systems are very easy to install as they are prefabricated and self-contained.

2. Ensure Dosing System (EDS) Intelligent monitoring, control and FAIL SAF ensures compliance at all times (page 8)
3) Electrical panel

Simple, compact and operator friendly HM
4) Flow \& Level pacing

Optimize energy consumption \& lif
of consumables
5. Heat Exchange System
5. Heat Exchange Sys temperature for optimal UVC output using Effluent, plant W3 water, Putable
or Closed Loop system

6) UV Intensity Monito UV Sensor placed outside of AFP" tubes

- Dry without fouling

7 Individually fused and switched lamp rack No cranes required, simple maintenance
(page 7) (page 7)

Single lamp ballast Non-prorated Warranty up
to 24 on/off cycles per day

Always dry - AFP ${ }^{\text {TM }}$
 Non-Contact UV Technology

Enaqua - The Pioneer in cost effective Non-Contact UV design

Simple - maintenance made clean, fast and easy

Enaqua's Non-Contact UV technology system maintenance is simple:

Enaqua's innovative non-contact UV technology means no more repairing and replacing submerged components. Effluent flows through Enaqua's AFP tubes leaving the UV lamps, electronics and other components- accessible, and easy to maintain in the dry body of the UV reactor.

AFP ${ }^{\text {TM }}$ tubes - The secret behind the performance AFP stands for "Activated Fluoropolymer" which Enaqua specifically developed for Non-Contact UV applications:

- High transmissivity of UVC
- AFP Tubes have no micro-structure-hence very resistant to scaling and fouling
- Durable, flexible, and fracture resistant material
- Long term UVC stability and Chemical resistance
- Multiple plants with over 20+ years of continuous operation

Technologies in comparison

ENAQUA AFPTM
Non-Contact Technology

Low cost high output lamps No quartz sleeves
ouling and Scaling Resistant AFP tube Uorbuent flow provides self-cleaning of AFP'm tube No AFP tube replacement needed under normal operating conditions simple pipe hydraulics makes UV disinfection easy to predict Level Control Devices typically not required

Quartz Sleeve UV
traditional Contact Technolo

High cost amalgam lamps
Fragile quartz sleeves with risk of mercury and glass contamintion Fragile quartz sleeves with risk of mercury and glass contamination Fouling-prone quartz sleeves
Quartz sleeves need to be replaced over time Quartz sleeves need to be replaced over time Channel hydraulics makes UV disisfection

No more:

- High cost amalgam lamps
- Dirty and fouled quartz sleeves
- Problems with quartz cleaning devices
- Need to interrupt or remove any hydraulic seals

Heavy duty cranes required for system maintenance

- Minimize Civil and Structural construction costs

Time consuming lamp replacements
Algae growth on the lamp rack

- Quartz sleeves to break and replace*
- SCADA programming

No AFpm tube replacement under no1 minute - Enaqua's Non-Contact UV
15 minutes - Traditional Contact UV

Intelligence - you don't want to miss...
Where Energy Efficiency matters

The Ensure Dosing System (EDS) is the most comprehensive monitoring and control system in the industry.

SCADA built in - Full system control and performance monitoring wherever and whenever you want:

No special hardware and software requirements

- Simple connection via web browser
- Multiple Levels of Access
- Remote monitoring and control via Internet
- Stand-alone Wifi control e.g. with iPad ${ }^{\text {® }}$
- SCADA integration with ModBUS TCP/IP
- Remote troubleshooting
- Email and text notification

Fail Safe - Intuitive protection

Enaqua's FAIL SAFE intelligence ensures compliance at all times. In case a lamp in one stage fails, the system will command selected lamps in a redundant stage to power-on to compensate for any UV dosage reduction (see application example).

SMART Lamps - Advanced lamp control

Enaqua's Low Pressure High Output (LPHO) lamps are equipped with a unique Smart Lamp Technology, a microchip integrated with the lamp connector identifies each UV lamp with a unique ID, monitors and logs lamp status, run time, lamp cycles, etc.

Flow \& Level Pacing - Best energy efficiency

Enaqua's Flow \& Level Pacing system automaticall turns on only lamps which are required. This improves lamp and ballast life and reduces power consumption compared to systems that use "dimming".

Annual Energy Cost Comparison

Features and functions

For specific selection and sizing please contact Enaqua

[^6]
3

M Series UV reactors

- compact uv reactors ideal for small treatment plants for surface discharge, reuse, and industrial applications.

M3 Series
low rates up to $80 \mathrm{gpm}\left(18.2 \mathrm{~m}^{3} / \mathrm{h}\right)$

M4 Series
N4 Series
Flow rates up to $120 \mathrm{gpm}\left(27.25 \mathrm{~m}^{3} / \mathrm{h}\right)$

M5 Series Flow rates up to $360 \mathrm{gpm}\left(81.8 \mathrm{~m}^{3} / \mathrm{h}\right)$

C1, C2, C3 \& D1, D2, D3 UV series reactors

- medium size uv reactors for surface discharge, reuse, and industrial applications.

\& D1 Series
In pipe UV reactors, single or double banks- for Flow rates up to 2.0 MGD ($315.4 \mathrm{~m}^{3} / \mathrm{h}$).

C2 \& D2 Series
In pipe UV reactors, single or double banks- for Flow rates up to 4.2 MGD ($662.5 \mathrm{~m}^{3} / \mathrm{h}$).

C3 \& D3 Serie
In pipe UV reactors, single or double banks- for Flow rates up to 6.0 MGD ($946.4 \mathrm{~m}^{3} / \mathrm{h}$).

4-11 Series UV reactors
large uv reactors offered "in-pipe" or "in-channel" configurations.

Series "In pipe" or "In Channel" Multi Bank UV reactors for Flow rates up to $24.0+$ MGD . Applications- UV up to $24.0+$ MGD. Applications-
disinfection for surface discharge, Reuse, industrial appli-cation, Etc.

C Series "In Pipe " Reactor

C Series "In Channel" Reactor

D Series "In pipe" or "In Channel" D Series "In pipe" or "In Channel"
Multi Bank UV reactors for Flow rates Multi Bank UV reactors for Flow rates
up to 36 + MGD. Applications- UV disinfec-tion for surface discharge, cso, Industrial Applications, Etc.

D Series "In Pipe " Reactor

D Series "In Channel" Reactor

E Series "In Channel"
E Series "In Channel"
Multi Bank UV reactors for Flow rates Mutt Bank UV reactors for Flow rates
up to $100+$ MGD. Applications- UV disinfection for surface discharge cso, Etc.

Enaqua - UV made simple Non-contact UV disinfection

- The Engineer's Choice for State-of-the-Art Technology
- The City Manager's Choice for Low Capital Cost
- The Superintendent's Choice for Low O\&M Cost
- The Operator's Choice for Simple Operation
- The Contractor's Choice for Simple Installation
- The Finance Director's Choice for Lowest 20 Years Capital and Operations Cost Potential

ENAQUA

1350 Specialty Drive, Ste. D/F
Vista, CA 92081 USA
Tel: +1.760.599.2644
Fax: +1.760.599.2642
www.enaqua.com

APPENDIX F

SAMPLING LOCATIONS

PROCESS CONTROL MONITORING LOCATIONS

Permittee shall take samples and measurements to meet the monitoring requirements at the locations indicated below.

PROCESS CONTROL MONITORING LOCATION DESCRIPTION
Influent (INF): Sample taken in influent pump station
Effluent (EFF): Sample taken in effluent sampling manhole

DRAWING No. 1
STP SITE PLAN

DRAWING No. 2
HYDRAULIC PROFILE

DRAWING No. 3
MANUFACTURER'S STP LAYOUT

Consulting Geotechnical and Environmental Engineers

61 Main Street, Sayreville, New Jersey 08872
Tel. (732) 432-5757
Fax. (732) 432-5717

Principal:
Robert B. Simpson, P.E.
Associates:
Robert H. Barnes, P.E.
Meredith R. Anke, P.E.
Kurt W. Anke
Eric J. Shaw

Brynwood Partners, LLC
c/o Corigin Holdings
505 Fifth Avenue, $22^{\text {nd }}$ Floor
New York, NY 10017

13 February 2013
Revised 16 October 2013

Attn: Ms. Megan Maciejowski
Re: Report on Subsurface Soil and Foundation Investigation
Brynwood Club Development
Bedford Road
Town of North Castle, NY (12-175)
Dear Ms. Maciejowski:
In accordance with our proposals dated 20 November 2012 and 9 September 2013 and your subsequent authorization, we have completed a Subsurface Soil and Foundation Investigation for the referenced site. The purpose of this study is to preliminarily determine the nature and engineering properties of the subsurface soil and bedrock as well as the groundwater conditions for the planned development, to recommend a practical foundation scheme, to determine the allowable bearing capacity of the site soils, and to determine the subsurface soil and groundwater conditions and soil permeability in the new stormwater management areas.

We understand that the planned construction will consist of 21 new structures, roadways, parking areas, retaining walls, tennis courts, underground utilities, and a stormwater management system. To guide us in our study, you have provided us with a site plan that indicates the existing site conditions and the location of the planned new development.

Our scope of work for this project included the following:

1. Reviewed the proposed layout, the existing site conditions, the expected soil conditions, and planned this study.
2. Retained General Borings, Inc. to advance 11 test borings at the subject site.
3. Retained Traficante Contracting Inc. to excavate 18 test pits at the subject site.
4. Inspected ten (10) supplemental test pits that were excavated at the site by Brynwood Club personnel.
5. Laid out the boring and test pit locations in the field, provided full time inspection of the explorations, obtained soil samples, and prepared detailed logs and a Boring and Test Pit Location Plan.
6. Performed three (3) field percolation tests and one (1) borehole permeability test.
7. Performed soil identification tests on selected soil samples in our laboratory.
8. Analyzed the field and laboratory test data and prepared this report containing the results of this study.

SITE DESCRIPTION

The project site is located on the Brynwood Club property on Bedford Road in North Castle, Westchester County, New York. The subject property is currently occupied by a golf club with a clubhouse building, tennis courts, and a few smaller out-structures. The proposed development area is also occupied by an asphalt paved parking lot and driveways as well as grass lawn areas and wooded areas. There are numerous existing underground utilities located throughout the property.

Within the proposed development area, the existing site grades vary from approximately elevation +610.0 at the southwest corner of the subject site and the westernmost portion of the site, to elevation +640.0 on the east side of the existing clubhouse building, to elevation +674.5 in the existing tennis court area in the northeastern portion of the property.

SUBSURFACE CONDITIONS

To determine the subsurface soil, bedrock, and groundwater conditions, we advanced 11 test borings and 28 test pits at the site. The borings and test pits were performed at the locations shown on the enclosed Boring and Test Pit Location Plan. Detailed logs have been prepared and are included in this report. Our field engineer visually identified all soil samples and selected soil samples were tested in our laboratory. The results of these tests are also included in this report.

Soil

The soil descriptions shown on the boring and test pit logs are based on the Burmister Classification System. In this system, the soil is divided into three components: Sand (S), Silt (\$) and Gravel (G). The major component is indicated in all capital letters, the
lesser in lower case letters. The following modifiers indicate the quantity of each lesser component:

$\frac{\text { Modifier }}{\text { trace }(\mathrm{t})}$	$\frac{\text { Quantity }}{0-10 \%}$
little (l)	$10 \%-20 \%$
some (s)	$20 \%-35 \%$
and (a)	$35 \%-50 \%$

The subsurface soil conditions observed in the borings and test pits can be summarized as follows:

Stratum 1 The surface layer at most of the boring and test pit locations consists of

Topsoil
Stratum 2 Beneath the topsoil and at the surface in three (3) of the borings (B-6, B-8, Existing Fill

Stratum 3

Sandy Silt or
Silty Sand brown topsoil that typically ranges from about 0 ' 3 '" to $1^{\prime} 6^{\prime \prime}$ in thickness. and B-9) and ten (10) of the test pits (TP-2, TP-9, TP-10, TP-12, TP-14, TP-16, TP-19, TP-21, TP-26, and TP-28) is existing fill that consists of loose to medium dense brown coarse to fine SAND, little (to and) Silt, trace (to some) coarse to fine Gravel. Cobbles, boulders, topsoil, roots, and debris were also present within the fill at some of the test locations. The existing fill was encountered to depths ranging from 1 ' 0 '" to more than $9^{\prime} 0^{\prime \prime}$ beneath the existing ground surface. Test pits TP-9 and TP-28 were terminated in the fill at final depths of $6^{\prime} 9^{\prime \prime}$ and $9^{\prime} 0^{\prime \prime}$ beneath the ground surface, respectively.

Underlying the topsoil and existing fill is virgin soil that is comprised of medium dense to dense brown, light brown, or gray brown SILT some (to and), coarse to fine Sand, trace (to little) coarse to fine Gravel or coarse to fine SAND, little (to and) Silt, trace (to and) coarse to fine Gravel, with occasional cobbles and boulders. The Sandy Silt or Silty Sand stratum continued to depths ranging from $2^{\prime} 0$ " to $12^{\prime} 0$ " below the existing ground surface. Boring B-8 and test pits TP-8, TP-10, TP-12, TP-19, TP-20, TP22 , and TP-26 were terminated in this stratum at final depths ranging from $5^{\prime} 0$ " to $12^{\prime} 0^{\prime \prime}$ beneath the ground surface.

Stratum 4 Below the Sandy Silt or Silty Sand at several test locations is completely Sand or Sandy Gravel
weathered Gneiss bedrock that generally consists of dense to very dense brown or gray brown coarse to fine SAND, little (to some) Silt, trace (to some) coarse to fine Gravel or coarse to fine GRAVEL and, coarse to fine Sand, trace Silt. Where encountered in the borings and test pits, the completely weathered bedrock was present at depths ranging from 2 ' 0 " to $7^{\prime} 0^{\prime \prime}$ beneath the ground surface and continued to depths ranging from $4^{\prime} 7$ '" to $15^{\prime} 2^{\prime \prime}$ below the existing ground surface.

> Stratum 5
> Gneiss
> Bedrock
> Gneiss bedrock was encountered at 27 of the 39 test locations. Where encountered in the borings and test pits, gneiss bedrock was observed at depths ranging from $1^{\prime} 8$ " to $15{ }^{\prime} 2^{\prime \prime}$ beneath the existing ground surface. In general, the quality of the bedrock will improve with depth.

> At boring B-10, the bedrock was cored between the depths of $2^{\prime} 0$ "' and 7'0'. The core recovery was 86% and the Rock Quality Designation (RQD) of the recovered core was 53%. This indicates that the quality of the upper five (5) feet of the Gneiss bedrock is fair. The Gneiss bedrock is moderately weathered and in a blocky and seamy condition.

Groundwater

Observations for groundwater were made during sampling and upon completion of the drilling operations at each boring location. In auger drilling operations, water is not introduced into the boreholes, and the groundwater position can often be determined by observing water flowing into or out of the boreholes. Furthermore, visual observation of the soil samples retrieved during the auger drilling and in the test pits can often be used in evaluating the groundwater conditions.

Groundwater was encountered in test pit TP-8 at a depth of 4 ' 1 " (+609.9), in test pit TP-13 at a depth of $4 \prime 10^{\prime \prime}(+631.2)$, in boring B- 8 at a depth of $3^{\prime} 3^{\prime \prime}(+608.3)$, in test pit TP22 at a depth of $4^{\prime} 6^{\prime \prime}(+470.5)$, and in test pit TP-28 at a depth of $8^{\prime} 0^{\prime \prime}(+491.0)$ beneath the ground surface. Groundwater was not encountered in any of the other borings or test pits that were performed at the subject site during this investigation.

Variations in the location of the long-term water table may occur as a result of changes in precipitation, evaporation, surface water runoff, and other factors not immediately apparent at the time of this exploration. Based on the site conditions, trapped groundwater may be encountered in the silty site soils and/or along the soil/rock interface during wet periods. Proper groundwater control measures will be required in the event that trapped water is encountered in the site excavations.

Bedrock

Bedrock was encountered in 27 of the 39 explorations that were performed at the site during this investigation. Completely weathered bedrock was encountered at ten (10) test locations at depths ranging from $2^{\prime} 0^{\prime \prime}$ to $7^{\prime} 0$ " below the existing ground surface. Harder bedrock was encountered in the remaining locations and below the completely weathered rock at depths ranging from $1^{\prime} 8^{\prime \prime}$ to 15 ' 2 '" beneath the ground surface. These depths correspond to bedrock elevations ranging between approximately elevation +471.0 and elevation +669.8 .

Based on the boring and test pit data and the site plans provided to this office, bedrock was encountered above the planned finished floor elevation in portions of the site. The observed depth to bedrock at each boring and test pit location is summarized in Table 1 in the following section of this report.

The bedrock encountered at the site consists of weathered Gneiss. Based on our experience, the in-situ bedrock will range from highly weathered, fractured rock to massive, intact rock. Penetration into the bedrock with excavation equipment will depend of the degree of weathering and fracturing in the rock. We anticipate that the "rippability" of the bedrock will be variable and very limited. Based on our observations, harder rock will be encountered and blasting and/or the use of hydraulic hammers will be required to excavate the harder, intact bedrock. Rock removal is discussed further in a separate section of this report.

EVALUATION

At the time of this report, the proposed layout, the proposed finished floor elevations, and the site grading were preliminary. Therefore, the following evaluation is preliminary in nature and has been generalized for the expected development. The recommendations below are intended for planning purposes only and are not intended for final design and construction. Additional subsurface investigation will be required for the proposed buildings and retaining walls. Preliminarily, we estimate that an additional 12 to 15 explorations will be required for this project. Once the site plans have been further developed, a copy shall be forwarded to our office so that we can review it along with the recommendations in this report. At that time, we will provide specific recommendations for additional subsurface investigation. After the supplemental investigation has been completed, additional geotechnical recommendations will be provided for the project site. As a result, the recommendations within this report are subject to change.

Based on the preliminary site plans, we understand that the planned construction will consist of 21 new structures that will include seven (7) golf residences, seven (7) club villas, five (5) golf cottages, one (1) fairway residences building, and one (1) clubhouse building. The proposed construction will also include new asphalt paved roadways and parking areas, retaining walls, tennis courts, underground utilities, and a stormwater management system.

The grading plan provided to this office indicates that the proposed finished floor elevations vary across the site. In addition, the fairway residences, golf cottages, and golf residences will have basements. Based on the existing and proposed grades, cuts ranging up to approximately $14^{\prime} 0^{\prime \prime}$ and fills ranging up to approximately $10^{\prime} 0$ " are expected to achieve the proposed floor slab subgrade elevations. In the proposed pavement areas, cuts ranging up to approximately $6^{\prime} 0^{\prime \prime}$ and fills ranging up to approximately $8^{\prime} 0^{\prime \prime}$ are expected to achieve the proposed pavement subgrade elevations.

The boring and test pit data indicates that there is existing fill (Stratum 2) present in portions of the site to depths ranging from $1^{\prime} 0$ " to more than $9^{\prime} 0$ " below the existing ground surface. The existing fill generally consists of loose to medium dense Sand with varying amounts of Silt and Gravel and occasional cobbles, boulders, topsoil, roots, and debris. Underlying the existing fill is medium dense to dense Sandy Silt or Silty Sand (Stratum 3). The Sandy Silt or Silty Sand is underlain by dense to very dense completely weathered Gneiss bedrock (Stratum 4) in areas followed by more competent Gneiss bedrock (Stratum 5), which was encountered at depths ranging from $2^{\prime} 0$ " to $15^{\prime} 2^{\prime \prime}$ beneath the existing ground surface. The existing fill and bedrock observations are summarized in Table 1 below.

Table 1 - Summary of Boring and Test Pit Data

Boring or Test Pit No.	Approximate Ground Surface Elevation	Depth to Bottom of Existing Fill (Elevation)	Depth to Weathered Bedrock (Elevation)	Depth to Bedrock or Auger Refusal (Elevation)
B-1	+661.0	NE	5'0" (+656.0)	$8^{\prime} 0$ "' +653.0$)$
B-2	+628.0	NE	NE	7'0" (+621.0)
B-3	+620.0	NE	2'0" (+618.0)	4'9" (+615.3)
B-4	+628.0	NE	2'0" (+626.0)	10'6" (+617.5)
B-5	+623.0	NE	2'0" (+621.0)	$8^{\prime} 6^{\prime \prime}(+614.5)$
B-6	+617.0	$1^{\prime} 0$ " (+616.0)	NE	5'6" (+611.5)
B-7	+628.0	NE	5'0" (+623.0)	15'2" (+612.8)
B-8	+609.0	5'6" (+603.5)	NE	NE to 12'0"
B-9	+674.0	7’0" (+667.0)	7’0" (+667.0)	7'6"'(+666.5)
B-10	+638.8	NE	NE	2'0" (+636.8)
B-11	+640.0	NE	4'0"' (+636.0)	5'6" (+634.5)
TP-1	+662.0	NE	NE	2'0" (+660.0)
TP-2	+672.0	1'10" (+670.2)	NE	4'4"'(+667.7)
TP-3	+672.0	NE	NE	$2^{\prime} 2^{\prime \prime}(+669.8)$
TP-4	+672.0	NE	NE	$3^{\prime} 6^{\prime \prime}(+668.5)$
TP-5	+670.0	NE	3'8" (+666.3)	4'9"'(+665.3)
TP-6	+672.0	NE	$2^{\prime} 10$ " (+669.2)	4'7'' (+667.4)
TP-7	+620.0	NE	NE	$2^{\prime} 8^{\prime \prime}(+617.3)$
TP-8	+614.0	NE	NE	NE to 5'0"
TP-9	+628.0	$>6^{\prime} 9^{\prime \prime}(<+621.3)$	NE	NE to 6'9"
TP-10	+625.0	$3^{\prime} 0^{\prime \prime}(+622.0)$	NE	NE to 8'0"
TP-11	+642.0	NE	3'9" (+638.3)	$6^{\prime} 0^{\prime \prime}(+636.0)$
TP-12	+635.0	5'0" (+630.0)	NE	NE to 6'6'
TP-13	+636.0	NE	NE	7'5" (+628.6)
TP-14	+625.0	5'0" (+620.0)	NE	5'0" (+620.0)
TP-15	+668.0	NE	NE	$1^{\prime} 8^{\prime \prime}(+666.3)$
TP-16	+651.0	1'10" (+649.2)	NE	4'10" (+646.2)
TP-17	+655.0	NE	NE	NE to 1'0"
TP-18	+670.0	NE	NE	NE to $7^{\prime} 0{ }^{\prime \prime}$
TP-19	+427.0	2'5" (+424.6)	NE	NE to 7'0'
TP-20	+415.0	NE	NE	NE to 8'0"
TP-21	+478.0	1'4" (+476.7)	NE	7'0" (+471.0)
TP-22	+475.0	NE	NE	NE to 7'6'
TP-23	+496.0	NE	NE	$3^{\prime} 10^{\prime \prime}(+492.2)$
TP-24	+564.0	NE	NE	6'8' $(+557.3)$
TP-25	+633.0	NE	NE	3'4" (+629.7)
TP-26	+669.0	5'6" (+663.5)	NE	NE to 8'0'

Boring or Test Pit No.	Approximate Ground Surface Elevation	Depth to Bottom of Existing Fill (Elevation)	Depth to Weathered Bedrock (Elevation)	Depth to Bedrock or Auger Refusal (Elevation)
TP-27	+561.0	NE	NE	$4^{\prime} 4^{\prime \prime}(+556.7)$
TP-28	+499.0	$>9^{\prime} 0^{\prime \prime}(<+490.0)$	NE	NE to 9'0"

Notes: NE - Not Encountered
B-8: Groundwater at +608.3
TP-8: Groundwater at +609.9
TP-9: Terminated in the Existing Fill
TP-13: Groundwater at +631.2
TP-22: Groundwater at +470.5
TP-28: Groundwater at +491.0
TP-28: Terminated in the Existing Fill

Removal of Existing Structures from New Building and Pavement Areas

Building Areas

The site plan indicates that existing structures are present in some of the proposed building areas. The existing structures will be removed as part of the proposed development. All debris resulting from the demolition of these items must be completely removed from the new building areas, extending at least ten (10) feet beyond the new building limits, where practical. This shall include the complete removal of all foundations, walls, slabs, utilities, sidewalks, pavement, and miscellaneous debris. Where the removal of existing items or associated materials extends below the planned building, the resulting excavations shall be backfilled with new compacted fill as described below.

Existing utilities, where they are encountered within the planned building areas, should be either abandoned or rerouted around the new structures. Once the utility has been rerouted or abandoned, the section of pipe and any associated structure within the building areas should be completely removed. The removal of the pipe and structure must also include any loose fill around the pipe or structure. After the pipe, associated structure, and associated loose backfill have been removed, the resulting excavation shall be backfilled with new controlled fill as described below.

New compacted fill shall consist of either suitable on-site soil or imported sand and gravel. Imported sand and gravel fill shall contain less than 20% by weight passing a No. 200 sieve. The fill shall be placed in layers not exceeding one (1) foot in loose thickness. In the proposed building area, new fill shall be compacted to at least 95% of its Maximum Modified Dry Density (ASTM D1557). Each layer shall be compacted, tested, and approved prior to placing subsequent layers.

Pavement Areas

In the proposed pavement areas, any existing structures and debris resulting from the demolition of the structures must be completely removed from the new pavement areas, extending at least five (5) feet beyond the new paving limits, where practical. The
excavations resulting from the removal of existing items shall be backfilled using controlled compacted fill. New fill shall consist of either suitable on-site soil or imported sand and gravel placed in one (1) foot loose layers and compacted to at least 92% of its Maximum Modified Dry Density (ASTM D1557).

Implications of Existing Fill

The boring and test pit data indicates that existing fill is present in portions of the site. Where encountered in the borings and test pits, the fill extended to depths ranging from $1^{\prime} 0$ '" to more than $9^{\prime} 0$ " beneath the existing ground surface. These depths correspond to elevations ranging from approximately +424.6 to elevation +670.2 . The depth of the existing fill is expected to be variable and may be deeper in unexplored areas of the site and around the existing site buildings.

The existing fill is not an acceptable bearing material for the new building foundations or floor slabs. The consistency and density of the fill material are not predictable. Certain areas may contain clean dense soils while other areas may contain loose material, topsoil, and/or debris. The existing fill creates the possibility of intolerable differential settlements under loading.

To eliminate the potential for damaging differential settlements, we recommend that the existing fill be completely removed from the new building areas. Based on the existing grades and the proposed finished floor elevations, we expect that some of the existing fill will be removed during the planned building excavations. However, existing fill is expected to be encountered below the planned subgrade elevation in portions of the site. Undercutting of the subgrade will be required in these areas to remove the existing fill or otherwise unsuitable materials from the building areas. The over-excavated areas shall then be replaced with new structural fill, as necessary, to achieve the planned subgrade elevations.

To further evaluate the existing fill conditions in and around the planned building areas, we recommend that a series of supplemental test pits be performed at the time of construction. The test pits should be conducted under the full time observation of a CarlinSimpson \& Associates representative. These test pits will allow us to confirm the consistency, thickness, and horizontal limits of the existing fill material.

Provided that the existing fill and any other unsuitable materials encountered during construction are removed, it is our opinion that the new structural fill and virgin soils can adequately support the new building foundations and floor slabs.

Rock Removal - Blasting Issues

As discussed above, bedrock was encountered at 27 of the 39 test locations during this study. The bedrock was encountered at depths ranging from $1^{\prime} 8$ " to 15 ' 2 " beneath the ground surface. These depths correspond to bedrock elevations ranging between approximately elevation +611.5 and elevation +669.8 . Based on the site plans provided to this office, bedrock was encountered above the planned finished floor elevation in portions of the site. Bedrock may also be encountered at higher elevations in the unexplored areas of the site.

The bedrock encountered in the borings and test pits consists of weathered Gneiss. Based on our experience, the in-situ bedrock will range from highly weathered, fractured rock to massive, intact rock. To excavate the rock, the upper $1^{\prime} 0^{\prime \prime}$ to $5^{\prime} 0$ '" of rock may be "rippable" by using large construction equipment. The use of hydraulic hammers and/or blasting will be required in order to achieve deeper excavations. Zones of weathered rock may exist deeper than $5^{\prime} 0$ '" but conditions are expected to be highly variable. Hard rock will be encountered during construction.

In order to develop the site, rock removal will be required in areas to achieve the proposed grades. Rock removal may also be required for the new pavement and utilities in portions of the site. Rock blasting will likely be required to achieve the proposed grades in areas. Nearby buildings and existing underground utilities could be affected by the blasting.

The Blasting Contractor should avoid over-blasting the rock. Over-blasting will disturb the deeper intact rock that will be used as bearing material for the proposed foundations and floor slab.

The blasting operation will be monitored by a seismologist using a seismograph. The Peak Particle Velocity emanating from any blast will be restricted to $2.0 \mathrm{in} / \mathrm{sec}$. Each blast will be monitored to insure that this criteria is not exceeded.

The U.S. Bureau of Mines [Nicholas et al (1971)] has established that a threshold of $4.0 \mathrm{in} / \mathrm{sec}$ will likely crack plaster and thus they recommend that the safe vibrational criterion be $2.0 \mathrm{in} / \mathrm{sec}$. This criterion has been used successfully in the industry. Each blast will be monitored independently to insure that this criterion is not exceeded. The monitoring results shall be provided to the Blasting Contractor as soon as possible so that the blasting program can be modified if necessary.

We recommend that a minimum of four (4) monitoring points be established, to the north, east, south and west of the planned blast area. The seismograph sensors should be placed near the closest structure and at any structures identified during the pre-blast survey that are considered to be susceptible to vibration damage.

Prior to the start of any construction, a Blasting Management Plan shall be prepared by the Blasting Contractor for this project. This plan shall be in accordance with State regulations and the Explosive Materials Code, NFPA No. 495, National Fire Prevention Association. Additionally, all blasting should adhere to the provisions of 29 CFR Ch. XVII Section 1910.109 for explosives and blasting agents and to all local requirements.

Prior to any blasting work being done, a licensed professional engineer shall be retained to perform a detailed pre-blast survey of existing structures located within 500 feet of the planned blast area. The pre-blast survey shall be conducted in accordance with the requirements of local authorities. A copy of all reports prepared by the licensed engineer shall be submitted to the Town Engineer and the Owner's representative in a timely manner.

Prior to the beginning of blasting, a notice will be sent to all residential and commercial property owners within a 500 foot radius of the blast area. This notification will
be given at least 48 hours before blasting takes place. A contact person will be established and named in this notice to respond to all concerns raised by nearby residents during the blasting phase of the project. The contact person will respond to any inquiries within 24 hours.

Preparation of New Building Areas and Removal of Existing Fill

In order to prepare the building areas for construction, all surface materials such as topsoil, asphalt, and surface vegetation shall be removed from the planned building areas, extending at least ten (10) feet beyond the new construction limits, where feasible.

The boring data indicates that existing fill is present within portions the proposed building areas. Fill material may also be present in other unexplored portions of the site. Where encountered in the test borings, the existing fill extended to depths ranging from about 1 ' 0 '" to 7 ' 0 " below the existing ground surface. As shown in Table 1 above, the approximate bottom of the fill material ranges from elevation +603.5 to elevation +670.2 . The existing fill is expected to vary in thickness across the site and may extend deeper in the unexplored areas and around the existing site structures.

After the surface materials are removed, the existing fill shall be excavated from the new building areas. The removal of the existing fill from the new building areas shall extend through the existing fill, down to the virgin soil or weathered bedrock. At the bottom of the excavation, the removal of the unsuitable material shall extend horizontally beyond the building lines a minimum distance of three (3) feet plus a distance equal to the depth of the excavation below the planned finished floor elevation. For example, if the removal of the existing fill extends vertically five (5) feet below the planned finished floor elevation, the excavation must extend horizontally a minimum of eight (8) feet (3 feet plus 5 feet) beyond the new building line at that location.

The removal of the existing fill from the planned building areas shall be performed under the full time observation of Carlin-Simpson \& Associates. The on-site representative from Carlin-Simpson \& Associates shall direct the Contractor during this operation to ensure that all of the unsuitable material has been removed from the proposed building areas.

During the removal of the unsuitable material from the building areas, the Contractor should segregate the potentially re-usable existing fill material from the non-reusable fill (i.e. debris and topsoil). The on-site representative from Carlin-Simpson \& Associate shall evaluate the suitability of the excavated materials for use as structural fill during the excavation and prior to its re-use. Potentially usable fill should be stockpiled and covered with tarps or plastic sheeting for protection from excess moisture. Any fill material that is wet must be dried prior to its re-use.

After the surface materials and existing fill have been removed and prior to the placement of new structural fill, the exposed subgrade must be graded level and proofrolled by several passes of a vibratory drum roller. The proofrolling operation is necessary to densify the underlying soils. Carlin-Simpson \& Associates shall be retained to observe the proofrolling of the subgrade. If any soft or otherwise unsuitable soils are noted, the
unsuitable material shall be removed and replaced with new structural fill. Carlin-Simpson \& Associates shall be responsible for determining what material, if any, is to be removed and will direct the contractor during this operation.

New structural fill required to achieve final grades shall consist of either suitable onsite soil or imported sand and gravel. Imported fill shall contain less than 20% by weight passing a No. 200 sieve. The structural fill shall be placed in layers not exceeding one (1) foot in loose thickness and each layer shall be compacted to at least 95% of its Maximum Modified Dry Density (ASTM D1557). Each layer must be compacted, tested, and approved prior to placing subsequent layers. The suitability of the excavated soil for reuse as structural fill is discussed in a following section of this report.

After the installation of structural fill has been completed to the required subgrade elevations, the virgin soil and new structural fill may be used to support the proposed building foundations and floor slabs.

New Building Foundations

According to the boring data, the foundation bearing materials will consist of medium dense to dense virgin soil, weathered bedrock, and new structural fill. Foundations for the proposed structures may be designed as a shallow spread footing bearing on the virgin soil, weathered bedrock, or new structural fill utilizing a net allowable bearing pressure of $4,000 \mathrm{psf}$ (2.0 TSF).

Exterior footings shall bear at a depth of at least 42 inches below finished outside grade for protection from frost. Interior column footings may bear on the virgin soil, weathered bedrock, or new structural fill just below the floor slab provided the building is heated during winter. Column footings shall have a minimum dimension of 30 inches. The wall footings shall have a minimum width of 18 inches.

Prior to the placement of formwork, reinforcement steel, and concrete, the bearing subgrade soil shall be cleaned of all loose soil and compacted with several passes of a small vibratory drum trench compactor (i.e. Wacker Model RT560), a heavy vibratory plate tamper (i.e. Wacker BPU 3545A or equivalent), or "jumping jack" style tamper (i.e. Wacker Model BS 600). This must be performed under the inspection of a representative from Carlin-Simpson \& Associates. If instability is observed during the compaction of the bearing subgrade, the soft soil shall be removed and replaced with new compacted fill.

Where rock is encountered in the foundation excavations, "Special Construction Procedures" must be employed. When continuous wall footings or closely spaced column footings (20 feet or less) bear on dissimilar material (i.e. rock and soil) the potential for differential movement exists. A footing bearing in rock will not move, whereas a footing bearing on soil will settle slightly due to the compressive nature of all soils when subjected to new loads. The area between movement and non-movement will develop a (shear) stress point. Cracks in foundations and walls will be the result from such movement. Therefore, continuous wall footings must bear either entirely on rock or entirely on soil for any individual building. Alternatively, for larger structures, transition zones can be constructed to create a gradual transition from a soil to a rock bearing subgrade.

Adjacent column footings greater than 20 feet apart may bear on dissimilar material (i.e. soil and rock). Any individual column footing must bear entirely on the same type bearing material (i.e. all soil or all rock).

Where rock and soil both exist at the bearing elevation within a foundation excavation, the footings must either be lowered to bear entirely on rock, or a minimum of 18 inches of rock must be removed from below planned footing bottom. The over-excavated 18 inches must then be filled with a granular material having a maximum particle size of $1 / 2$ inch and containing at least 15% but not more than 30% material by weight passing a No. 200 sieve. The fill shall be placed in six (6) inch layers and each layer shall be compacted to at least 95% of its Maximum Modified Dry Density (ASTM D1557). This procedure will create a "cushion" atop the rock and reduce the potential for differential movement. For soft, rippable rock, this procedure will not be required.

If during the excavation for continuous foundations, the transition from soil to rock is gradual (i.e. from medium dense soil to dense weathered rock to very dense rock) over a distance of 20 feet or more, the "Special Construction Procedures" may not be required. This would have to be evaluated in the field on a case-by-case basis by the representative from Carlin-Simpson \& Associates at the time of construction.

Where the transition from rock to soil is abrupt within the excavation for continuous wall foundations, transition zones can be constructed by over-excavating the rock in steps and increasing the "soil cushion" thickness over a distance of 24 feet or more. To construct the transition zone, the bedrock is over-excavated in a series of steps, each step being six (6) inches in depth and at least eight (8) feet in length. The first step is six (6) inches deep, the second step is 12 inches deep, and the final step is 18 inches deep. The over-excavation is then backfilled with the soil cushion material described above.

Floor Slab

After the footings and foundation walls are installed, fill will be required to backfill the excavations and to raise grades in the building areas to the slab subgrade elevations. New fill for the floor slab shall consist of either suitable on-site soil or imported sand and gravel containing less than 20% material by weight passing a No. 200 sieve. The fill shall be placed in layers not exceeding one (1) foot in loose thickness and each layer shall be compacted to at least 92% of its Maximum Modified Dry Density (ASTM D1557). Fill layers shall be compacted, tested, and approved before placing subsequent layers.

The floor may be designed as a slab on grade, bearing on virgin soil, weathered bedrock, bedrock, or new structural fill. We recommend a Modulus of Subgrade Reaction (k) of 200 pounds per cubic inch (pci) be used for design. A six (6) inch layer of $3 / 4$-inch crushed stone is recommended beneath the concrete slab for additional support and drainage. In the event that the floor slab is constructed directly on Gneiss bedrock, a minimum of 12 inches of crushed stone or DGA should be provided beneath the floor slab for drainage and to act as a cushion on the rock. Sump pits and pumps are recommended where basements are planned.

Settlement

Settlement of individual footings, designed in accordance with recommendations presented in this report, is expected to be within tolerable limits for the proposed structure. For footings placed on natural soils or new compacted fill approved by Carlin-Simpson \& Associates and constructed in accordance with the requirements outlined in this report, maximum total settlement is expected to be on the order of $1 / 2$-inch or less. Maximum differential settlement between adjacent columns or load bearing walls is expected to be half the total settlement.

The above settlement values are based on our engineering experience with similar soil conditions and the anticipated structural loading, and are to guide the Structural Engineer with his design. To minimize difficulties during the foundation installation phase, it is critical that Carlin-Simpson \& Associates be retained to observe the foundation bearing surfaces and to confirm the recommended bearing pressures and that the existing fill and unsuitable materials have been removed from beneath the new foundations.

Foundation Walls

In the event that foundation walls are required, the soil adjacent to the building walls will exert a horizontal pressure against the walls. This pressure is based on the soil density and Coefficient of Earth Pressure at Rest (k_{o}), which is applicable to non-yielding building walls. We estimate that the backfill material will have an in-place (moist) density of about 130 pcf and a k_{0} of 0.5 . Based on these properties, the soil will produce an Equivalent Fluid Pressure of 65 pcf against the building walls.

For sliding, the coefficient of friction between concrete and the virgin site soils or new structural fill is 0.45 . For clean sound rock, a friction coefficient of 0.55 can be used. Where passive lateral earth pressure is to be included in the design of the wall, a design value of $195 \mathrm{psf} / \mathrm{ft}$ may be used. This is based on a Coefficient of Passive Earth Pressure (k_{p}) of 3.0, an in-place soil backfill density of 130 pcf , and a factor of safety of 2.0.

Where foundation walls are required, we recommend that a footing drain be placed around the exterior of the new structure to prevent water from accumulating against the foundation wall. This drain may consist of a minimum four (4) inch diameter, rigid wall perforated PVC pipe surrounded by at least 12 inches of $3 / 4$-inch clean crushed stone. The stone shall be wrapped in a geotextile fabric, Mirafi 140 N or equivalent. The foundation drainpipe should be extended to daylight or to the stormwater collection system. The outside face of the foundation wall, where it extends below grade, must be damp proofed or waterproofed.

The foundation walls should be backfilled with suitable structural fill placed in layers up to one (1) foot in loose thickness. The new fill should be compacted with a vibratory drum trench compactor (i.e. Wacker Model RT560), a heavy vibratory plate tamper (i.e. Wacker BPU 3545A or equivalent) or "jumping jack" style tamper (i.e. Wacker Model BS 600) to at least 92% of its Maximum Modified Dry Density (ASTM D1557). Heavy equipment should not be operated near the wall as damage to the wall could occur.

Outside the structure, the backfill placed adjacent to the foundation walls and above the footing drain shall consist of either clean crushed stone or an imported sand and gravel mixture containing less than 10% by weight passing a No. 200 sieve and placed in layers not exceeding one (1) foot in thickness. This clean sand and gravel or crushed stone backfill shall extend a minimum of one (1) foot horizontally from the back face of the foundation walls, and shall extend vertically up the wall face to two (2) feet below the finished ground surface elevation.

Beyond this point, the foundation walls should be backfilled with suitable soil placed in layers up to one (1) foot in thickness. The new fill should be compacted with a vibratory drum trench compactor (i.e. Wacker Model RT560), a heavy vibratory plate tamper (i.e. Wacker BPU 3545A or equivalent), or "jumping jack" style tamper (i.e. Wacker Model BS 600) to at least 92% of its Maximum Modified Dry Density (ASTM D1557). Heavy equipment should not be operated near the walls as damage to the walls could occur. Material excavated from the cut areas on site will be suitable for reuse as compacted fill, provided that it remains relatively dry enough to be adequately compacted to the required density and does not contain any debris or organic material (i.e. topsoil and roots).

Seismic Design Considerations

From site-specific test boring data, the Site Class was determined from Table 1615.1.1 of the New York State Building Code. The site-specific data used to determine the Site Class typically includes soil test borings to determine Standard Penetration resistances (N -values). Based on the average N -values in the upper 100 feet of soil profile, the site can be classified as Site Class C - Very Dense Soil and Soft Rock Profile.

New structures should be designed to resist stress produced by lateral forces computed in accordance with Section 1615 of the New York State Building Code. The values in Table 2 shall be used for this project. Based on the information obtained from the borings, it is our opinion that the potential for liquefaction of the native soils at the site due to earthquake activity is relatively low.

Table 2 - Seismic Design Parameter Values

Mapped Spectral Response Acceleration for Short Periods, [Fig 1615 (1)]	$\mathrm{S}_{\mathrm{S}}=0.347 \mathrm{~g}$
Mapped Spectral Response Acceleration at 1-Second Period, [Fig 1615 (2)]	$\mathrm{S}_{\mathrm{S} 1}=0.070 \mathrm{~g}$
Site Coefficient [Table 1615.1.2 (1)]	$\mathrm{F}_{\mathrm{a}}=1.20$
Site Coefficient [Table 1615.1.2 (2)]	$\mathrm{F}_{\mathrm{v}}=1.70$
Max Considered Earthquake Spectral Response for Short Periods [Eq 16-16]	$\mathrm{S}_{\mathrm{MS}}=0.416 \mathrm{~g}$
Max Considered Earthquake Spectral Respond at 1-Second Period [Eq 16-17]	$\mathrm{S}_{\mathrm{S} 1}=0.119 \mathrm{~g}$
Design Spectral Response Acceleration for Short Periods [Eq 16-18]	$\mathrm{S}_{\mathrm{DS}}=0.278 \mathrm{~g}$
Design Spectral Response Acceleration for 1-Second Period [Eq 16-19]	$\mathrm{S}_{\mathrm{Dl}}=0.079 \mathrm{~g}$

Site Retaining Walls

In order to develop the site, retaining walls will be required in areas. The site retaining walls may be designed as either cast-in-place steel reinforced concrete walls or geogrid reinforced modular block (MSE) walls. The preliminary site plans show five (5)
retaining walls. The maximum exposed height of these walls ranges from approximately seven (7) feet to 12 feet but the top and bottom wall elevations were not finalized at the time of this report.

The following recommendations are preliminary in nature based on the boring and test pit data from other areas of the project site during this investigation. The recommendations below are intended for planning purposes only and are not intended for final design and construction. A supplemental subsurface investigation is required for the proposed retaining walls so that additional design recommendations can be provided.

In the event that existing fill materials are present within the proposed wall areas, these materials must be completely removed from the limits of new wall construction. The removal of the topsoil or other unsuitable fill materials shall extend horizontally a minimum distance of five (5) feet beyond the front face of the new wall or extend horizontally a minimum distance equivalent to the vertical depth of the required excavation below the proposed wall base or foundation bearing elevation, whichever is greater. This is required to ensure that all unsuitable material has been removed from beneath the wall base or foundation zone of influence, which shall be defined by an imaginary plane projecting downward and away from the front edge of the wall base or foundation on a one horizontal to one vertical $(1 \mathrm{H}: 1 \mathrm{~V})$ projection.

The foundations for the new retaining wall may be placed on the virgin soil, weathered bedrock, or on new compacted fill approved by Carlin-Simpson \& Associates. New compacted fill shall consist of either suitable on-site soil or imported sand and gravel. Imported fill shall contain less than 20% by weight passing the No. 200 sieve. The fill shall be placed in one (1) foot thick loose layers and compacted to at least 95% of its Maximum Modified Dry Density. Preliminarily, the footings or base of the wall can be designed using a net design bearing pressure of $4,000 \mathrm{psf}$ (2.0 TSF).

For MSE walls, the wall base or foundation must be adequately embedded for internal and global stability. The embedment depth will be determined by the Wall Design Engineer. For reinforced concrete walls, the footing or base of the wall shall bear at least 42 inches below finished grade of the outside face of the wall for protection from frost. The wall foundation or base may bear at shallower depths when installed directly on the bedrock since rock is not susceptible to frost. Where both soil and rock are encountered within the wall foundation or base excavation, the "Special Construction Procedures" discussed above for the building foundations must be utilized.

Drains must be provided behind the retaining walls to prevent the buildup of hydrostatic pressure against the walls. The drain should consist of a 4-inch diameter perforated PVC pipe, surrounded with $3 / 4$-inch clean crushed stone and wrapped in a geotextile fabric, Mirafi 140 N or equivalent. The drain should be installed behind the base or foundation of the retaining wall to collect the water behind the wall and be connected into the site stormwater collection system or extended to daylight beyond the wall area.

Backfill placed directly behind the retaining walls shall consist of either suitable onsite soil or imported sand and gravel containing less than 20% by weight passing a No. 200 sieve. Each layer shall be compacted using a hand guided mechanical tamper to 92% of its

Maximum Modified Dry Density (ASTM D1557). Excessive compaction adjacent to the retaining walls must be avoided. Layers shall be tested and approved before placing subsequent layers. Large compaction equipment must not be used within ten (10) feet of the new walls to prevent potential damage to the walls.

The soil adjacent to the site retaining walls will exert a horizontal pressure against the walls. This pressure is based on the soil density and the Coefficient of Active Earth Pressure (k_{a}). We estimate that the backfill material will have an in-place (moist) density of about 130 pcf and an angle of internal friction (ϕ) of 30°. For design, soil cohesion is assumed to be zero for the foundation soil, retained soil, and reinforced backfill. The active earth pressure coefficient $\left(\mathrm{k}_{\mathrm{a}}\right)$ is 0.33 provided the grade behind the wall is level. Based on these properties, the retained soil will produce an Equivalent Fluid Pressure of 42.9 pcf against the retaining walls. If a sloping grade exists behind the new walls, the k_{a} and the Equivalent Fluid Pressure must be adjusted accordingly. In addition, any surcharge loads from structures, vehicles, or other retaining walls (i.e. tiered walls) must be considered in the wall design.

For sliding, the friction coefficient between mass concrete and the virgin site soils or new compacted fill is 0.45 . For clean sound rock, a friction coefficient of 0.55 can be used. Where passive lateral earth pressure is to be included in the design of the wall, a maximum design value of $195 \mathrm{psf} / \mathrm{ft}$ may be used. This is based on a Coefficient of Passive Earth Pressure (k_{p}) of 3.0 , an in-place soil backfill density of 130 pcf , and a factor of safety of 2.0.

The Wall Design Engineer shall prepare a complete wall design (i.e. drawings, specifications, and calculations), which shall be designed and sealed by a Professional Engineer registered in the State of New York and submitted to Carlin-Simpson \& Associates for review and approval. MSE retaining walls shall be designed in accordance with the recommendations of the NCMA Design Manual for Segmental Retaining Walls (Current Edition).

The MSE wall design shall consider the internal stability of the reinforced soil mass and shall be in completed accordance with acceptable engineering practice. In addition, external stability, including sliding, overturning, and bearing, as well as global slope stability shall be evaluated in accordance with acceptable engineering practice.

The MSE Wall Designer Engineer shall be responsible for determining the required geogrid reinforcement lengths and elevations based on his stability analysis (including global stability) and the properties of the geogrid reinforcement used in the design. We anticipate that in the critical areas of the wall, global stability will be the controlling design criteria for the design of the geogrid reinforcement.

Stormwater Management Areas

We understand that the planned development will include one or more stormwater management areas. The preliminary grading plan shows a proposed infiltration basin with a forebay in the western portion of the project site. The plan also indicates that the basin will have a bottom elevation at +610.0 . We also understand that there is an alternate stormwater
management area in the southwestern portion of the site, near the proposed fairway residences building. In addition, stormwater management areas will likely be required throughout the golf course property. However, at the time this report was prepared, the proposed stormwater management system had not been designed and the location, grades, and invert elevations of the system had not been finalized.

During this study, four (4) borings, one (1) test pit, one (1) borehole permeability test, and four (4) percolation tests were performed within or near the planned stormwater management areas. An addition ten (10) test pits (TP-19 through TP-28) were excavated at potential stormwater management areas throughout the golf course property. The tests were performed at the locations shown on the attached Boring and Test Pit Location Plan. The proposed test depths were provided by the project Site Engineer. The test depths were modified, however, based on the depth to bedrock encountered at the test locations.

The soil conditions encountered within the proposed infiltration basin area consist of a surface layer of topsoil (Stratum 1), approximately 0 ' $6^{\prime \prime}$ to 0 ' $9^{\prime \prime}$ in thickness, followed by existing fill (Stratum 2) in boring B-6. Below the topsoil and fill is virgin soil that consists of layers of Sandy Silt, Silty Sand, Sandy Gravel, Gravelly Sand, or Silty Gravelly Sand (Strata 3 and 4) followed by Gneiss bedrock (Stratum 5). Bedrock was encountered in the proposed infiltration basin area at depths ranging from $2^{\prime} 8^{\prime \prime}$ to $8^{\prime} 6^{\prime \prime}$ beneath the ground surface. These depths correspond to bedrock elevations ranging between elevation +611.5 and elevation +617.3 , which is above the proposed bottom elevation of the infiltration basin.

In the alternate stormwater management area, the topsoil was underlain by approximately 5 ' 6 " of existing fill (Stratum 2) followed by layers of Sandy Silt and Silty Sand (Stratum 3). Groundwater was encountered in this portion of the site at depths ranging from $0^{\prime} 6 "$ to 3 ' 3 " below the ground surface, which corresponds to groundwater levels ranging from approximately elevation +608.3 to elevation +613.2 .

The subsurface soil and groundwater conditions encountered in the potential stormwater management areas throughout the golf course property vary across the site. The boring and test pit observations are summarized in Table 1 above.

In December 2012 and January 2013, permeability tests were performed within the proposed stormwater management areas. One (1) borehole permeability test (BP-4) and four (4) percolation tests ($\mathrm{P}-1$ through $\mathrm{P}-4$) were performed. The infiltration rates at the test locations are summarized in Table 3 below.

Table 3 - Field Permeability Test Results

Permeability Test No.	Permeability Test Depth (Elevation)	Permeability Rate	Soil Description
BP-4	$7^{\prime} 0^{\prime \prime}(+621.0)$	2.4 in/hour	Brown coarse to fine SAND, little Silt, some (+) coarse to fine Gravel
P-1	$3^{\prime} 6^{\prime \prime}(+616.5)$	>20 in/hour	Brown coarse to fine GRAVEL and, coarse to fine Sand, trace Silt
P-2	$1^{\prime} 8^{\prime \prime}(+610.3)$	NR	Groundwater encountered 0'6" below the ground surface

Permeability Test No.	Permeability Test Depth (Elevation)	Permeability Rate	Soil Description
P-3	$2^{\prime} 8^{\prime \prime}(+613.3)$	>20 in/hour	Brown coarse to fine SAND, some Silt, and (-) coarse to fine Gravel
P-4	$2^{\prime} 0^{\prime \prime}(+613.0)$	NR	Groundwater encountered l'l0' below the ground surface

NR - Not Recorded
Based on the field tests, the virgin soil in the areas of tests P-1 and P-3 has a permeability rate that exceeds 20 inches per hour. However, these tests were performed at elevations of +616.5 and +613.3 , which are approximately $6^{\prime} 6^{\prime \prime}$ and 3 ' 3 '" higher than the planned bottom of the proposed infiltration basin. Bedrock was encountered at depths of $4^{\prime} 9 \prime \prime(+615.3)$ and $5^{\prime} 6^{\prime \prime}(+611.5)$ below the surface at these test locations. In the event the virgin soil in the areas of tests P-1 and P-3 can be utilized for the stormwater management system, a permeability rate of 10 inches per hour should be used for preliminary design. This design permeability rate includes a factor of safety of 2.0.

Field permeability tests could not be performed at test locations P-2 and P-4 during this study since groundwater was encountered at depths of $0^{\prime} 6^{\prime \prime}(+611.5)$ and $1^{\prime} 10^{\prime \prime}(+613.2)$ below the ground surface, respectively. Should stormwater management areas be planned in other portions of the site, they must be evaluated on a case-by-case basis.

The stormwater management system should be designed in accordance with the applicable New York State Department of Conservation (NYSDEC) regulations and the New York State Stormwater Management Design Manual (August 2010). The testing requirements are outlined in Appendix D of the manual. The testing that was performed during this preliminary study was for initial feasibility testing for the stormwater management areas. Therefore, additional testing within the proposed subsurface system areas will be required to confirm the soil conditions and infiltration rates at the bottom of the system and to finalize the design of the system.

Pavement

We understand that the proposed construction will also include new asphalt paved driveways and parking areas. Based on the preliminary grading plan provided to this office, cuts ranging up to approximately $6^{\prime} 0^{\prime \prime}$ and fills ranging up to approximately $8^{\prime} 0^{\prime \prime}$ are anticipated to achieve the proposed pavement subgrade elevations. To prepare the new pavement areas, the existing surface materials (i.e. topsoil, vegetation, asphalt, etc.) must be removed from the planned pavement areas.

After all surface materials have been removed; the exposed subgrade that is either at or below the planned subgrade elevation shall be proofrolled with a large vibratory drum roller (i.e. Dynapac 250 or equivalent) to densify the underlying soils. The on-site representative from Carlin-Simpson \& Associates shall witness the proofrolling operation. If any excessive movement is noted during the proofrolling, the soft or unsuitable soil shall be removed and replaced with new compacted fill.

Areas where existing fill is encountered shall be compacted in place. Carlin-Simpson \& Associates must evaluate these areas for the presence of soft or unsuitable material within the existing fill matrix. Portions of this fill may have to be removed and replaced with new compacted fill. Carlin-Simpson \& Associates will determine this during construction.

Where new fill is required to achieve final grades, it shall consist of either suitable on-site soil or imported sand and gravel. Imported sand and gravel shall contain less than 20% by weight passing a No. 200 sieve. New fill shall be placed in layers not exceeding one (1) foot in loose thickness and each layer shall be compacted to at least 92% of its Maximum Modified Dry Density (ASTM D1557). After the planned subgrade has been proofrolled and new compacted fill has been placed as required, the new pavement subbase may be placed on the existing site soils and new compacted fill.

When new fill is placed on a sloped subgrade, the fill layers must be benched a minimum of three (3) feet into the existing embankment. Fill layers shall be placed in horizontal layers, beginning at the base of the slope. End dumping over the top of a slope is not permitted.

The new pavement subbase may be placed on engineer-approved densified existing fill, virgin soil, or new compacted fill. A minimum of six (6) inches of dense graded aggregate (DGA) is recommended for the subbase layer for drainage and additional pavement support. We recommend that the following pavement sections be used for the parking lots and driveways. These pavement sections are subject to local government approval.

Parking Lots (Light Duty)

$11 / 2 "$	Asphalt Wearing Surface Course	NYSDOT, Type 6F
$2 "$	Asphalt Base Course	NYSDOT, Type 1
$6 "$	Stone Subbase (DGA)	NYSDOT, Type 4
	Approved Compacted Subgrade (Minimum CBR = 10)	

Driveways (Medium Duty)

$11 / 2 "$	Asphalt Wearing Surface Course	NYSDOT, Type 6F
$21 / 2 "$	Asphalt Base Course	NYSDOT, Type 1
$8 "$	Stone Subbase (DGA)	NYSDOT, Type 4
	Approved Compacted Subgrade (Minimum CBR $=10$)	

Based on the boring and test pit data, we anticipate that the existing site soils and new compacted fill will provide a CBR value that is equal to or greater than 10 , which can adequately support the above pavement sections.

Utilities

New utilities may bear in the virgin soil, existing fill, new compacted fill, weathered rock, or rock. The bottom of all trenches should be excavated clean so a hard bottom is provided for pipe support. If any soft areas or unsuitable existing fill conditions are
encountered during the construction operation, these materials must be removed and replaced with new compacted fill.

In the event that the trench bottom becomes soft due to the inflow of surface or trapped water, the soft soil shall be removed and the excavation filled with a minimum of six (6) inches of $3 / 4$-inch clean crushed stone to provide a firm base for support of the pipe. Sump pits and pumps should be adequate to keep the excavations dry.

After the utility is installed, the trench must be backfilled with compacted fill. The fill shall consist of suitable on-site soil or imported sand and gravel containing less than 20% by weight passing a No. 200 sieve. Large rock fragments must not be placed directly against the pipe. Controlled compacted fill shall be placed in one (1) foot loose layers and each layer shall be compacted to at least 92% of its Maximum Modified Dry Density (ASTM D1557). The backfill must be free of topsoil, debris and large boulders or rock fragments.

Temporary Construction Excavations

Temporary construction excavations shall be conducted in accordance with the most recent OSHA guidelines or applicable federal, state, or local codes. Based on the results of the borings and test pits, we believe the site soils and rock would have the following classifications as defined by OSHA guidelines.

Soil/Rock Type
On Site Fill
Virgin Sandy Soils
Weathered or Intact Bedrock

Possible Classification

$$
\begin{gathered}
\text { Type "C" } \\
\text { Type "B" or "C" } \\
\text { Type "A" or Stable Rock }
\end{gathered}
$$

Further evaluation of the site soil deposits will be required in the field by a qualified person at the time of the excavation to determine the proper OSHA classification and allowable slope configuration. Temporary support (i.e. sheeting and shoring) should be used for any excavation that cannot be sloped or benched in accordance with the applicable regulations.

Suitability of the In-Situ Soils for Use as Compacted Fill

The suitability of each soil stratum for use as compacted fill is discussed below.
Stratum 1 Topsoil is not suitable for use as compacted fill. During construction, it Topsoil may be stockpiled on site for later use in the landscaped areas or removed from the site.

Stratum 2 The existing fill that was encountered at the site generally consists of Existing Fill brown coarse to fine Sand, little (to and) Silt, trace (to some) coarse to fine Gravel with occasional cobbles, boulders, topsoil, roots, and debris. Some of the existing fill may be suitable for use as compacted fill at the site
provided that it remains relatively dry for optimum compaction and that any debris (i.e. concrete, wood, etc.) and organic material (i.e. topsoil, roots, etc.) have been removed prior to its reuse.

Strata 3 \& 4 The virgin site soils that may be excavated during construction consist of

Sandy Silt, Silty Sand, Sand, or Sandy Gravel layers of Sandy Silt, Silty Sand, Sand or Sandy Gravel with occasional cobbles and boulders. This material is generally suitable for use as compacted fill, provided that it remains relatively dry for optimum compaction. Large cobbles and boulders shall not be used as new structural fill in the proposed building areas or in utility trenches.

Stratum 5 Excavated rock may also be used as fill material for the building and paved Gneiss Bedrock graded, and has been approved prior to use by Carlin-Simpson \& Associates. All rock fill must be well blended with smaller rock fragments and/or soil. Open voids within the rock fill matrix must be avoided. Small boulders up to 24 inches in diameter may be placed in parking lot fills deeper than ten (10) feet below the finished pavement. Boulders must not be clustered and must be sufficiently surrounded with soil fill. We recommend that the boulders and excavated rock be processed by a crusher to provide suitable fill material for the building and pavement areas.

Rock fill shall be placed in 12-inch loose layers and compacted with multiple passes of a large vibratory roller to a firm and non-yielding state as determined by the on-site representative from Carlin-Simpson \& Associates. Rock fill should not be used where it will interfere with the installation of foundations or utilities. Also, it shall not be used as backfill directly against concrete walls or utilities. Use of rock fill within the planned building and pavement areas shall be limited to the gradations limitations provided in Table 4 below.

Table 4 - Gradation Limitations for Rock Fill

Area	Location	Maximum Particle Size
Building Area	Within 4 feet of Finished Floor	3 inches
	More than 4 feet below Finished Floor	12 inches
Pavement Area	Within 4 feet of Finished Grade	6 inches
	More than 4 feet below Finished Grade	18 inches
	More than 10 feet below Finished Grade	24 inches

Proper moisture conditioning of the soil will be required. In the event that the on-site material is too wet at the time of placement and cannot be adequately compacted, the soil should be aerated and allowed to dry or the material removed and a drier cleaner fill material used. In the event that the on-site material is too dry at the time of placement and cannot be adequately compacted, water may be needed to increase the soil moisture content for proper compaction.

The in-situ soils which exist throughout the site may become soft and weave if exposed to excessive moisture and construction traffic. The instability will occur quickly when exposed to these elements and it will be difficult to stabilize the subgrade. We recommend that adequate site drainage be implemented early in the construction schedule and if the subgrade becomes wet, the Contractor should limit construction activity until the soil has dried.

GENERAL

The findings, conclusions and recommendations presented in this report represent our professional opinions concerning subsurface conditions at the site. The opinions presented are relative to the dates of our site work and should not be relied on to represent conditions at later dates or at locations not explored. The opinions included herein are based on information provided to us, the data obtained at specific locations during the study and our past experience. If additional information becomes available that might impact our geotechnical opinions, it will be necessary for Carlin-Simpson \& Associates to review the information, reassess the potential concerns, and re-evaluate our conclusions and recommendations. Additional subsurface exploration may be required.

Regardless of the thoroughness of a geotechnical exploration, there is the possibility that conditions between borings and test pits will differ from those encountered at specific boring or test pit locations, that conditions are not as anticipated by the designers and/or the contractors, or that either natural events or the construction process have altered the subsurface conditions. These variations are an inherent risk associated with subsurface conditions in this region and the approximate methods used to obtain the data. These variations may not be apparent until construction.

The professional opinions presented in this geotechnical report are not final. Field observations and foundation installation monitoring by the geotechnical engineer, as well as soil density testing and other quality assurance functions associated with site earthwork and foundation construction, are an extension of this report. Therefore, Carlin-Simpson \& Associates should be retained by the Owner to observe all earthwork and foundation construction, to document that the conditions anticipated in this study actually exist, and to finalize or amend our conclusions and recommendations Carlin-Simpson \& Associates is not responsible or liable for the conclusions and recommendations presented in this report if Carlin-Simpson \& Associates does not perform these observation and testing services.

Therefore, in order to preserve continuity in this project, the Owner must retain the services of Carlin-Simpson \& Associates to provide full time geotechnical related monitoring and testing during construction. At a minimum, this shall include the observation and testing of the following: 1) the removal of existing fill and unsuitable soil, where required; 2) the proofrolling of the subgrade soil prior to the placement of new compacted fill; 3) the placement and compaction of controlled fill; 4) the excavation for the building foundations; 5) the preparation of the subgrade for the floor slabs and pavement areas; and 6) the construction of the proposed retaining walls.

This report has been prepared in accordance with generally accepted geotechnical engineering practice. No other warranty is expressed or implied. The evaluations and
recommendations presented in this report are based on the available project information, as well as on the results of the exploration. Carlin-Simpson \& Associates should be given the opportunity to review the final drawings and site plans for this project to determine if changes to the recommendations outlined in this report are needed. Should the nature of the project change, these recommendations should be re-evaluated.

This report is provided for the exclusive use of Brynwood Partners, LLC and the project specific design team and may not be used or relied upon in connection with other projects or by other third parties. Carlin-Simpson \& Associates disclaims liability for any such third party use or reliance without express written permission. Use of this report or the findings, conclusions or recommendations by others will be at the sole risk of the user. Carlin-Simpson \& Associates is not responsible or liable for the interpretation by others of the data in this report, nor their conclusions, recommendations or opinions.

If the conditions encountered during construction vary significantly from those stated in this report, this office should be notified immediately so that additional recommendations can be made.

Thank you for allowing us to assist you with this project. Should you have any questions or comments, please contact this office.

Very truly yours,
CARLIN-SIMPSON \& ASSOCIATES

MEREDITH R. ANKE, P.E. Project Engineer

Robert Simpson
ROBERT B. SIMPSON, P.E.

File No. 12-175

TEST PIT LOGS

TP-1	Elevation +662		
0-0'9"	Brown Topsoil		
0'9"-2'0"	Brown coarse to fine SAND, and Silt, trace $(+)$ medium to fine Gravel	medium dense	moist
2'0"	Gneiss bedrock No water encountered		
TP-2	Elevation +672		
$0-1 \times 10$ "	FILL (Brown coarse to fine SAND, some silt, little (-) coarse to fine Gravel, with topsoil)	medium dense	moist
$1^{\prime} 10^{\prime \prime}-44^{\prime \prime}$	Light brown coarse to fine SAND, some (+) Silt	medium dense	moist
4'4"	Gneiss bedrock No water encountered		
TP-3	Elevation +672		
$0-0 \times{ }^{\prime \prime}$	Dark brown Topsoil with surface debris		
0'9"-2'2"	Brown coarse to fine SAND, some Silt	medium dense	moist
2'2"	Gneiss bedrock No water encountered		

TEST PIT LOGS

TP-4	Elevation +672		
0-0'6"	Brown Topsoil		
$06^{\prime \prime}-3{ }^{\prime} 6^{\prime \prime}$	Brown coarse to fine SAND, and (-) Silt, some coarse to fine Gravel	medium dense	moist
3'6"	Gneiss bedrock No water encountered		
TP-5	Elevation +670		
0-0'7'	Brown Topsoil		
$0^{\prime} 7^{\prime \prime}-3$ ' $8^{\prime \prime}$	Light brown coarse to fine SAND, some (+) Silt	medium dense	moist
3'8'-4'9"	Brown coarse to fine SAND, some Silt (completely weathered gneiss)	dense	moist
4'9"	Gneiss bedrock No water encountered		

TEST PIT LOGS

TP-6	Elevation +672		
0-0'10''	Brown Topsoil		
$0^{\prime} 10^{\prime \prime}-2^{\prime} 10^{\prime \prime}$	Light brown coarse to fine SAND, some (-) Silt, little coarse to fine Gravel	medium dense	moist
2'10"-4'7"	Brown coarse to fine SAND, some Silt, little coarse to fine Gravel (completely weathered gneiss)	dense	moist
4'7'	Gneiss bedrock No water encountered		
TP-7	Elevation +620		
0-0'9'	Brown Topsoil		
0'9'-2'8''	Brown coarse to fine SAND, some Silt, trace coarse to fine Gravel	medium dense	moist
2'8"	Probable Gneiss bedrock		
	Test pit abandoned No water encountered		
TP-8	Elevation +614		
0-0'8"	Dark brown Topsoil		
$0^{\prime} 8^{\prime \prime}-5{ }^{\prime}{ }^{\prime \prime}$	Mottled orange brown, gray coarse to fine SAND, and (-) Silt	medium dense	moist
	Groundwater encountered @ 4'1"	slow inflow	

TEST PIT LOGS

TP-9	Elevation +628		
0-0'4"	Topsoil		
$0^{\prime} 4^{\prime \prime}-6^{\prime} 9^{\prime \prime}$	FILL (Brown coarse to fine SAND, some (+) Silt, some (+) coarse to fine Gravel, with cobbles and boulders)	medium dense	moist
6'9'	FILL (Gray coarse to fine SAND, trace (+) Silt)	medium dense	moist
	Possible cover over for utility Test pit was abandoned		
	No water encountered		
TP-10	Elevation +625		
0-0'4"	Topsoil		
$0^{\prime} 4^{\prime \prime}-3^{\prime} 0^{\prime \prime}$	FILL (Boulders with topsoil)	loose	moist
$3^{\prime} 0^{\prime \prime}-8^{\prime} 0^{\prime \prime}$	Brown coarse to fine SAND, some (+) Silt	medium dense	moist

No water encountered

TEST PIT LOGS

TP-11	Elevation +642		
$0-0,6 "$	Brown Topsoil		
0'6"-3'9'	Brown coarse to fine SAND, some Silt, little coarse to fine Gravel, with occasional cobbles and boulders	medium dense	moist
3'9"-6'0"	Brown coarse to fine SAND, little (+) Silt, some coarse to fine Gravel (completely weathered gneiss)	dense	moist
6'0"	Weathered Gneiss bedrock No water encountered		
TP-12	Elevation +635		
0-0'6"	Brown Topsoil		
$0^{\prime} 6^{\prime \prime}-5^{\prime} 0{ }^{\prime \prime}$	FILL (Brown coarse to fine SAND, some (+) Silt, little (-) coarse to fine Gravel, with trace of debris)	loose	moist
5'0"-6' ${ }^{\prime \prime}$	Orange brown, gray coarse to fine SAND and Silt	dense	moist
	Refusal on boulder No water encountered		

TEST PIT LOGS

TP-13	Elevation +636		
0-0'9"	Brown Topsoil with roots		
0'9"-6'3"	Brown coarse to fine SAND, and Silt, little coarse to fine Gravel	medium dense	moist
6'3"-7'5"	Brown coarse to fine SAND, some (+) Silt, little (-) coarse to fine Gravel	dense	moist
7'5"	Gneiss bedrock Groundwater encountered @ 4'10"	slow inflow	
TP-14	Elevation +625		
0-0'3"	Brown Topsoil		
$0{ }^{\prime} 3^{\prime \prime}-3^{\prime} 4^{\prime \prime}$	FILL (Gray brown coarse to fine SAND, some Silt, little coarse to fine Gravel, with cobbles and boulders)	loose	moist
$3^{\prime} 4^{\prime \prime}-5^{\prime} 0 \prime$	FILL (Brown coarse to fine SAND, little Silt)	medium dense	moist
5'0"	Gneiss bedrock No water encountered		

TEST PIT LOGS

TP-15	Elevation +668		
0-0'3"	Brown Topsoil		
$0^{\prime} 3^{\prime \prime}-1{ }^{\prime} 8^{\prime \prime}$	Brown coarse to fine SAND, some (+) Silt, some (-) coarse to fine Gravel, with occasional cobbles and boulders	medium dense	moist
$1{ }^{\prime \prime}{ }^{\prime \prime}$	Gneiss bedrock No water encountered		
TP-16	Elevation +651		
0-0'8"	Dark brown Topsoil		
$0^{\prime} 8^{\prime \prime}-1 \times 10^{\prime \prime}$	FILL (Brown coarse to fine SAND, some (+) Silt, trace medium to fine Gravel, with cobbles)	medium dense	moist
$1^{\prime} 10^{\prime \prime}-4 \prime 10^{\prime \prime}$	Brown coarse to fine SAND, some (+) Silt, trace medium to fine Gravel	medium dense	moist
$4^{\prime} 10^{\prime \prime}$	Gneiss bedrock No water encountered		

TEST PIT LOGS

TP-17 Elevation +655
0-0'3" Topsoil
$0^{\prime} 3^{\prime \prime}-1$ ' $0^{\prime \prime} \quad$ Brown coarse to fine SAND, some (+)
Silt, little coarse to fine Gravel medium dense moist
Encountered irrigation pipes
Test pit abandoned
No water encountered

TP-18 Elevation +670
0-0'10" Brown Topsoil
0'10"-7'0" Brown SILT and, coarse to fine Sand, little (-) medium to fine Gravel medium dense moist

TEST PIT LOGS

TP-19

0-2'5" FILL (Brown coarse to fine SAND, some Silt, some coarse to fine Gravel,
with topsoil, cobbles, boulders)
loose
moist
2'5"-7'0" Brown coarse to fine SAND, some Silt, little coarse to fine Gravel

No water encountered

TP-20

0-0'6" Brown Topsoil
0'6"-4'3" Brown, orange brown coarse to fine SAND, some Silt, little coarse to fine Gravel

4'3"- $8^{\prime} 0^{\prime \prime} \quad$ Orange brown coarse to fine SAND, little (-) Silt, some coarse to fine Gravel, with occasional cobbles
medium dense moist
medium dense moist

No water encountered

Brynwood Club Development
Bedford Road
Town of North Castle, NY
(12-175)
13 September 2013

TEST PIT LOGS

TP-21

$0-0^{\prime} 6^{\prime \prime}$	Dark brown Topsoil		
$0^{\prime} 6^{\prime \prime}-1 ' 4 \prime$	FILL (Brown coarse to fine SAND, some (-) Silt, trace medium to fine Gravel, with few roots)	medium dense	moist
$1^{\prime} 4^{\prime \prime}-77^{\prime} 0^{\prime \prime}$	Brown coarse to fine SAND, little Silt, trace (+) coarse to fine Gravel, with occasional cobbles	medium dense	moist
$77^{\prime} 0 \prime$	Possible weathered bedrock		

No water encountered

TP-22

0-1'6" Dark brown Topsoil, with roots
1'6"-2'8" Mottled gray brown, orange brown Clayey SILT, little medium to fine Sand
medium dense moist
2'8"-3'6" Brown coarse to fine SAND, some (+) Silt, little medium to fine Gravel
medium dense moist
3'6"-6'0' Brown coarse to fine SAND, little (+) Silt, come coarse to fine Gravel

6'0"-7'6" Gray brown SILT little, coarse to fine Sand, trace medium to fine Gravel

Groundwater encountered @ 4'6"
medium dense wet
medium dense wet
slow inflow

TEST PIT LOGS

TP-23

0-0'7" Brown Topsoil
$0^{\prime} 7^{\prime \prime}-3^{\prime} 10^{\prime \prime} \quad$ Brown coarse to fine SAND, and (-) Silt, little (-) coarse to fine Gravel
dense
moist

3'10" Weathered bedrock
No water encountered

TP-24

0-0'8" Brown Topsoil
0'8"-6' $8^{\prime \prime} \quad$ Brown coarse to fine SAND, some (+) Silt, little (-) coarse to fine Gravel, with occasional cobbles

6'8" Possible weathered bedrock or boulder
No water encountered

TP-25

0-0'4" Brown Topsoil
$0^{\prime} 4^{\prime \prime}-33^{\prime} 4^{\prime \prime} \quad$ Brown coarse to fine SAND, and Silt, trace medium to fine Gravel

3'4" Possible bedrock or boulder
No water encountered
medium dense moist
medium dense moist
medium dense moist

TEST PIT LOGS

TP-26

$0-0 \cdot 6$ "	Brown Topsoil	
0'6"-2' ${ }^{\prime \prime}$	FILL (Brown coarse to fine SAND, some (-) Silt, little coarse to fine Gravel, with cobbles and boulders)	medium dense
$2^{\prime} 8^{\prime \prime}-4^{\prime} 0{ }^{\prime \prime}$	FILL (Brown Topsoil, with trace roots)	
4'0"-5'6"	FILL (Dark gray brown Clayey SILT, and, coarse to fine Sand, with trace roots, trace debris)	medium stiff
5'6"-8'0"	Brown coarse to fine SAND, and (-) Silt, trace coarse to fine Gravel	medium dense

No water encountered

TP-27

0-0'9" Brown Topsoil, with roots
0'9"-4'4" Light brown coarse to fine SAND, little Silt, trace coarse to fine Gravel medium dense dry

4'4" Probable weathered bedrock

No water encountered

Brynwood Club Development

Bedford Road
Town of North Castle, NY
(12-175)
13 September 2013

TEST PIT LOGS

TP-28

0-0'4" Brown Topsoil
0'4"-8‘6" FILL (Brown coarse to fine SAND, little Silt, little coarse to fine Gravel, with organics, debris)
$8^{\prime} 6^{\prime \prime}-9^{\prime} 0^{\prime \prime} \quad$ FILL (Gray coarse to fine SAND, some Silt, little coarse to fine Gravel, with organics)
loose
moist
medium dense wet
Groundwater encountered @ $8^{\prime} 0^{\prime}$

Borehole Permeability Test (B-4)

Ground Surface Elevation: +628.0
Top of Casing Elevation: +631.5
Bottom of Test Hole Elevation: +621.0
Test Hole Depth from Ground Surface Elevation: 7’0" (84")

Pre-Soak:

Start Date: 18 Dec 2012
End Date: 19 Dec 2012

Time: 1545 Water Level*: 4’4"
Time: 0900 Water Level*: 7’1"

33" drop $\mathrm{H}_{2} \mathrm{O}$ in 1035 minutes (17 hr .15 min.) $=\underline{0.03 \text { inches } p e r ~ m i n u t e ~}$

Test:

Start Date: 19 Dec 2012
End Date: 19 Dec 2012

Time: 1000 Water Level*: 4’3"
Time: 1515 Water Level*: 5'3.5"
$12.5 "$ drop $\mathrm{H}_{2} \mathrm{O}$ in 315 minutes (5 hr .15 min.) = 0.04 inches per minute

Time	Water Level*	Interval Water Level Drop (Inches)	Cumulative Water Level Drop (Inches)
1000	$4^{\prime} 3^{\prime \prime}$	0	0
1100	$4^{\prime} 6^{\prime \prime}$	3	3
1200	$4^{\prime} 8^{\prime \prime}$	2	5
1300	$4^{\prime} 10^{\prime \prime}$	2	7
1400	$5^{\prime} 1^{\prime \prime}$	3	10
1515	$5^{\prime} 3.5^{\prime \prime}$	2.5	12.5

Water Level* - Depth below top of casing (elevation +631.5)

Percolation Test P-1

(Elevation +620)
Test hole depth 42 " from ground surface elevation

Pre-Soak

$0-10 \mathrm{~min}, 22$ " drop of H2O (pipe drained)
22 " drop H2O in 10 minutes $=2.20$ inches per minute
Test Run \#1
$5 \mathrm{~min}, 15 "$ drop H2O (re-filled pipe)
Test Run \#2
5 min, 14" drop H2O (re-filled pipe)
Test Run \#3
5 min, 12" drop H2O (re-filled pipe)

Final Test Reading

Start @ 1245, 14" from top of pipe Finish @ 1300, 36" drop from top of pipe (pipe drained) 22 "drop H2O in 15 minutes $=1.46$ inches per minute

Percolation Hole P-2

(Elevation + 612)

Test hole depth 20 " from ground elevation
Groundwater @ 0'6" below surface
Percolation test unable to be performed

Percolation Test P-3

(Elevation + 616)
Test hole depth 32 " from ground surface elevation

Pre-Soak

0-24 min, 17" drop of H2O (pipe drained)
17 " drop H2O in 24 minutes $=0.71$ inches per minute
Test Run \#1
$5 \mathrm{~min}, 5^{\prime \prime}$ drop H2O (re-filled pipe)
Test Run \#2
5 min, 5" drop H2O (re-filled pipe)
Test Run \#3
5 min, 4" drop H2O (re-filled pipe)

Final Test Reading

Start @ 1535, 15" from top of pipe
Finish @ 1605, 28" drop from top of pipe
13 " drop H2O in 30 minutes $=0.43$ inches per minute

Percolation Hole P-4

(Elevation + 615)

Test hole depth 24 " from ground elevation
Groundwater @ 1'10" below surface
Percolation test unable to be performed

April 26, 2022
Town of North Castle Planning Board
17 Bedford Road
Armonk, NY 10504
Attention: Mr. Christopher Carthy, Chairman and Members of the Planning Board

RE: The Summit Club at Armonk
Sewage Treatment Plant Replacement
SCTM: 101.2-1-28.1 \& 28.2
R\&M No. 2021-201

Dear Chairman Carthy and Members of the Planning Board:
Enclosed herewith for your review and comment, please find the Engineering Design Report describing the proposed replacement and expansion of the existing sewage treatment plant (STP) for the anticipated development of The Summit Club at Armonk, formerly known as Brynwood Golf and Country Club.

In addition to the Engineering Design Report, the Short Environmental Assessment Form prepared for the STP has been included in the submission package. Both referenced documents have been concurrently submitted to the NYS Department of Environmental Conservation (NYS DEC) for the State Pollutant Discharge Elimination System (SPDES) review process required to obtain the proposed STP's discharge permit. Preparation and submission of the technical plans and specifications to the Planning Board and Westchester County Department of Health will be subsequent to NYS DEC conceptual approval of the report.

If you have any questions regarding the above or require any additional information, please do not hesitate to contact us.

Sincerely,
R\&M Engineering

Matthew P. Scheiner, P.E.
Partner
MPS/snm
Encl.
cc: Jeffrey Mendell - Summit Club Partners, LLC (via email)
Paul Sysak, RLA, ASLA - JMC Site Development Consultants (via email)
David Lombardi, P.E. - JMC (via email)

50 Elm Street

LETTER OF TRANSMITTAL

Town of North Castle Planning Board		DATE: R\&M No: REF:	April 28, 2022			
17 Bedford Road			2021-201			
Armonk, NY 10504			The Summit Club at Armonk			
Attn: Christopher Carthy, Chairman						
CC:						
VIA: \square Fe	Ex \square Mail \square Messenger		\square Pick-up	囚 Other		
Quantity	Desc			Sheet No.	Revision	
1	Cover Letter			1 of 1	-	
1	Engineering Report			1-149	-	
1	Short EAF			4 pages	-	

THESE ARE TRANSMITTED as checked below:
\boxtimes For approval
\square Approved as submittedResubmit \qquad copies for approval
\square For your useApproved as notedSubmit \qquad copies for distributionAs requestedReturned for correctionsReturn \qquad corrected printsFor review and commentOther: \qquad \square Prints returned after loan to us
REMARKS:

Short Environmental Assessment Form

 Part 1 - Project Information

 Part 1 - Project Information}

Instructions for Completing

Part 1 - Project Information. The applicant or project sponsor is responsible for the completion of Part 1. Responses become part of the application for approval or funding, are subject to public review, and may be subject to further verification. Complete Part 1 based on information currently available. If additional research or investigation would be needed to fully respond to any item, please answer as thoroughly as possible based on current information.

Complete all items in Part 1. You may also provide any additional information which you believe will be needed by or useful to the lead agency; attach additional pages as necessary to supplement any item.

4. Check all land uses that occur on, are adjoining or near the proposed action:

| \square Urban \square Rural (non-agriculture) | \square Industrial | |
| :--- | :--- | :--- | :--- | :--- |
| \square | Commercial \square | Residential (suburban) |
| \square Forest \square Agriculture | \square Aquatic \square | Other(Specify): Institutional, open space, golf course. |
| \square Parkland | | |

Part 1 / Question 7 [Critical Environmental No
Area]

Part 1 / Question 12a [National or State No Register of Historic Places or State Eligible Sites]
Part 1 / Question 12b [Archeological Sites] Yes
Part 1 / Question 13a [Wetlands or Other Yes - Digital mapping information on local and federal wetlands and Regulated Waterbodies] waterbodies is known to be incomplete. Refer to EAF Workbook.
Part 1 / Question 15 [Threatened or No Endangered Animal]
Part 1 / Question 16 [100 Year Flood Plain] Yes
Part 1 / Question 20 [Remediation Site] No

ENGINEERING REPORT

For
THE SUMMIT CLUB AT ARMONK Sewage Treatment Plant Replacement
Armonk
Town of North Castle
Westchester County, NY 10504

R\&M Job No.: 2021-201

Prepared for
Summit Club Partners, LLC
568 Bedford Road (NY-22)
Armonk, NY 10504

FOREWORD

This Engineering report has been prepared in compliance with the requirements of the New York State Design Standards for Intermediate Sized Wastewater Treatment Systems (issued by New York State Department of Environmental Conservative (NYSDEC)), requirements of Chapter 873, Article VIII of the Westchester County Sanitary Code and in general follows the guidelines of the Recommended Standards For Wastewater Facilities (Ten State Standards).

This Engineering Report has been prepared to address the complete replacement of the existing Sewage Treatment Plant (STP) to serve the proposed redevelopment of the property to update the existing golf course with a new clubhouse, amenities complex, and residential community comprised of 72 townhomes. The parcel for The Summit Club at Armonk project is located east of Interstate 684 and approximately 720 feet north of Blair Road in Armonk, Town of North Castle, New York.

TABLE OF CONTENTS

SECTION
FOREWORD
I GENERAL INFORMATION 3
II INTRODUCTION 4
III PROPOSED TREATMENT PLANT CAPACITY 5
IV INFLUENT SEWAGE CHARACTERISTICS 7
V EFFLUENT REQUIREMENTS 8
VI TREATMENT OPTIONS 9
VII TREATMENT FACILITY DESIGN 11

APPENDICES

APPENDIX A -

APPENDIX B -

APPENDIX D -

APPENDIX E -

APPENDIX F -
FIGURES

DRAWING NO

DRAWING NO. 2

DRAWING NO. 3

APPENDIX C - MANUFACTURER'S PROCESS CALCULATIONS

STP SITE PLAN
SOIL BORING REPORT

PUMP PERFORMANCE CURVES

BLOWER PERFORMANCE DATA

DISINFECTION EQUIPMENT CUTS

SAMPLING LOCATIONS

HYDRAULIC PROFILE

MANUFACTURER'S STP LAYOUT
(All Drawings are located at the end of this document.)

SECTION I

GENERAL INFORMATION

Project Name:	The Summit Club at Armonk STP Replacement
Applicant:	Summit Club Partners, LLC c/o Mr. Jeffrey Mendell 568 Bedford Road Armonk, New York 10504
Project Description:	The applicant proposes to redevelop the existing golf course to also include 72 townhouse units, clubhouse, and a new amenities complex including a pool, spas, restaurant, and bar and lounge. The existing sewage treatment plant (STP) will be replaced, with the STP relocated and capacity upsized to meet the treatment and disposal needs of the golf course and proposed community as well as additional future expansion of the residential space.
Project Location:	The total site area where The Summit Club at Armonk development is proposed is 156.29 acres at 568 \& 570 Bedford Road in Armonk, NY. The parcel for the Summit Club redevelopment is located east of Interstate 684 and approximately 720 feet north of Blair Road in Armonk, Town of North Castle, New York.
Consulting Engineer:	Robinson \& Muller Engineers, P.C. 50 Elm Street Huntington, N.Y. 11743 Phone: (631) 271 - 0576, Fax: (631) 271-0592 E-Mail: MScheiner@rmengineering.com

SECTION II

INTRODUCTION

General

This Engineering Report has been prepared for The Summit Club at Armonk project, the development of a housing community of 72 townhomes and golf and country club. There are also future plans for expansion of the residential complex with additional townhomes and private guest cottages. A projected flow of $45,000 \mathrm{gpd}$ shall be used as the basis of design when accounting for contributions to the existing STP from the proposed and potential future development. The project site is the Summit Club golf course in Armonk, Town of North Castle, New York.

The total project site area for the Summit Club development is 156.29 acres. The existing STP is situated on the site between the ninth hole green and fairway bunker within the existing framed building. This building will be used in the redevelopment as an equipment storage building. As such, a replacement STP is proposed within the hillside between the existing driveway to the existing STP building and the south side of the existing driving range.

Project Site

The overall existing site where the STP will be located varies in elevation from approximately 640 feet above mean sea level (AMSL) in the northeast portion of the property to 400 feet AMSL in the western portions of the property. The STP will be in the southeast portion of the property where the ground surface is proposed to be approximately 534-574 feet AMSL. Based on the subsurface soil and foundation investigation report by Carlin-Simpson \& Associates in Appendix A, groundwater was only encountered in one of ten borings taken and four of eleven test pits excavated, reflecting variation in the location of long-term water table at the project site. Based on the information available from the investigation, it is assumed that the flow direction in the project site area is generally to the west.

The subject parcel for the STP and residential complex is a part of lot 101.02-1-28.2 (568 Bedford Road) and the golf course is on parcel 101.02-1-28.1 (570 Bedford Road). There are fourteen (14) currently private wells onsite, which are at least 50 feet away from the STP outfall line. The STP shall be serviced by a dedicated 1 " water service line that runs from the proposed potable water treatment building adjacent to the existing STP building.

SECTION III

PROPOSED TREATMENT PLANT CAPACITY

SANITARY SEWAGE FLOW

The average daily design flow for sewage is the average of the daily volumes of sewage to be received at the STP for a continuous twelve (12) month period. For the community and golf club, the flow is determined by the criteria from Table B3 - Typical Per-Unit Hydraulic Loading Rates from the Department of Environmental Conservation (NYS DEC) "Design Standards for Wastewater Treatment Works, Intermediate Sized Sewage Facilities" (2014 Edition) as follows:

1.	Townhomes	162 Bedrooms	@ 110 gpd/Bedroom	=	17,820 gpd
2.	Bar \& Grill	35 Seats	@ 16 gpd/Seat*	$=$	560 gpd
3.	Restaurant	252 Seats	@ 28 gpd/Seat*	$=$	7,056 gpd
4.	Golf Tournament	144 Golfers	@ 16 gpd/Golfer*	$=$	2,304 gpd
5.	Country Club	20 Employees	@ 12 gpd/Employee*	$=$	240 gpd
6.	Golf Course (GC)	15 Employees	@ 12 gpd/Employee*	$=$	180 gpd
7.	Seasonal GC Staff	12 Bedrooms	@ 60 gpd/Bedroom*	$=$	720 gpd
8.	Pool	257 Swimmers	@ 8 gpd/Swimmer*	$=$	2,053 gpd
9.	Spas	24 Swimmers	@ 8 gpd/Swimmer*	$=$	192 gpd
10.	Excess Pool Deck	170 Swimmers	@ 8 gpd/Swimmer*	$=$	1,363 gpd
11.	STP Equipment Washdown/Lab	-	55 gpd	$=$	55 gpd
			Proposed Total Flow	$=$	32,543 gpd
	Future Total Flow (Including Add'tl Guest Cottages + Townhomes)			$=$	8,360 gpd
	Total Average Daily Design Flow			$=$	40,903 gpd
	SAY			$=$	45,000 gpd

*These identified per-unit hydraulic loading rates in the above table have been reduced by 20% because they follow the guidelines set in the NYS DEC design standards for establishments with water-saving plumbing fixtures.

In the table above, items 1-9 result in a proposed flow of $32,543 \mathrm{gpd}$ and the breakdown also includes planned future flows with a maximum contribution of $12,457 \mathrm{gpd}$. Therefore, a maximum average daily design flow of $45,000 \mathrm{gpd}$ will be used to size the STP for the purposes of this report.

The State Pollutant Discharge Elimination System (SPDES) Permit No. 0069299 for the existing STP established an effluent limitation for flow of 0.016 MGD ($16,000 \mathrm{gpd}$), while the actual flows are minimal and taken care of with temporary facilities while the golf course is closed for renovations. Since this report will evaluate and involve the complete replacement of the existing STP, the flow through the STP is proposed to increase to $45,000 \mathrm{gpd}$. With the existing discharge permit being expired and the increase in flow, a new SPDES Permit will be obtained from the NYS DEC as required.

In accordance with "Figure 1" of the Ten State Standards, the peak hourly flow for a population of approximately $600(45,000 \mathrm{gpd} \div 75 \mathrm{gpd}$ per person) is 3.93 times the average daily flow rate. Peak hourly flow is therefore calculated to be $45,000 \mathrm{gpd} \times 3.93$ $=176,850$ gpd (122.81 gpm , say 123 gpm).

SECTION IV

INFLUENT SEWAGE CHARACTERISTICS

The standard influent untreated sewage design characteristics provided in the New York State Department of Environmental Conservation (NYS DEC) "Design Standards for Wastewater Treatment Works, Intermediate Sized Sewage Facilities" (2014 Edition) are as follows:

BOD 5 :
TSS:
TP:
Ammonia:
FOG:
$155-286 \mathrm{mg} / \mathrm{L}$
$155-330 \mathrm{mg} / \mathrm{L}$
$6-12 \mathrm{mg} / \mathrm{L}$
$4-13 \mathrm{mg} / \mathrm{L}$
$70-105 \mathrm{mg} / \mathrm{L}$

Based on the above influent sewage characteristics and influent flow of 45,000 gallons per day, the influent loads that the expanded STP shall be capable of treating have been calculated as follows:
lbs. of pollutants $=\mathrm{mg} / \mathrm{L}$ pollutant $\times 8.34 \mathrm{lb}$. / gal. x flow (Q) in gals. / day $\times 10^{-6}$

BOD $_{5}:$	$240 \mathrm{mg} / \mathrm{L} \times 8.34 \mathrm{lb} . / \mathrm{gal} . \times 45,000 \mathrm{gpd} \times 10^{-6}$	$=$	90.07	$\mathrm{lb} . \mathrm{BOD}_{5} /$ day
TSS:	$240 \mathrm{mg} / \mathrm{L} \times 8.34 \mathrm{lb} . / \mathrm{gal} . \times 45,000 \mathrm{gpd} \times 10^{-6}$	$=$	90.07	$\mathrm{lb} . \mathrm{SS} /$ day
TKN:	$40 \mathrm{mg} / \mathrm{L} \times 8.34 \mathrm{lb} . / \mathrm{gal} . \times 45,000 \mathrm{gpd} \times 10^{-6}$	$=$	15.01	$\mathrm{lb} . \mathrm{TKN} / \mathrm{day}$
TP:	$8 \mathrm{mg} / \mathrm{L} \times 8.34 \mathrm{lb} . /$ gal. $\times 45,000 \mathrm{gpd} \times 10^{-6}$	$=$	3.00	$\mathrm{lb} . \mathrm{TP} / \mathrm{day}$

SECTION V

EFFLUENT REQUIREMENTS

The treated effluent from the proposed Summit Club community and golf club will discharge to surface water, an onsite tributary to Byram River classified by NYS DEC as a Class D stream. Class D streams do not typically support any uses for drinking water, public swimming, fishing or fish propagation due to inconsistencies in flow and effluent dilution ratio. Therefore, the receiving tributary is classified as an "intermittent stream," which has typical effluent limits as specified in Table B-4B of the NYS DEC standards.

Consequently, we expect that the State Pollutant Discharge Elimination System (SPDES) permit to align with these limits. The 30-day arithmetic average flow limit listed on the permit will be the design flow of 45,000 GPD, and the preliminary effluent limits for the parcel provided by the NYS DEC Division of Water Quality specific to the project are outlined below:

BOD $_{5}:$	$5.0 \mathrm{mg} / \mathrm{L}$ Daily Max.
TSS:	$10.0 \mathrm{mg} / \mathrm{L}$ Daily Max.
Settleable Solids:	$0.1 \mathrm{mg} / \mathrm{L}$ Daily Max.
Ammonia (Summer):	$0.9 \mathrm{mg} / \mathrm{L}$ Daily Max.
Ammonia (Winter):	$1.8 \mathrm{mg} / \mathrm{L}$ Daily Max.
Phosphorus:	$1.0 \mathrm{mg} / \mathrm{L}$ Monthly Average
Fecal Coliform:	$400 \mathrm{No}. / 100 \mathrm{~mL}$ (7-day geometric mean)
Fecal Coliform:	$200 \mathrm{No}. / 100 \mathrm{~mL}$ (30-day geometric mean)

The daily maximum limit for the Summer is applicable between June $1^{\text {st }}$ through October $31^{\text {st }}$ each calendar year, while the limit for Winter applies November $1^{\text {st }}$ through May $31^{\text {st }}$. Based on the selected Purestream Biologically Engineered Single Sludge Treatment (BESST) process for the STP replacement, the following effluent quality is anticipated:

$\mathrm{BOD}_{5:}$	$<5.0 \mathrm{mg} / \mathrm{L}$
TSS:	$<10.0 \mathrm{mg} / \mathrm{L}$
Ammonia:	$<0.9 \mathrm{mg} / \mathrm{L}$
Phosphorus:	$<1.0 \mathrm{mg} / \mathrm{L}$
Fecal Coliform:	$<200 \mathrm{No} . / 100 \mathrm{~mL}$ (30-day geometric mean)

The effluent quality is expected to meet or exceed the effluent requirements.

SECTION VI

TREATMENT OPTIONS

Based on density restrictions, formal sewage treatment must be provided for the proposed project. Generally, two options are available:

- Off-Site Treatment and
- On-Site Treatment.

Off-Site Treatment

Off-site treatment requires that there be an existing STP which:

- is sufficiently close to the project site to allow for economical transfer of sanitary sewage flow from the project site to the host STP site;
- has sufficient uncommitted excess capacity for the expected proposed and future sanitary sewage flow (if any); and
- is capable of treating the sewage to the required effluent quality.

After reviewing the site and the surrounding area, no STP sites were found that could potentially serve as an optimal alternative to replacing the existing STP and have the capacity to receive sewage from the Summit Club golf course and residential complex, and therefore we have concluded that it is not feasible to use an off-site treatment option.

On-Site Treatment

Some onsite treatment plants use extended aeration process or Rotating Biological Contactors (RBCs) followed by a deep bed denitrification filter(s). Other STPs use Sequencing Batch Reactors (SBR), Membrane Bio-Reactors (MBR), and the Biologically Engineered Single Sludge Treatment (BESST) process.

The BESST process was selected for the project based upon its record of process stability and ability to consistently achieve the NYS DEC \& Westchester County sanitary sewage design goals for treatment of sanitary sewage.

Sanitary sewage will be transported to the STP from the residences and amenities complex via an 8" PVC gravity collection and conveyance system designed by JMC, PLLC.

Description of Selected BESST Treatment Process:

The BESST process is a continuous flow modified extended aeration process. Sewage enters first into the anoxic chamber where it mixes with Return Activated Sludge (RAS) from the clarifier. The nitrogen removal process is completed here as nitrite $\left(\mathrm{NO}_{2}-\mathrm{N}\right)$ and nitrate $\left(\mathrm{NO}_{3}-\mathrm{N}\right)$ produced in the aeration zone are converted to nitrogen gas $\left(\mathrm{N}_{2}\right)$. Some of the influent BOD_{5} is consumed in this denitrification process. The dissolved oxygen (DO) level is maintained below $0.2 \mathrm{mg} / \mathrm{l}$, and submerged mixers keep mixed liquor suspended solids (MLSS) in suspension.

The mixed liquor is transferred by gravity from the anoxic chamber to the far end of the aeration chamber through a submerged transfer pipe. BOD 5 removal and nitrification take place here as the mixed liquor is aerated by fine bubble air diffusers. The aerated mixed liquor then flows into the bottom of the clarifier by means of a baffle.

In the clarifier, solids settle to the bottom as the supernatant flows over the effluent weir and is gravity discharged to the effluent recharge system. Waste Activated Sludge (WAS) sludge is returned to the sludge holding tanks.

SECTION VII

TREATMENT FACILITY DESIGN

Drawing No. 1 - STP Site Plan shows the proposed location of the STP and effluent piping connecting into the existing outfall line that discharges to surface water. Drawing No. 2 Hydraulic Profile illustrates the proposed hydraulic flow profile of sewage and sludge flows through the STP through the existing sewer manhole that will be used as the connection point into the outfall line.

The proposed sewage treatment and disposal facilities will consist of an equalization tank, a 45,000 gpd BESST process train including a sludge holding tank, an influent screening device and constant head box on a precast concrete access slab, a proposed flow metering effluent manhole, approximately 300 feet of 6 " PVC piping to reach the existing outfall piping, and a proposed $20-\mathrm{ft}$ by $35-\mathrm{ft}$ masonry STP building containing a tertiary filter and two (2) UV treatment units. Each step of the process and the required support systems are described below.

All side walls, end walls, bottom, and partitions of the BESST process and equalization tanks shall be of structural grade ASTM-A36 steel plate and all internal piping will be constructed of type 316 stainless steel. There shall be full grating over each of the BESST tanks, including the tertiary filter within the building, and two (2) stairs for Operator access to the BESST process tank and tertiary filter that extend above grade. The perimeter of the process tank and filter will be equipped with galvanized steel safety handrails and kickplate at top of tank elevation.

Influent Equalization Tank

The 8" diameter PVC gravity sewer line has a proposed invert into the equalization tank set at 4.25 feet below the top of tank elevation. The existing flow equalization tank will be equipped with two (2) Goulds Model 3887 non-clog submersible pumps to convey sanitary sewage out of the tank to the anoxic tank internal to the BESST process train. Each pump will have the capacity to handle at a minimum the peak influent flow of 45 gpm at 13.26 ft . TDH. Pump performance curves can be found in Appendix B.

The equalization volume in the tank will be provided between the lead pump "off" elevation to the lag pump "on" elevation, consisting of a proportion of the daily average flow, sludge holding tank volume, and tertiary filter volume.

$$
\begin{aligned}
& \text { Equalization Volume Required }= \begin{array}{l}
20 \% \text { of Daily Average Flow }+25 \% \text { Sludge } \\
\\
\\
\text { Holding Tank Volume }+5 \% \text { Daily Flow Filter }
\end{array} \\
& \text { Volume } \\
&= 45,000 \times 0.20+13,757 \times 0.25+45,000 \times \\
& 0.05 \\
& \text { Total Required Equalization }= 14,689.25 \text { gallons (} 1,963.80 \text { cu. ft.) } \\
& \text { Volume }
\end{aligned}
$$

The minimum vertical difference between "Lag Pump On" float level elevation and the "Lead Off" float level elevation shall be 5.0 ft . This will provide a total equalization storage volume of 15,051 gallons, which is well above the minimum calculated above.

The applicable criteria of Chapter 60 "Screening, Grit Removal and Flow Equalization" of the Ten State Standards including general criteria and the special considerations and standards for flow equalization structures. The $34^{\prime}-0^{\prime \prime} \times 12^{\prime}-0^{\prime \prime} \times 7^{\prime}-0^{\prime \prime}$ SWD equalization tank has full grating over the tank with removable panels for operator access. Operation of the pumps will be controlled by use of a pressure transducer, and all pressure transducer and tank elevations are shown below:

Float	Height
Top of Equalization Tank	585.75
Approximate Grade El.	585.50
Influent Line El.	581.50
High Water Level Alarm	581.25
Lag Pump On	580.75
Lag Pump Off	578.75
Lead Pump On	577.75
Lead Pump Off	575.75
Low Water Level Alarm	575.25
Bottom of Equalization Tank	573.75

Table - Equalization Pump Float Levels

Influent Screening Device

The two (2) explosion proof submersible raw sewage pumps specified in the previous section will pump the sewage from the equalization tank to a covered fine bar screen via two (2) $3^{\prime \prime}$ diameter force mains. The bar screen shall be mounted on the precast concrete access slab that is located between the proposed equalization and BESST process tank. See Drawing No. 1 - STP Site Plan for proposed location of the access slab. The screen
will have the capacity to process the flow from both equalization pumps in the event that they run simultaneously. The screened solids will be disposed of manually. The selected screening device is a model MB 260T by Or-Tec, Inc. with a 2 mm screen opening. The screened influent will pass through a constant head box prior to being conveyed to the anoxic tank via gravity.

Anoxic Compartment

See Appendix C - Manufacturer's Process Calculations for Anoxic Compartment calculations.

The equalized sewage will enter the anoxic compartment where it will mix with the return activated sludge (RAS) which is returned from the bottom of the clarifier by means of air lift pumps. This anoxic compartment will act as a selector conditioning zone for the microorganisms which will consume the pollutants in the sewage. Some of the influent BOD_{5} will be consumed by the denitrifying bacteria as they complete the nitrogen removal process (Denitrification) and convert nitrate $\left(\mathrm{NO}_{3}\right)$ to nitrogen gas (N_{2}). Two (2) electric submersible mixers on slide rail assemblies with manual hoists will be provided within the anoxic compartment to prevent settling. The mixed liquor will flow into the far end of the bottom of the aeration compartment through a submerged transfer pipe.

The BESST anoxic zone will be $14^{\prime}-0^{\prime \prime}$ wide by $4^{\prime}-0^{\prime \prime}$ long (plan view at the water level), and have a $10^{\prime}-6^{\prime \prime}$ effective depth ($12^{\prime}-0^{\prime \prime}$ total sidewall depth). The total volume of the anoxic zone shared between the two trains shall be 993.85 cu.ft. ($7,434.0$ gallons) . With a design flow of 45,000 GPD, the detention time will be 3.96 hours.

Aeration Compartment

See Appendix C - Manufacturer's Process Calculations for Aeration Compartment calculations.

The mixed liquor will be aerated by a fine bubble air diffusion system to provide process oxygen and prevent solids settlement. The remaining BOD_{5} will be removed and the nitrification process which begins as ammonia $\left(\mathrm{NH}_{3}\right)$ is converted to nitrite $\left(\mathrm{NO}_{2}\right)$ and nitrate $\left(\mathrm{NO}_{3}\right)$. The mixed liquor will then flow into the bottom of each clarifier by means of a baffle design integral to the clarifier. Return sludge will be removed from the bottom of each clarifier and pumped to the anoxic zone by means of air lift pumps. Oxygen levels in each aeration compartment will be controlled by utilizing a portable hand-held D.O. monitoring probe and adjusting the manual VFD's on each blower.

The air requirement for the aeration tanks is determined by the manufacturer based on the oxygen and air consumption rates, including a safety factor of 5 scfm . The calculation is outlined below:

Air Flow Rate Required:

$$
\begin{gathered}
\text { Oxygen }=Q\left(\left(S_{O}-S_{R}\right) / 0.68\right)-1.42 P_{X}+4.57 Q\left(N_{O}-N\right) \\
\text { Oxygen }=170.33((0.24-0.0037) / 0.68)-1.42(14.004)+4.57(170.33)(0.04-0.001) \\
\text { Oxygen }=69.655 \mathrm{~kg} \mathrm{O} O_{2} / \text { day } \\
\text { Air }=O_{2}\left(\frac{c_{S}}{c_{S}-2}\right)\left(\frac{o_{K}}{0.024 a}\right) \\
\text { Air } \left.=69.655\left(\frac{8.1224}{8.1224-2}\right)\right)\left(\frac{1.30}{0.024 * 30}\right) \\
\text { Air }=166.85 \mathrm{Nm}^{3} / \mathrm{h} \\
\text { Air }=\left(166.85 \frac{\mathrm{Nm}^{3}}{h} * 35.31 \frac{\mathrm{~m}^{3}}{\mathrm{ft}^{3}} * \frac{1 \mathrm{~min}}{60 \mathrm{hr}}\right)=98.19 \mathrm{cfm}+5 \mathrm{cfm}= \\
\text { Air }=103.19 \mathrm{cfm}
\end{gathered}
$$

Therefore, for each aeration tank the required amount of air is 51.60 cfm , and the air provided for the aeration tanks will come from the main process blower. See Appendix C for a breakdown of the manufacturer's BESST calculations as well as a list of inputs for the above calculations.

Each proposed aeration compartment will be $14^{\prime}-0^{\prime \prime}$ wide by $9^{\prime}-2 \frac{1}{2}$ " long (plan view at the water level), and have a $10^{\prime}-6^{\prime \prime}$ effective depth ($12^{\prime}-0^{\prime \prime}$ total sidewall depth). The aeration volume in each treatment train will be $1,757.69$ cu.ft. ($13,147.5$ gallons), for a total volume of $3,515.37$ cu.ft. (26,295 gallons). With the design flow of 45,000 GPD, the detention time will be 14.02 hours. The combined detention time for the anoxic zones and the aeration zones will be 17.98 hrs.

Clarifier

See Appendix C - Manufacturer's Process Calculations for Clarifier calculations.
The clarifier has a triangular cross-section. Mixed liquor will enter the clarifier through the baffle at the bottom of the clarifier and flow upward. As the mixed liquor rises, heavier solids settle out, and in effect, form a blanket which filters out colloids and very fine particles. A distinct interface forms between the supernatant and the sludge blanket. An air lift pump will be used to remove the activated sludge from the bottom of the clarifier and either discharge it to the anoxic chamber or waste it to the sludge storage tanks. Nitrified return activated sludge (RAS) will be recycled to the anoxic chamber to maintain the biomass concentration required for the treatment process. The RAS rate is proposed to be 4 times the design flow rate for the STP (45,000 GPD x 4 / 1440 min /day / 2 process trains $=62.50 \mathrm{gpm}$ per process train).

Since there are two (2) sludge airlifts rated at 13 scfm each and two (2) skimmer airlifts rated at 5 scfm , the required amount of air for the airlift lines is 36 scfm . The airlift calculations from the manufacturer and performance curves are shown in Appendix C.

Periodically, waste activated sludge (WAS) will be pumped to the sludge storage tanks to control the solids retention time (SRT) of the biomass. FOG and skimmings will be transferred through the airlift system back to the sludge holding tanks. The design SRT is 29.2 days. An air lift skimmer will be used to remove floatables such as light plastics, fats and oils from the surface of the clarifier. Clarifier supernatant flows over a weir into a trough and flows by gravity to the tertiary filter.

Each clarifier will measure $14^{\prime}-0^{\prime \prime}$ wide by $11^{\prime}-0^{\prime \prime}$ long (plan view at the water level), and have a $10^{\prime}-6^{\prime \prime}$ effective depth ($12^{\prime}-0^{\prime \prime}$ total sidewall depth). Each clarifier has a volume of 811.76 cu.ft. (6,072 gallons), for a total of $1,623.53$ cu.ft. (12,144 gallons). Detention time in the clarifiers at average flow of $45,000 \mathrm{gpd}$ will be 6.48 hrs . The combined detention time for the anoxic zones, the aeration zones, and the clarifiers will be 24.46 hrs . Surface loading rate will be $146.10 \mathrm{GPD} / \mathrm{sq} . \mathrm{ft}$. ($45,000 \mathrm{gpd} /(2$ units X 154 sq.ft. per unit) and weir loading rate will be $1,607.14 \mathrm{GPD} / \mathrm{Ft}$. ($45,000 \mathrm{GPD} /\left(2\right.$ Units $\left.\mathrm{X} 14^{\prime}-0^{\prime \prime} \mathrm{L}\right)$). These values are within the limitations set forth by the Ten States Standards.

Blowers

1. Process Air / Airlift Blowers

A total of two (2) blowers, each with a minimum capacity of 148 scfm , will be provided for the aeration tanks and sludge airlifts, which is greater than the required capacity of $138.19 \mathrm{cfm}(103.19 \mathrm{cfm}+36.0 \mathrm{cfm}=138.19 \mathrm{cfm})$ for both tanks, See Appendix C - Manufacturer's Process Calculations for the aeration and airlift calculations. One (1) blower will act as the duty blower, and the standby blower will as function as a common spare for the aeration/airlift, the equalization tank, sludge holding tank, and tertiary filter. The blower selected for this duty is the Kaeser Model BB69C with a 10.0 HP motor. See Appendix D for blower performance data. Each blower will be supplied with a manual VFD control system with an electrical bypass. High and low pressure switches will be provided with manual valves to accommodate usage of the standby blower.

2. Equalization Tank / Sludge Holding Tank Air Blowers

Two (2) blowers, each with a minimum capacity of 74 scfm , will be dedicated for the equalization and sludge holding tanks. This minimum capacity is greater than the required capacities of the equalization tanks and sludge holding tank of 18.81 cfm and 55.22 cfm , respectively. The blower selected is the Kaeser Model BB52C, with a 5.0 HP motor, see Appendix D for blower performance data. Each blower will be supplied with a manual VFD control system with an electrical bypass. High and low pressure switches will be provided with manual valves to accommodate usage of the standby blower.

3. Tertiary Filter Air Blower

One (1) duty blower, with a minimum capacity of 160 scfm , will be provided for the tertiary filter, which is greater than the required capacity of 126.40 cfm , based on an air supply rate of $4 \mathrm{cfm} / \mathrm{sq}$. ft. of filter beds. The total square footprint of the proposed filter beds is 31.6 square feet. The blower selected is the Kaeser Model BB69C, with a 10.0 HP motor, See Appendix D for blower performance data. High and low pressure switches will be provided with manual valves to accommodate usage of the standby blower.

The blowers will be provided with sound enclosures and will be housed in the proposed STP control building.

Tertiary Filtration and Disinfection

To meet the stringent effluent BOD_{5} and TSS limits for the STP outlined in Section V , a dual-media, dual-bed auto backwash tertiary filter and ultraviolet disinfection will be provided following the BESST extended aeration process. The tertiary filter unit to be provided as a pre-designed unit is the PURESTREAM PST-31.5 that includes filter beds, a clear well chamber, and backwash capabilities to treat secondary effluent to meet the design limits.

Drawings of the tertiary filter unit are included in Drawing No. 3 - Manufacturer's STP Layout. All side walls, bottom, and partitions of the filter will be of structural grade $1 / 4$ " steel plate, the internal air scour lines will be Schedule 40 perforated PVC pipe, and the backwash surge and backwash pump piping is Schedule 40 PVC pipe with iron pipe fittings.

Disinfection of the effluent from the tertiary filter will be achieved using two (2) Enaqua Model M4 ultraviolet disinfection system units that will also be located in the proposed STP control building. The proposed in-line units will be installed in a flow-through configuration and fed by gravity from the filter. Isolation valves will be provided on the incoming lines to control flow in the event of maintenance, replacement, or repair work on one unit. See Appendix E regarding additional information on the UV disinfection system specified.

Effluent Flow Metering

A flow meter will be provided at a common location in the proposed 5^{\prime} diameter sampling manhole and effluent flow meter chamber. The instrumentation will provide a visual readout of instantaneous flow using a flow totalizer and a flow recorder and will be located in a dry location adjacent to the control equipment in the proposed STP control building.

Effluent Recharge

The treated effluent from the STP is discharged to Byram River from an existing outfall to the tributary located in the northwest region of the subject parcel. The replacement STP will be connected into the existing buried 6" diameter SDR-35 PVC outfall line at an existing manhole west of the existing STP building. The effluent recharge piping and structures shall remain intact downstream of the referenced manhole, and no sufficient evidence exists to warrant a modification of the existing outfall location.

Sludge Holding Tank

The sludge holding tank will be used to hold wasted sludge prior to disposal and will be provided as a part of the main treatment process tank. Sludge holding tank sizing is based on an equivalent sewage flow of 75 gpd per capita and 3 cubic feet of sludge per capita per month. For the equivalent population of 600 people ($45,000 \mathrm{gpd} \div 75 \mathrm{gpd} / \mathrm{capita}$) and 3 cubic feet of sludge per capita per month, the required tank volume is $1,800 \mathrm{cu}$.ft. (600 people $X 3$ cu.ft./capita), or 13,464.0 gallons. The sludge holding zone will measure 14'$0 "$ wide by $9^{\prime}-9$ " long (plan view at the water level) with a 10' -6 " SWD ($12^{\prime}-0^{\prime \prime}$ total sidewall depth), providing a total volume of $1,839.17 \mathrm{cu}$. ft . (13,757 gallons). This will provide 39.17 cu. ft. (293.00 gal) greater than the $1,800 \mathrm{cu}$. ft needed of sludge storage, or approximately 30.65 days of storage capacity.

Air will be supplied to the sludge holding tank at a minimum rate of 30 cfm per 1000 cu . ft . of tank volume via non-clog coarse bubble diffusers to keep the contents aerobic to avoid septic odors and contents of the sludge holding tanks in the completely mixed condition. Consequently, the total air supply rate will be as follows:

CFM	$=\quad 1,839.17 \mathbf{c u} . \mathrm{ft} . \times 30 \mathrm{cfm} / 1000 \mathrm{cu} . \mathrm{ft}$.
	$=\quad \mathbf{5 5 . 1 7} \mathbf{~ c f m}$

Sludge and scum removal will be via scavenger truck to an approved off-site treatment facility, while the sludge supernatant will be returned by gravity flow to the anoxic zone of the treatment process. Each pump provided will be the Goulds Model 3887 submersible sewage pump, which will provide a minimum capacity of 76 gpm at 14.12 ft . TDH to elevate the sludge supernatant back to the equalization tank so decanted liquid can be rescreened prior to entering the treatment tanks. The sludge decant pump will be controlled by a dedicated control panel, which will contain a start timer, a stop timer, and a float override. Pump performance curves can be found in Appendix B.

Chemical Dosing

Dosing of alum to the aeration compartments of the BESST system is required to comply with the Total Phosphorus effluent limit dictated by the SPDES permit. A suitably sized chemical metering pump and storage tank with containment will be provided.

STP Control Building

The proposed STP control building will contain the tertiary filter, two (2) UV units, five (5) blowers, and spare mechanical equipment, electrical panels and controls.

A laboratory area will be provided within the building for the Operator, which shall include an emergency eyewash and safety shower installed as per 10 State Standards requirements. The structure will provide the necessary protection of the process controls and blowers from the elements (cold weather, rain, frost) and a dry, heated environment with proper ventilation for operating personnel for operation and maintenance functions, process testing, and record-keeping. Sufficient lighting shall be provided for safe working conditions.

The laboratory area of the STP control building will provide space to store instruments and test kits for process monitoring. The instruments and test kits to be provided will include:

* Portable dissolved oxygen meter
* pH meter
* Temperature meter or thermometer
* 1-liter graduated cylinders for settleability tests
* Hach DR900 colorimeter for Ammonia, Nitrite and Nitrate Measurement

Sufficient storage within the STP control building has been allotted for tools, spare parts, and lubricants as well as drawer space for the operator to store maintenance logs and treatment plant records. Spare parts and lubricants will be provided as part of the facility construction. Required logs and records will be discussed in detail in the facility Operation and Maintenance Manual to be prepared by the Engineer of Record during the construction period.

A new asphalt driveway will be paved on the west side of the STP control building to allow for Operator and visitor parking as well as a turnaround point for sludge pump trucks.

Standby Power

A standby gas generator will provide power to all the STP equipment during utility power outages. The generator will be pad mounted outside the STP control building in a louvered enclosure and will be provided with residential grade silencer.

Miscellaneous Facility Design Features

Separation

Distances - Table B-1 "Recommended Minimum Aerial Separation Distance from Treatment Facility" of the NYS DEC standards for Intermediate Sized Wastewater Treatment Systems requires a $200-\mathrm{ft}$. minimum radial distance to existing downwind dwellings from STP treatment processes enclosed in a building. Table B-1 also requires a $150-\mathrm{ft}$. minimum separation distance from the treatment units to neighboring property lines with residential use. The above requirements are met for the replacement STP process as shown in the proposed site plan in Figure 1.

Table B-2 "Minimum Horizontal Separation Distances" presents the $50-\mathrm{ft}$. distance requirement for sewer piping from drilled wells. The existing private wells on the parcel are all located greater than 50 feet from the proposed gravity sewer piping for the replacement STP.

Water

Supply - There shall be a 1" diameter water service for the STP that taps into the water supply distribution system from the proposed water treatment plant approximately 55 ft south of the existing STP building. A reduced pressure backflow preventer will be provided on the water supply into the treatment plant to protect the community water supply from possible contamination.

Ventilation - Ventilation will be provided to maintain a dry, comfortable condition inside the control building. Six (6) air changes per hour will be provided.

Testing- The design documents will contain provisions for structure, piping and equipment testing in accordance with the NYS DEC Standards and the requirements outlined in 10 State Standards. This will include structure water tightness testing, piping pressure testing, and operational testing of equipment (including pumps, controls, and alarms).

Certifications - Manufacturers certifications of successful equipment testing and Engineer of Record certification of installation and testing will be
provided in accordance with the provisions of Sections F and G of the NYS DEC Standards.

Sampling

Locations - Wastewater samples are to be taken at the plant influent (equalization tank) and the plant effluent (flow meter chamber). The sample locations are identified in the SPDES process flow diagram presented in Appendix F - Sampling Locations.
APPENDIX A
SOIL BORING RESULTS
BY CARLIN-SIMPSON \& ASSOCIATES

Consulting Geotechnical and Environmental Engineers

61 Main Street, Sayreville, New Jersey 08872
Tel. (732) 432-5757
Fax. (732) 432-5717

Principal:
Robert B. Simpson, P.E.
Associates:
Robert H. Barnes, P.E.
Meredith R. Anke, P.E.
Kurt W. Anke
Eric J. Shaw

Brynwood Partners, LLC
c/o Corigin Holdings
505 Fifth Avenue, $22^{\text {nd }}$ Floor
New York, NY 10017

13 February 2013
Revised 16 October 2013

Attn: Ms. Megan Maciejowski
Re: Report on Subsurface Soil and Foundation Investigation
Brynwood Club Development
Bedford Road
Town of North Castle, NY (12-175)
Dear Ms. Maciejowski:
In accordance with our proposals dated 20 November 2012 and 9 September 2013 and your subsequent authorization, we have completed a Subsurface Soil and Foundation Investigation for the referenced site. The purpose of this study is to preliminarily determine the nature and engineering properties of the subsurface soil and bedrock as well as the groundwater conditions for the planned development, to recommend a practical foundation scheme, to determine the allowable bearing capacity of the site soils, and to determine the subsurface soil and groundwater conditions and soil permeability in the new stormwater management areas.

We understand that the planned construction will consist of 21 new structures, roadways, parking areas, retaining walls, tennis courts, underground utilities, and a stormwater management system. To guide us in our study, you have provided us with a site plan that indicates the existing site conditions and the location of the planned new development.

Our scope of work for this project included the following:

1. Reviewed the proposed layout, the existing site conditions, the expected soil conditions, and planned this study.
2. Retained General Borings, Inc. to advance 11 test borings at the subject site.
3. Retained Traficante Contracting Inc. to excavate 18 test pits at the subject site.
4. Inspected ten (10) supplemental test pits that were excavated at the site by Brynwood Club personnel.
5. Laid out the boring and test pit locations in the field, provided full time inspection of the explorations, obtained soil samples, and prepared detailed logs and a Boring and Test Pit Location Plan.
6. Performed three (3) field percolation tests and one (1) borehole permeability test.
7. Performed soil identification tests on selected soil samples in our laboratory.
8. Analyzed the field and laboratory test data and prepared this report containing the results of this study.

SITE DESCRIPTION

The project site is located on the Brynwood Club property on Bedford Road in North Castle, Westchester County, New York. The subject property is currently occupied by a golf club with a clubhouse building, tennis courts, and a few smaller out-structures. The proposed development area is also occupied by an asphalt paved parking lot and driveways as well as grass lawn areas and wooded areas. There are numerous existing underground utilities located throughout the property.

Within the proposed development area, the existing site grades vary from approximately elevation +610.0 at the southwest corner of the subject site and the westernmost portion of the site, to elevation +640.0 on the east side of the existing clubhouse building, to elevation +674.5 in the existing tennis court area in the northeastern portion of the property.

SUBSURFACE CONDITIONS

To determine the subsurface soil, bedrock, and groundwater conditions, we advanced 11 test borings and 28 test pits at the site. The borings and test pits were performed at the locations shown on the enclosed Boring and Test Pit Location Plan. Detailed logs have been prepared and are included in this report. Our field engineer visually identified all soil samples and selected soil samples were tested in our laboratory. The results of these tests are also included in this report.

Soil

The soil descriptions shown on the boring and test pit logs are based on the Burmister Classification System. In this system, the soil is divided into three components: Sand (S), Silt (\$) and Gravel (G). The major component is indicated in all capital letters, the
lesser in lower case letters. The following modifiers indicate the quantity of each lesser component:

$\frac{\text { Modifier }}{\text { trace }(\mathrm{t})}$	$\frac{\text { Quantity }}{0-10 \%}$
little (l)	$10 \%-20 \%$
some (s)	$20 \%-35 \%$
and (a)	$35 \%-50 \%$

The subsurface soil conditions observed in the borings and test pits can be summarized as follows:

Stratum 1 The surface layer at most of the boring and test pit locations consists of

Topsoil
Stratum 2 Beneath the topsoil and at the surface in three (3) of the borings (B-6, B-8, Existing Fill

Stratum 3

Sandy Silt or
Silty Sand brown topsoil that typically ranges from about 0 ' 3 '" to $1^{\prime} 6^{\prime \prime}$ in thickness. and B-9) and ten (10) of the test pits (TP-2, TP-9, TP-10, TP-12, TP-14, TP-16, TP-19, TP-21, TP-26, and TP-28) is existing fill that consists of loose to medium dense brown coarse to fine SAND, little (to and) Silt, trace (to some) coarse to fine Gravel. Cobbles, boulders, topsoil, roots, and debris were also present within the fill at some of the test locations. The existing fill was encountered to depths ranging from 1 ' 0 '" to more than $9^{\prime} 0^{\prime \prime}$ beneath the existing ground surface. Test pits TP-9 and TP-28 were terminated in the fill at final depths of $6^{\prime} 9^{\prime \prime}$ and $9^{\prime} 0^{\prime \prime}$ beneath the ground surface, respectively.

Underlying the topsoil and existing fill is virgin soil that is comprised of medium dense to dense brown, light brown, or gray brown SILT some (to and), coarse to fine Sand, trace (to little) coarse to fine Gravel or coarse to fine SAND, little (to and) Silt, trace (to and) coarse to fine Gravel, with occasional cobbles and boulders. The Sandy Silt or Silty Sand stratum continued to depths ranging from $2^{\prime} 0$ " to $12^{\prime} 0$ " below the existing ground surface. Boring B-8 and test pits TP-8, TP-10, TP-12, TP-19, TP-20, TP22 , and TP-26 were terminated in this stratum at final depths ranging from $5^{\prime} 0$ " to $12^{\prime} 0^{\prime \prime}$ beneath the ground surface.

Stratum 4 Below the Sandy Silt or Silty Sand at several test locations is completely Sand or Sandy Gravel
weathered Gneiss bedrock that generally consists of dense to very dense brown or gray brown coarse to fine SAND, little (to some) Silt, trace (to some) coarse to fine Gravel or coarse to fine GRAVEL and, coarse to fine Sand, trace Silt. Where encountered in the borings and test pits, the completely weathered bedrock was present at depths ranging from 2 ' 0 " to $7^{\prime} 0^{\prime \prime}$ beneath the ground surface and continued to depths ranging from $4^{\prime} 7$ '" to $15^{\prime} 2^{\prime \prime}$ below the existing ground surface.

> Stratum 5
> Gneiss
> Bedrock
> Gneiss bedrock was encountered at 27 of the 39 test locations. Where encountered in the borings and test pits, gneiss bedrock was observed at depths ranging from $1^{\prime} 8$ " to $15{ }^{\prime} 2^{\prime \prime}$ beneath the existing ground surface. In general, the quality of the bedrock will improve with depth.

> At boring B-10, the bedrock was cored between the depths of $2^{\prime} 0$ "' and 7'0'. The core recovery was 86% and the Rock Quality Designation (RQD) of the recovered core was 53%. This indicates that the quality of the upper five (5) feet of the Gneiss bedrock is fair. The Gneiss bedrock is moderately weathered and in a blocky and seamy condition.

Groundwater

Observations for groundwater were made during sampling and upon completion of the drilling operations at each boring location. In auger drilling operations, water is not introduced into the boreholes, and the groundwater position can often be determined by observing water flowing into or out of the boreholes. Furthermore, visual observation of the soil samples retrieved during the auger drilling and in the test pits can often be used in evaluating the groundwater conditions.

Groundwater was encountered in test pit TP-8 at a depth of 4 ' 1 " (+609.9), in test pit TP-13 at a depth of $4 \prime 10^{\prime \prime}(+631.2)$, in boring B- 8 at a depth of $3^{\prime} 3^{\prime \prime}(+608.3)$, in test pit TP22 at a depth of $4^{\prime} 6^{\prime \prime}(+470.5)$, and in test pit TP-28 at a depth of $8^{\prime} 0^{\prime \prime}(+491.0)$ beneath the ground surface. Groundwater was not encountered in any of the other borings or test pits that were performed at the subject site during this investigation.

Variations in the location of the long-term water table may occur as a result of changes in precipitation, evaporation, surface water runoff, and other factors not immediately apparent at the time of this exploration. Based on the site conditions, trapped groundwater may be encountered in the silty site soils and/or along the soil/rock interface during wet periods. Proper groundwater control measures will be required in the event that trapped water is encountered in the site excavations.

Bedrock

Bedrock was encountered in 27 of the 39 explorations that were performed at the site during this investigation. Completely weathered bedrock was encountered at ten (10) test locations at depths ranging from $2^{\prime} 0^{\prime \prime}$ to $7^{\prime} 0$ " below the existing ground surface. Harder bedrock was encountered in the remaining locations and below the completely weathered rock at depths ranging from $1^{\prime} 8^{\prime \prime}$ to 15 ' 2 '" beneath the ground surface. These depths correspond to bedrock elevations ranging between approximately elevation +471.0 and elevation +669.8 .

Based on the boring and test pit data and the site plans provided to this office, bedrock was encountered above the planned finished floor elevation in portions of the site. The observed depth to bedrock at each boring and test pit location is summarized in Table 1 in the following section of this report.

The bedrock encountered at the site consists of weathered Gneiss. Based on our experience, the in-situ bedrock will range from highly weathered, fractured rock to massive, intact rock. Penetration into the bedrock with excavation equipment will depend of the degree of weathering and fracturing in the rock. We anticipate that the "rippability" of the bedrock will be variable and very limited. Based on our observations, harder rock will be encountered and blasting and/or the use of hydraulic hammers will be required to excavate the harder, intact bedrock. Rock removal is discussed further in a separate section of this report.

EVALUATION

At the time of this report, the proposed layout, the proposed finished floor elevations, and the site grading were preliminary. Therefore, the following evaluation is preliminary in nature and has been generalized for the expected development. The recommendations below are intended for planning purposes only and are not intended for final design and construction. Additional subsurface investigation will be required for the proposed buildings and retaining walls. Preliminarily, we estimate that an additional 12 to 15 explorations will be required for this project. Once the site plans have been further developed, a copy shall be forwarded to our office so that we can review it along with the recommendations in this report. At that time, we will provide specific recommendations for additional subsurface investigation. After the supplemental investigation has been completed, additional geotechnical recommendations will be provided for the project site. As a result, the recommendations within this report are subject to change.

Based on the preliminary site plans, we understand that the planned construction will consist of 21 new structures that will include seven (7) golf residences, seven (7) club villas, five (5) golf cottages, one (1) fairway residences building, and one (1) clubhouse building. The proposed construction will also include new asphalt paved roadways and parking areas, retaining walls, tennis courts, underground utilities, and a stormwater management system.

The grading plan provided to this office indicates that the proposed finished floor elevations vary across the site. In addition, the fairway residences, golf cottages, and golf residences will have basements. Based on the existing and proposed grades, cuts ranging up to approximately $14^{\prime} 0^{\prime \prime}$ and fills ranging up to approximately $10^{\prime} 0$ " are expected to achieve the proposed floor slab subgrade elevations. In the proposed pavement areas, cuts ranging up to approximately $6^{\prime} 0^{\prime \prime}$ and fills ranging up to approximately $8^{\prime} 0^{\prime \prime}$ are expected to achieve the proposed pavement subgrade elevations.

The boring and test pit data indicates that there is existing fill (Stratum 2) present in portions of the site to depths ranging from $1^{\prime} 0$ " to more than $9^{\prime} 0$ " below the existing ground surface. The existing fill generally consists of loose to medium dense Sand with varying amounts of Silt and Gravel and occasional cobbles, boulders, topsoil, roots, and debris. Underlying the existing fill is medium dense to dense Sandy Silt or Silty Sand (Stratum 3). The Sandy Silt or Silty Sand is underlain by dense to very dense completely weathered Gneiss bedrock (Stratum 4) in areas followed by more competent Gneiss bedrock (Stratum 5), which was encountered at depths ranging from $2^{\prime} 0$ " to $15^{\prime} 2^{\prime \prime}$ beneath the existing ground surface. The existing fill and bedrock observations are summarized in Table 1 below.

Table 1 - Summary of Boring and Test Pit Data

Boring or Test Pit No.	Approximate Ground Surface Elevation	Depth to Bottom of Existing Fill (Elevation)	Depth to Weathered Bedrock (Elevation)	Depth to Bedrock or Auger Refusal (Elevation)
B-1	+661.0	NE	5'0" (+656.0)	$8^{\prime} 0$ "' +653.0$)$
B-2	+628.0	NE	NE	7'0" (+621.0)
B-3	+620.0	NE	2'0" (+618.0)	4'9" (+615.3)
B-4	+628.0	NE	2'0" (+626.0)	10'6" (+617.5)
B-5	+623.0	NE	2'0" (+621.0)	$8^{\prime} 6^{\prime \prime}(+614.5)$
B-6	+617.0	$1^{\prime} 0$ " (+616.0)	NE	5'6" (+611.5)
B-7	+628.0	NE	5'0" (+623.0)	15'2" (+612.8)
B-8	+609.0	5'6" (+603.5)	NE	NE to 12'0"
B-9	+674.0	7’0" (+667.0)	7’0" (+667.0)	7'6"'(+666.5)
B-10	+638.8	NE	NE	2'0" (+636.8)
B-11	+640.0	NE	4'0"' (+636.0)	5'6" (+634.5)
TP-1	+662.0	NE	NE	2'0" (+660.0)
TP-2	+672.0	1'10" (+670.2)	NE	4'4"'(+667.7)
TP-3	+672.0	NE	NE	$2^{\prime} 2^{\prime \prime}(+669.8)$
TP-4	+672.0	NE	NE	$3^{\prime} 6^{\prime \prime}(+668.5)$
TP-5	+670.0	NE	3'8" (+666.3)	4'9"'(+665.3)
TP-6	+672.0	NE	$2^{\prime} 10$ " (+669.2)	4'7'' (+667.4)
TP-7	+620.0	NE	NE	$2^{\prime} 8^{\prime \prime}(+617.3)$
TP-8	+614.0	NE	NE	NE to 5'0"
TP-9	+628.0	$>6^{\prime} 9^{\prime \prime}(<+621.3)$	NE	NE to 6'9"
TP-10	+625.0	$3^{\prime} 0^{\prime \prime}(+622.0)$	NE	NE to 8'0"
TP-11	+642.0	NE	3'9" (+638.3)	$6^{\prime} 0^{\prime \prime}(+636.0)$
TP-12	+635.0	5'0" (+630.0)	NE	NE to 6'6'
TP-13	+636.0	NE	NE	7'5" (+628.6)
TP-14	+625.0	5'0" (+620.0)	NE	5'0" (+620.0)
TP-15	+668.0	NE	NE	$1^{\prime} 8^{\prime \prime}(+666.3)$
TP-16	+651.0	1'10" (+649.2)	NE	4'10" (+646.2)
TP-17	+655.0	NE	NE	NE to 1'0"
TP-18	+670.0	NE	NE	NE to $7^{\prime} 0{ }^{\prime \prime}$
TP-19	+427.0	2'5" (+424.6)	NE	NE to 7'0'
TP-20	+415.0	NE	NE	NE to 8'0"
TP-21	+478.0	1'4" (+476.7)	NE	7'0" (+471.0)
TP-22	+475.0	NE	NE	NE to 7'6'
TP-23	+496.0	NE	NE	$3^{\prime} 10^{\prime \prime}(+492.2)$
TP-24	+564.0	NE	NE	6'8' $(+557.3)$
TP-25	+633.0	NE	NE	3'4" (+629.7)
TP-26	+669.0	5'6" (+663.5)	NE	NE to 8'0'

Boring or Test Pit No.	Approximate Ground Surface Elevation	Depth to Bottom of Existing Fill (Elevation)	Depth to Weathered Bedrock (Elevation)	Depth to Bedrock or Auger Refusal (Elevation)
TP-27	+561.0	NE	NE	$4^{\prime} 4^{\prime \prime}(+556.7)$
TP-28	+499.0	$>9^{\prime} 0^{\prime \prime}(<+490.0)$	NE	NE to 9'0"

Notes: NE - Not Encountered
B-8: Groundwater at +608.3
TP-8: Groundwater at +609.9
TP-9: Terminated in the Existing Fill
TP-13: Groundwater at +631.2
TP-22: Groundwater at +470.5
TP-28: Groundwater at +491.0
TP-28: Terminated in the Existing Fill

Removal of Existing Structures from New Building and Pavement Areas

Building Areas

The site plan indicates that existing structures are present in some of the proposed building areas. The existing structures will be removed as part of the proposed development. All debris resulting from the demolition of these items must be completely removed from the new building areas, extending at least ten (10) feet beyond the new building limits, where practical. This shall include the complete removal of all foundations, walls, slabs, utilities, sidewalks, pavement, and miscellaneous debris. Where the removal of existing items or associated materials extends below the planned building, the resulting excavations shall be backfilled with new compacted fill as described below.

Existing utilities, where they are encountered within the planned building areas, should be either abandoned or rerouted around the new structures. Once the utility has been rerouted or abandoned, the section of pipe and any associated structure within the building areas should be completely removed. The removal of the pipe and structure must also include any loose fill around the pipe or structure. After the pipe, associated structure, and associated loose backfill have been removed, the resulting excavation shall be backfilled with new controlled fill as described below.

New compacted fill shall consist of either suitable on-site soil or imported sand and gravel. Imported sand and gravel fill shall contain less than 20% by weight passing a No. 200 sieve. The fill shall be placed in layers not exceeding one (1) foot in loose thickness. In the proposed building area, new fill shall be compacted to at least 95% of its Maximum Modified Dry Density (ASTM D1557). Each layer shall be compacted, tested, and approved prior to placing subsequent layers.

Pavement Areas

In the proposed pavement areas, any existing structures and debris resulting from the demolition of the structures must be completely removed from the new pavement areas, extending at least five (5) feet beyond the new paving limits, where practical. The
excavations resulting from the removal of existing items shall be backfilled using controlled compacted fill. New fill shall consist of either suitable on-site soil or imported sand and gravel placed in one (1) foot loose layers and compacted to at least 92% of its Maximum Modified Dry Density (ASTM D1557).

Implications of Existing Fill

The boring and test pit data indicates that existing fill is present in portions of the site. Where encountered in the borings and test pits, the fill extended to depths ranging from $1^{\prime} 0$ '" to more than $9^{\prime} 0$ " beneath the existing ground surface. These depths correspond to elevations ranging from approximately +424.6 to elevation +670.2 . The depth of the existing fill is expected to be variable and may be deeper in unexplored areas of the site and around the existing site buildings.

The existing fill is not an acceptable bearing material for the new building foundations or floor slabs. The consistency and density of the fill material are not predictable. Certain areas may contain clean dense soils while other areas may contain loose material, topsoil, and/or debris. The existing fill creates the possibility of intolerable differential settlements under loading.

To eliminate the potential for damaging differential settlements, we recommend that the existing fill be completely removed from the new building areas. Based on the existing grades and the proposed finished floor elevations, we expect that some of the existing fill will be removed during the planned building excavations. However, existing fill is expected to be encountered below the planned subgrade elevation in portions of the site. Undercutting of the subgrade will be required in these areas to remove the existing fill or otherwise unsuitable materials from the building areas. The over-excavated areas shall then be replaced with new structural fill, as necessary, to achieve the planned subgrade elevations.

To further evaluate the existing fill conditions in and around the planned building areas, we recommend that a series of supplemental test pits be performed at the time of construction. The test pits should be conducted under the full time observation of a CarlinSimpson \& Associates representative. These test pits will allow us to confirm the consistency, thickness, and horizontal limits of the existing fill material.

Provided that the existing fill and any other unsuitable materials encountered during construction are removed, it is our opinion that the new structural fill and virgin soils can adequately support the new building foundations and floor slabs.

Rock Removal - Blasting Issues

As discussed above, bedrock was encountered at 27 of the 39 test locations during this study. The bedrock was encountered at depths ranging from $1^{\prime} 8$ " to 15 ' 2 " beneath the ground surface. These depths correspond to bedrock elevations ranging between approximately elevation +611.5 and elevation +669.8 . Based on the site plans provided to this office, bedrock was encountered above the planned finished floor elevation in portions of the site. Bedrock may also be encountered at higher elevations in the unexplored areas of the site.

The bedrock encountered in the borings and test pits consists of weathered Gneiss. Based on our experience, the in-situ bedrock will range from highly weathered, fractured rock to massive, intact rock. To excavate the rock, the upper $1^{\prime} 0^{\prime \prime}$ to $5^{\prime} 0$ '" of rock may be "rippable" by using large construction equipment. The use of hydraulic hammers and/or blasting will be required in order to achieve deeper excavations. Zones of weathered rock may exist deeper than $5^{\prime} 0$ '" but conditions are expected to be highly variable. Hard rock will be encountered during construction.

In order to develop the site, rock removal will be required in areas to achieve the proposed grades. Rock removal may also be required for the new pavement and utilities in portions of the site. Rock blasting will likely be required to achieve the proposed grades in areas. Nearby buildings and existing underground utilities could be affected by the blasting.

The Blasting Contractor should avoid over-blasting the rock. Over-blasting will disturb the deeper intact rock that will be used as bearing material for the proposed foundations and floor slab.

The blasting operation will be monitored by a seismologist using a seismograph. The Peak Particle Velocity emanating from any blast will be restricted to $2.0 \mathrm{in} / \mathrm{sec}$. Each blast will be monitored to insure that this criteria is not exceeded.

The U.S. Bureau of Mines [Nicholas et al (1971)] has established that a threshold of $4.0 \mathrm{in} / \mathrm{sec}$ will likely crack plaster and thus they recommend that the safe vibrational criterion be $2.0 \mathrm{in} / \mathrm{sec}$. This criterion has been used successfully in the industry. Each blast will be monitored independently to insure that this criterion is not exceeded. The monitoring results shall be provided to the Blasting Contractor as soon as possible so that the blasting program can be modified if necessary.

We recommend that a minimum of four (4) monitoring points be established, to the north, east, south and west of the planned blast area. The seismograph sensors should be placed near the closest structure and at any structures identified during the pre-blast survey that are considered to be susceptible to vibration damage.

Prior to the start of any construction, a Blasting Management Plan shall be prepared by the Blasting Contractor for this project. This plan shall be in accordance with State regulations and the Explosive Materials Code, NFPA No. 495, National Fire Prevention Association. Additionally, all blasting should adhere to the provisions of 29 CFR Ch. XVII Section 1910.109 for explosives and blasting agents and to all local requirements.

Prior to any blasting work being done, a licensed professional engineer shall be retained to perform a detailed pre-blast survey of existing structures located within 500 feet of the planned blast area. The pre-blast survey shall be conducted in accordance with the requirements of local authorities. A copy of all reports prepared by the licensed engineer shall be submitted to the Town Engineer and the Owner's representative in a timely manner.

Prior to the beginning of blasting, a notice will be sent to all residential and commercial property owners within a 500 foot radius of the blast area. This notification will
be given at least 48 hours before blasting takes place. A contact person will be established and named in this notice to respond to all concerns raised by nearby residents during the blasting phase of the project. The contact person will respond to any inquiries within 24 hours.

Preparation of New Building Areas and Removal of Existing Fill

In order to prepare the building areas for construction, all surface materials such as topsoil, asphalt, and surface vegetation shall be removed from the planned building areas, extending at least ten (10) feet beyond the new construction limits, where feasible.

The boring data indicates that existing fill is present within portions the proposed building areas. Fill material may also be present in other unexplored portions of the site. Where encountered in the test borings, the existing fill extended to depths ranging from about 1 ' 0 '" to 7 ' 0 " below the existing ground surface. As shown in Table 1 above, the approximate bottom of the fill material ranges from elevation +603.5 to elevation +670.2 . The existing fill is expected to vary in thickness across the site and may extend deeper in the unexplored areas and around the existing site structures.

After the surface materials are removed, the existing fill shall be excavated from the new building areas. The removal of the existing fill from the new building areas shall extend through the existing fill, down to the virgin soil or weathered bedrock. At the bottom of the excavation, the removal of the unsuitable material shall extend horizontally beyond the building lines a minimum distance of three (3) feet plus a distance equal to the depth of the excavation below the planned finished floor elevation. For example, if the removal of the existing fill extends vertically five (5) feet below the planned finished floor elevation, the excavation must extend horizontally a minimum of eight (8) feet (3 feet plus 5 feet) beyond the new building line at that location.

The removal of the existing fill from the planned building areas shall be performed under the full time observation of Carlin-Simpson \& Associates. The on-site representative from Carlin-Simpson \& Associates shall direct the Contractor during this operation to ensure that all of the unsuitable material has been removed from the proposed building areas.

During the removal of the unsuitable material from the building areas, the Contractor should segregate the potentially re-usable existing fill material from the non-reusable fill (i.e. debris and topsoil). The on-site representative from Carlin-Simpson \& Associate shall evaluate the suitability of the excavated materials for use as structural fill during the excavation and prior to its re-use. Potentially usable fill should be stockpiled and covered with tarps or plastic sheeting for protection from excess moisture. Any fill material that is wet must be dried prior to its re-use.

After the surface materials and existing fill have been removed and prior to the placement of new structural fill, the exposed subgrade must be graded level and proofrolled by several passes of a vibratory drum roller. The proofrolling operation is necessary to densify the underlying soils. Carlin-Simpson \& Associates shall be retained to observe the proofrolling of the subgrade. If any soft or otherwise unsuitable soils are noted, the
unsuitable material shall be removed and replaced with new structural fill. Carlin-Simpson \& Associates shall be responsible for determining what material, if any, is to be removed and will direct the contractor during this operation.

New structural fill required to achieve final grades shall consist of either suitable onsite soil or imported sand and gravel. Imported fill shall contain less than 20% by weight passing a No. 200 sieve. The structural fill shall be placed in layers not exceeding one (1) foot in loose thickness and each layer shall be compacted to at least 95% of its Maximum Modified Dry Density (ASTM D1557). Each layer must be compacted, tested, and approved prior to placing subsequent layers. The suitability of the excavated soil for reuse as structural fill is discussed in a following section of this report.

After the installation of structural fill has been completed to the required subgrade elevations, the virgin soil and new structural fill may be used to support the proposed building foundations and floor slabs.

New Building Foundations

According to the boring data, the foundation bearing materials will consist of medium dense to dense virgin soil, weathered bedrock, and new structural fill. Foundations for the proposed structures may be designed as a shallow spread footing bearing on the virgin soil, weathered bedrock, or new structural fill utilizing a net allowable bearing pressure of $4,000 \mathrm{psf}$ (2.0 TSF).

Exterior footings shall bear at a depth of at least 42 inches below finished outside grade for protection from frost. Interior column footings may bear on the virgin soil, weathered bedrock, or new structural fill just below the floor slab provided the building is heated during winter. Column footings shall have a minimum dimension of 30 inches. The wall footings shall have a minimum width of 18 inches.

Prior to the placement of formwork, reinforcement steel, and concrete, the bearing subgrade soil shall be cleaned of all loose soil and compacted with several passes of a small vibratory drum trench compactor (i.e. Wacker Model RT560), a heavy vibratory plate tamper (i.e. Wacker BPU 3545A or equivalent), or "jumping jack" style tamper (i.e. Wacker Model BS 600). This must be performed under the inspection of a representative from Carlin-Simpson \& Associates. If instability is observed during the compaction of the bearing subgrade, the soft soil shall be removed and replaced with new compacted fill.

Where rock is encountered in the foundation excavations, "Special Construction Procedures" must be employed. When continuous wall footings or closely spaced column footings (20 feet or less) bear on dissimilar material (i.e. rock and soil) the potential for differential movement exists. A footing bearing in rock will not move, whereas a footing bearing on soil will settle slightly due to the compressive nature of all soils when subjected to new loads. The area between movement and non-movement will develop a (shear) stress point. Cracks in foundations and walls will be the result from such movement. Therefore, continuous wall footings must bear either entirely on rock or entirely on soil for any individual building. Alternatively, for larger structures, transition zones can be constructed to create a gradual transition from a soil to a rock bearing subgrade.

Adjacent column footings greater than 20 feet apart may bear on dissimilar material (i.e. soil and rock). Any individual column footing must bear entirely on the same type bearing material (i.e. all soil or all rock).

Where rock and soil both exist at the bearing elevation within a foundation excavation, the footings must either be lowered to bear entirely on rock, or a minimum of 18 inches of rock must be removed from below planned footing bottom. The over-excavated 18 inches must then be filled with a granular material having a maximum particle size of $1 / 2$ inch and containing at least 15% but not more than 30% material by weight passing a No. 200 sieve. The fill shall be placed in six (6) inch layers and each layer shall be compacted to at least 95% of its Maximum Modified Dry Density (ASTM D1557). This procedure will create a "cushion" atop the rock and reduce the potential for differential movement. For soft, rippable rock, this procedure will not be required.

If during the excavation for continuous foundations, the transition from soil to rock is gradual (i.e. from medium dense soil to dense weathered rock to very dense rock) over a distance of 20 feet or more, the "Special Construction Procedures" may not be required. This would have to be evaluated in the field on a case-by-case basis by the representative from Carlin-Simpson \& Associates at the time of construction.

Where the transition from rock to soil is abrupt within the excavation for continuous wall foundations, transition zones can be constructed by over-excavating the rock in steps and increasing the "soil cushion" thickness over a distance of 24 feet or more. To construct the transition zone, the bedrock is over-excavated in a series of steps, each step being six (6) inches in depth and at least eight (8) feet in length. The first step is six (6) inches deep, the second step is 12 inches deep, and the final step is 18 inches deep. The over-excavation is then backfilled with the soil cushion material described above.

Floor Slab

After the footings and foundation walls are installed, fill will be required to backfill the excavations and to raise grades in the building areas to the slab subgrade elevations. New fill for the floor slab shall consist of either suitable on-site soil or imported sand and gravel containing less than 20% material by weight passing a No. 200 sieve. The fill shall be placed in layers not exceeding one (1) foot in loose thickness and each layer shall be compacted to at least 92% of its Maximum Modified Dry Density (ASTM D1557). Fill layers shall be compacted, tested, and approved before placing subsequent layers.

The floor may be designed as a slab on grade, bearing on virgin soil, weathered bedrock, bedrock, or new structural fill. We recommend a Modulus of Subgrade Reaction (k) of 200 pounds per cubic inch (pci) be used for design. A six (6) inch layer of $3 / 4$-inch crushed stone is recommended beneath the concrete slab for additional support and drainage. In the event that the floor slab is constructed directly on Gneiss bedrock, a minimum of 12 inches of crushed stone or DGA should be provided beneath the floor slab for drainage and to act as a cushion on the rock. Sump pits and pumps are recommended where basements are planned.

Settlement

Settlement of individual footings, designed in accordance with recommendations presented in this report, is expected to be within tolerable limits for the proposed structure. For footings placed on natural soils or new compacted fill approved by Carlin-Simpson \& Associates and constructed in accordance with the requirements outlined in this report, maximum total settlement is expected to be on the order of $1 / 2$-inch or less. Maximum differential settlement between adjacent columns or load bearing walls is expected to be half the total settlement.

The above settlement values are based on our engineering experience with similar soil conditions and the anticipated structural loading, and are to guide the Structural Engineer with his design. To minimize difficulties during the foundation installation phase, it is critical that Carlin-Simpson \& Associates be retained to observe the foundation bearing surfaces and to confirm the recommended bearing pressures and that the existing fill and unsuitable materials have been removed from beneath the new foundations.

Foundation Walls

In the event that foundation walls are required, the soil adjacent to the building walls will exert a horizontal pressure against the walls. This pressure is based on the soil density and Coefficient of Earth Pressure at Rest (k_{o}), which is applicable to non-yielding building walls. We estimate that the backfill material will have an in-place (moist) density of about 130 pcf and a k_{0} of 0.5 . Based on these properties, the soil will produce an Equivalent Fluid Pressure of 65 pcf against the building walls.

For sliding, the coefficient of friction between concrete and the virgin site soils or new structural fill is 0.45 . For clean sound rock, a friction coefficient of 0.55 can be used. Where passive lateral earth pressure is to be included in the design of the wall, a design value of $195 \mathrm{psf} / \mathrm{ft}$ may be used. This is based on a Coefficient of Passive Earth Pressure (k_{p}) of 3.0, an in-place soil backfill density of 130 pcf , and a factor of safety of 2.0.

Where foundation walls are required, we recommend that a footing drain be placed around the exterior of the new structure to prevent water from accumulating against the foundation wall. This drain may consist of a minimum four (4) inch diameter, rigid wall perforated PVC pipe surrounded by at least 12 inches of $3 / 4$-inch clean crushed stone. The stone shall be wrapped in a geotextile fabric, Mirafi 140 N or equivalent. The foundation drainpipe should be extended to daylight or to the stormwater collection system. The outside face of the foundation wall, where it extends below grade, must be damp proofed or waterproofed.

The foundation walls should be backfilled with suitable structural fill placed in layers up to one (1) foot in loose thickness. The new fill should be compacted with a vibratory drum trench compactor (i.e. Wacker Model RT560), a heavy vibratory plate tamper (i.e. Wacker BPU 3545A or equivalent) or "jumping jack" style tamper (i.e. Wacker Model BS 600) to at least 92% of its Maximum Modified Dry Density (ASTM D1557). Heavy equipment should not be operated near the wall as damage to the wall could occur.

Outside the structure, the backfill placed adjacent to the foundation walls and above the footing drain shall consist of either clean crushed stone or an imported sand and gravel mixture containing less than 10% by weight passing a No. 200 sieve and placed in layers not exceeding one (1) foot in thickness. This clean sand and gravel or crushed stone backfill shall extend a minimum of one (1) foot horizontally from the back face of the foundation walls, and shall extend vertically up the wall face to two (2) feet below the finished ground surface elevation.

Beyond this point, the foundation walls should be backfilled with suitable soil placed in layers up to one (1) foot in thickness. The new fill should be compacted with a vibratory drum trench compactor (i.e. Wacker Model RT560), a heavy vibratory plate tamper (i.e. Wacker BPU 3545A or equivalent), or "jumping jack" style tamper (i.e. Wacker Model BS 600) to at least 92% of its Maximum Modified Dry Density (ASTM D1557). Heavy equipment should not be operated near the walls as damage to the walls could occur. Material excavated from the cut areas on site will be suitable for reuse as compacted fill, provided that it remains relatively dry enough to be adequately compacted to the required density and does not contain any debris or organic material (i.e. topsoil and roots).

Seismic Design Considerations

From site-specific test boring data, the Site Class was determined from Table 1615.1.1 of the New York State Building Code. The site-specific data used to determine the Site Class typically includes soil test borings to determine Standard Penetration resistances (N -values). Based on the average N -values in the upper 100 feet of soil profile, the site can be classified as Site Class C - Very Dense Soil and Soft Rock Profile.

New structures should be designed to resist stress produced by lateral forces computed in accordance with Section 1615 of the New York State Building Code. The values in Table 2 shall be used for this project. Based on the information obtained from the borings, it is our opinion that the potential for liquefaction of the native soils at the site due to earthquake activity is relatively low.

Table 2 - Seismic Design Parameter Values

Mapped Spectral Response Acceleration for Short Periods, [Fig 1615 (1)]	$\mathrm{S}_{\mathrm{S}}=0.347 \mathrm{~g}$
Mapped Spectral Response Acceleration at 1-Second Period, [Fig 1615 (2)]	$\mathrm{S}_{\mathrm{S} 1}=0.070 \mathrm{~g}$
Site Coefficient [Table 1615.1.2 (1)]	$\mathrm{F}_{\mathrm{a}}=1.20$
Site Coefficient [Table 1615.1.2 (2)]	$\mathrm{F}_{\mathrm{v}}=1.70$
Max Considered Earthquake Spectral Response for Short Periods [Eq 16-16]	$\mathrm{S}_{\mathrm{MS}}=0.416 \mathrm{~g}$
Max Considered Earthquake Spectral Respond at 1-Second Period [Eq 16-17]	$\mathrm{S}_{\mathrm{S} 1}=0.119 \mathrm{~g}$
Design Spectral Response Acceleration for Short Periods [Eq 16-18]	$\mathrm{S}_{\mathrm{DS}}=0.278 \mathrm{~g}$
Design Spectral Response Acceleration for 1-Second Period [Eq 16-19]	$\mathrm{S}_{\mathrm{Dl}}=0.079 \mathrm{~g}$

Site Retaining Walls

In order to develop the site, retaining walls will be required in areas. The site retaining walls may be designed as either cast-in-place steel reinforced concrete walls or geogrid reinforced modular block (MSE) walls. The preliminary site plans show five (5)
retaining walls. The maximum exposed height of these walls ranges from approximately seven (7) feet to 12 feet but the top and bottom wall elevations were not finalized at the time of this report.

The following recommendations are preliminary in nature based on the boring and test pit data from other areas of the project site during this investigation. The recommendations below are intended for planning purposes only and are not intended for final design and construction. A supplemental subsurface investigation is required for the proposed retaining walls so that additional design recommendations can be provided.

In the event that existing fill materials are present within the proposed wall areas, these materials must be completely removed from the limits of new wall construction. The removal of the topsoil or other unsuitable fill materials shall extend horizontally a minimum distance of five (5) feet beyond the front face of the new wall or extend horizontally a minimum distance equivalent to the vertical depth of the required excavation below the proposed wall base or foundation bearing elevation, whichever is greater. This is required to ensure that all unsuitable material has been removed from beneath the wall base or foundation zone of influence, which shall be defined by an imaginary plane projecting downward and away from the front edge of the wall base or foundation on a one horizontal to one vertical $(1 \mathrm{H}: 1 \mathrm{~V})$ projection.

The foundations for the new retaining wall may be placed on the virgin soil, weathered bedrock, or on new compacted fill approved by Carlin-Simpson \& Associates. New compacted fill shall consist of either suitable on-site soil or imported sand and gravel. Imported fill shall contain less than 20% by weight passing the No. 200 sieve. The fill shall be placed in one (1) foot thick loose layers and compacted to at least 95% of its Maximum Modified Dry Density. Preliminarily, the footings or base of the wall can be designed using a net design bearing pressure of $4,000 \mathrm{psf}$ (2.0 TSF).

For MSE walls, the wall base or foundation must be adequately embedded for internal and global stability. The embedment depth will be determined by the Wall Design Engineer. For reinforced concrete walls, the footing or base of the wall shall bear at least 42 inches below finished grade of the outside face of the wall for protection from frost. The wall foundation or base may bear at shallower depths when installed directly on the bedrock since rock is not susceptible to frost. Where both soil and rock are encountered within the wall foundation or base excavation, the "Special Construction Procedures" discussed above for the building foundations must be utilized.

Drains must be provided behind the retaining walls to prevent the buildup of hydrostatic pressure against the walls. The drain should consist of a 4-inch diameter perforated PVC pipe, surrounded with $3 / 4$-inch clean crushed stone and wrapped in a geotextile fabric, Mirafi 140 N or equivalent. The drain should be installed behind the base or foundation of the retaining wall to collect the water behind the wall and be connected into the site stormwater collection system or extended to daylight beyond the wall area.

Backfill placed directly behind the retaining walls shall consist of either suitable onsite soil or imported sand and gravel containing less than 20% by weight passing a No. 200 sieve. Each layer shall be compacted using a hand guided mechanical tamper to 92% of its

Maximum Modified Dry Density (ASTM D1557). Excessive compaction adjacent to the retaining walls must be avoided. Layers shall be tested and approved before placing subsequent layers. Large compaction equipment must not be used within ten (10) feet of the new walls to prevent potential damage to the walls.

The soil adjacent to the site retaining walls will exert a horizontal pressure against the walls. This pressure is based on the soil density and the Coefficient of Active Earth Pressure (k_{a}). We estimate that the backfill material will have an in-place (moist) density of about 130 pcf and an angle of internal friction (ϕ) of 30°. For design, soil cohesion is assumed to be zero for the foundation soil, retained soil, and reinforced backfill. The active earth pressure coefficient $\left(\mathrm{k}_{\mathrm{a}}\right)$ is 0.33 provided the grade behind the wall is level. Based on these properties, the retained soil will produce an Equivalent Fluid Pressure of 42.9 pcf against the retaining walls. If a sloping grade exists behind the new walls, the k_{a} and the Equivalent Fluid Pressure must be adjusted accordingly. In addition, any surcharge loads from structures, vehicles, or other retaining walls (i.e. tiered walls) must be considered in the wall design.

For sliding, the friction coefficient between mass concrete and the virgin site soils or new compacted fill is 0.45 . For clean sound rock, a friction coefficient of 0.55 can be used. Where passive lateral earth pressure is to be included in the design of the wall, a maximum design value of $195 \mathrm{psf} / \mathrm{ft}$ may be used. This is based on a Coefficient of Passive Earth Pressure (k_{p}) of 3.0 , an in-place soil backfill density of 130 pcf , and a factor of safety of 2.0.

The Wall Design Engineer shall prepare a complete wall design (i.e. drawings, specifications, and calculations), which shall be designed and sealed by a Professional Engineer registered in the State of New York and submitted to Carlin-Simpson \& Associates for review and approval. MSE retaining walls shall be designed in accordance with the recommendations of the NCMA Design Manual for Segmental Retaining Walls (Current Edition).

The MSE wall design shall consider the internal stability of the reinforced soil mass and shall be in completed accordance with acceptable engineering practice. In addition, external stability, including sliding, overturning, and bearing, as well as global slope stability shall be evaluated in accordance with acceptable engineering practice.

The MSE Wall Designer Engineer shall be responsible for determining the required geogrid reinforcement lengths and elevations based on his stability analysis (including global stability) and the properties of the geogrid reinforcement used in the design. We anticipate that in the critical areas of the wall, global stability will be the controlling design criteria for the design of the geogrid reinforcement.

Stormwater Management Areas

We understand that the planned development will include one or more stormwater management areas. The preliminary grading plan shows a proposed infiltration basin with a forebay in the western portion of the project site. The plan also indicates that the basin will have a bottom elevation at +610.0 . We also understand that there is an alternate stormwater
management area in the southwestern portion of the site, near the proposed fairway residences building. In addition, stormwater management areas will likely be required throughout the golf course property. However, at the time this report was prepared, the proposed stormwater management system had not been designed and the location, grades, and invert elevations of the system had not been finalized.

During this study, four (4) borings, one (1) test pit, one (1) borehole permeability test, and four (4) percolation tests were performed within or near the planned stormwater management areas. An addition ten (10) test pits (TP-19 through TP-28) were excavated at potential stormwater management areas throughout the golf course property. The tests were performed at the locations shown on the attached Boring and Test Pit Location Plan. The proposed test depths were provided by the project Site Engineer. The test depths were modified, however, based on the depth to bedrock encountered at the test locations.

The soil conditions encountered within the proposed infiltration basin area consist of a surface layer of topsoil (Stratum 1), approximately 0 ' $6^{\prime \prime}$ to 0 ' $9^{\prime \prime}$ in thickness, followed by existing fill (Stratum 2) in boring B-6. Below the topsoil and fill is virgin soil that consists of layers of Sandy Silt, Silty Sand, Sandy Gravel, Gravelly Sand, or Silty Gravelly Sand (Strata 3 and 4) followed by Gneiss bedrock (Stratum 5). Bedrock was encountered in the proposed infiltration basin area at depths ranging from $2^{\prime} 8^{\prime \prime}$ to $8^{\prime} 6^{\prime \prime}$ beneath the ground surface. These depths correspond to bedrock elevations ranging between elevation +611.5 and elevation +617.3 , which is above the proposed bottom elevation of the infiltration basin.

In the alternate stormwater management area, the topsoil was underlain by approximately 5 ' 6 " of existing fill (Stratum 2) followed by layers of Sandy Silt and Silty Sand (Stratum 3). Groundwater was encountered in this portion of the site at depths ranging from $0^{\prime} 6 "$ to 3 ' 3 " below the ground surface, which corresponds to groundwater levels ranging from approximately elevation +608.3 to elevation +613.2 .

The subsurface soil and groundwater conditions encountered in the potential stormwater management areas throughout the golf course property vary across the site. The boring and test pit observations are summarized in Table 1 above.

In December 2012 and January 2013, permeability tests were performed within the proposed stormwater management areas. One (1) borehole permeability test (BP-4) and four (4) percolation tests ($\mathrm{P}-1$ through $\mathrm{P}-4$) were performed. The infiltration rates at the test locations are summarized in Table 3 below.

Table 3 - Field Permeability Test Results

Permeability Test No.	Permeability Test Depth (Elevation)	Permeability Rate	Soil Description
BP-4	$7^{\prime} 0^{\prime \prime}(+621.0)$	2.4 in/hour	Brown coarse to fine SAND, little Silt, some (+) coarse to fine Gravel
P-1	$3^{\prime} 6^{\prime \prime}(+616.5)$	>20 in/hour	Brown coarse to fine GRAVEL and, coarse to fine Sand, trace Silt
P-2	$1^{\prime} 8^{\prime \prime}(+610.3)$	NR	Groundwater encountered 0'6" below the ground surface

Permeability Test No.	Permeability Test Depth (Elevation)	Permeability Rate	Soil Description
P-3	$2^{\prime} 8^{\prime \prime}(+613.3)$	>20 in/hour	Brown coarse to fine SAND, some Silt, and (-) coarse to fine Gravel
P-4	$2^{\prime} 0^{\prime \prime}(+613.0)$	NR	Groundwater encountered l'l0' below the ground surface

NR - Not Recorded
Based on the field tests, the virgin soil in the areas of tests P-1 and P-3 has a permeability rate that exceeds 20 inches per hour. However, these tests were performed at elevations of +616.5 and +613.3 , which are approximately $6^{\prime} 6^{\prime \prime}$ and 3 ' 3 '" higher than the planned bottom of the proposed infiltration basin. Bedrock was encountered at depths of $4^{\prime} 9 \prime \prime(+615.3)$ and $5^{\prime} 6^{\prime \prime}(+611.5)$ below the surface at these test locations. In the event the virgin soil in the areas of tests P-1 and P-3 can be utilized for the stormwater management system, a permeability rate of 10 inches per hour should be used for preliminary design. This design permeability rate includes a factor of safety of 2.0.

Field permeability tests could not be performed at test locations P-2 and P-4 during this study since groundwater was encountered at depths of $0^{\prime} 6^{\prime \prime}(+611.5)$ and $1^{\prime} 10^{\prime \prime}(+613.2)$ below the ground surface, respectively. Should stormwater management areas be planned in other portions of the site, they must be evaluated on a case-by-case basis.

The stormwater management system should be designed in accordance with the applicable New York State Department of Conservation (NYSDEC) regulations and the New York State Stormwater Management Design Manual (August 2010). The testing requirements are outlined in Appendix D of the manual. The testing that was performed during this preliminary study was for initial feasibility testing for the stormwater management areas. Therefore, additional testing within the proposed subsurface system areas will be required to confirm the soil conditions and infiltration rates at the bottom of the system and to finalize the design of the system.

Pavement

We understand that the proposed construction will also include new asphalt paved driveways and parking areas. Based on the preliminary grading plan provided to this office, cuts ranging up to approximately $6^{\prime} 0^{\prime \prime}$ and fills ranging up to approximately $8^{\prime} 0^{\prime \prime}$ are anticipated to achieve the proposed pavement subgrade elevations. To prepare the new pavement areas, the existing surface materials (i.e. topsoil, vegetation, asphalt, etc.) must be removed from the planned pavement areas.

After all surface materials have been removed; the exposed subgrade that is either at or below the planned subgrade elevation shall be proofrolled with a large vibratory drum roller (i.e. Dynapac 250 or equivalent) to densify the underlying soils. The on-site representative from Carlin-Simpson \& Associates shall witness the proofrolling operation. If any excessive movement is noted during the proofrolling, the soft or unsuitable soil shall be removed and replaced with new compacted fill.

Areas where existing fill is encountered shall be compacted in place. Carlin-Simpson \& Associates must evaluate these areas for the presence of soft or unsuitable material within the existing fill matrix. Portions of this fill may have to be removed and replaced with new compacted fill. Carlin-Simpson \& Associates will determine this during construction.

Where new fill is required to achieve final grades, it shall consist of either suitable on-site soil or imported sand and gravel. Imported sand and gravel shall contain less than 20% by weight passing a No. 200 sieve. New fill shall be placed in layers not exceeding one (1) foot in loose thickness and each layer shall be compacted to at least 92% of its Maximum Modified Dry Density (ASTM D1557). After the planned subgrade has been proofrolled and new compacted fill has been placed as required, the new pavement subbase may be placed on the existing site soils and new compacted fill.

When new fill is placed on a sloped subgrade, the fill layers must be benched a minimum of three (3) feet into the existing embankment. Fill layers shall be placed in horizontal layers, beginning at the base of the slope. End dumping over the top of a slope is not permitted.

The new pavement subbase may be placed on engineer-approved densified existing fill, virgin soil, or new compacted fill. A minimum of six (6) inches of dense graded aggregate (DGA) is recommended for the subbase layer for drainage and additional pavement support. We recommend that the following pavement sections be used for the parking lots and driveways. These pavement sections are subject to local government approval.

Parking Lots (Light Duty)

$11 / 2 "$	Asphalt Wearing Surface Course	NYSDOT, Type 6F
$2 "$	Asphalt Base Course	NYSDOT, Type 1
$6 "$	Stone Subbase (DGA)	NYSDOT, Type 4
	Approved Compacted Subgrade (Minimum CBR = 10)	

Driveways (Medium Duty)

$11 / 2 "$	Asphalt Wearing Surface Course	NYSDOT, Type 6F
$21 / 2 "$	Asphalt Base Course	NYSDOT, Type 1
$8 "$	Stone Subbase (DGA)	NYSDOT, Type 4
	Approved Compacted Subgrade (Minimum CBR $=10$)	

Based on the boring and test pit data, we anticipate that the existing site soils and new compacted fill will provide a CBR value that is equal to or greater than 10 , which can adequately support the above pavement sections.

Utilities

New utilities may bear in the virgin soil, existing fill, new compacted fill, weathered rock, or rock. The bottom of all trenches should be excavated clean so a hard bottom is provided for pipe support. If any soft areas or unsuitable existing fill conditions are
encountered during the construction operation, these materials must be removed and replaced with new compacted fill.

In the event that the trench bottom becomes soft due to the inflow of surface or trapped water, the soft soil shall be removed and the excavation filled with a minimum of six (6) inches of $3 / 4$-inch clean crushed stone to provide a firm base for support of the pipe. Sump pits and pumps should be adequate to keep the excavations dry.

After the utility is installed, the trench must be backfilled with compacted fill. The fill shall consist of suitable on-site soil or imported sand and gravel containing less than 20% by weight passing a No. 200 sieve. Large rock fragments must not be placed directly against the pipe. Controlled compacted fill shall be placed in one (1) foot loose layers and each layer shall be compacted to at least 92% of its Maximum Modified Dry Density (ASTM D1557). The backfill must be free of topsoil, debris and large boulders or rock fragments.

Temporary Construction Excavations

Temporary construction excavations shall be conducted in accordance with the most recent OSHA guidelines or applicable federal, state, or local codes. Based on the results of the borings and test pits, we believe the site soils and rock would have the following classifications as defined by OSHA guidelines.

Soil/Rock Type
On Site Fill
Virgin Sandy Soils
Weathered or Intact Bedrock

Possible Classification

$$
\begin{gathered}
\text { Type "C" } \\
\text { Type "B" or "C" } \\
\text { Type "A" or Stable Rock }
\end{gathered}
$$

Further evaluation of the site soil deposits will be required in the field by a qualified person at the time of the excavation to determine the proper OSHA classification and allowable slope configuration. Temporary support (i.e. sheeting and shoring) should be used for any excavation that cannot be sloped or benched in accordance with the applicable regulations.

Suitability of the In-Situ Soils for Use as Compacted Fill

The suitability of each soil stratum for use as compacted fill is discussed below.
Stratum 1 Topsoil is not suitable for use as compacted fill. During construction, it Topsoil may be stockpiled on site for later use in the landscaped areas or removed from the site.

Stratum 2 The existing fill that was encountered at the site generally consists of Existing Fill brown coarse to fine Sand, little (to and) Silt, trace (to some) coarse to fine Gravel with occasional cobbles, boulders, topsoil, roots, and debris. Some of the existing fill may be suitable for use as compacted fill at the site
provided that it remains relatively dry for optimum compaction and that any debris (i.e. concrete, wood, etc.) and organic material (i.e. topsoil, roots, etc.) have been removed prior to its reuse.

Strata 3 \& 4 The virgin site soils that may be excavated during construction consist of

Sandy Silt, Silty Sand, Sand, or Sandy Gravel layers of Sandy Silt, Silty Sand, Sand or Sandy Gravel with occasional cobbles and boulders. This material is generally suitable for use as compacted fill, provided that it remains relatively dry for optimum compaction. Large cobbles and boulders shall not be used as new structural fill in the proposed building areas or in utility trenches.

Stratum 5 Excavated rock may also be used as fill material for the building and paved Gneiss Bedrock graded, and has been approved prior to use by Carlin-Simpson \& Associates. All rock fill must be well blended with smaller rock fragments and/or soil. Open voids within the rock fill matrix must be avoided. Small boulders up to 24 inches in diameter may be placed in parking lot fills deeper than ten (10) feet below the finished pavement. Boulders must not be clustered and must be sufficiently surrounded with soil fill. We recommend that the boulders and excavated rock be processed by a crusher to provide suitable fill material for the building and pavement areas.

Rock fill shall be placed in 12-inch loose layers and compacted with multiple passes of a large vibratory roller to a firm and non-yielding state as determined by the on-site representative from Carlin-Simpson \& Associates. Rock fill should not be used where it will interfere with the installation of foundations or utilities. Also, it shall not be used as backfill directly against concrete walls or utilities. Use of rock fill within the planned building and pavement areas shall be limited to the gradations limitations provided in Table 4 below.

Table 4 - Gradation Limitations for Rock Fill

Area	Location	Maximum Particle Size
Building Area	Within 4 feet of Finished Floor	3 inches
	More than 4 feet below Finished Floor	12 inches
Pavement Area	Within 4 feet of Finished Grade	6 inches
	More than 4 feet below Finished Grade	18 inches
	More than 10 feet below Finished Grade	24 inches

Proper moisture conditioning of the soil will be required. In the event that the on-site material is too wet at the time of placement and cannot be adequately compacted, the soil should be aerated and allowed to dry or the material removed and a drier cleaner fill material used. In the event that the on-site material is too dry at the time of placement and cannot be adequately compacted, water may be needed to increase the soil moisture content for proper compaction.

The in-situ soils which exist throughout the site may become soft and weave if exposed to excessive moisture and construction traffic. The instability will occur quickly when exposed to these elements and it will be difficult to stabilize the subgrade. We recommend that adequate site drainage be implemented early in the construction schedule and if the subgrade becomes wet, the Contractor should limit construction activity until the soil has dried.

GENERAL

The findings, conclusions and recommendations presented in this report represent our professional opinions concerning subsurface conditions at the site. The opinions presented are relative to the dates of our site work and should not be relied on to represent conditions at later dates or at locations not explored. The opinions included herein are based on information provided to us, the data obtained at specific locations during the study and our past experience. If additional information becomes available that might impact our geotechnical opinions, it will be necessary for Carlin-Simpson \& Associates to review the information, reassess the potential concerns, and re-evaluate our conclusions and recommendations. Additional subsurface exploration may be required.

Regardless of the thoroughness of a geotechnical exploration, there is the possibility that conditions between borings and test pits will differ from those encountered at specific boring or test pit locations, that conditions are not as anticipated by the designers and/or the contractors, or that either natural events or the construction process have altered the subsurface conditions. These variations are an inherent risk associated with subsurface conditions in this region and the approximate methods used to obtain the data. These variations may not be apparent until construction.

The professional opinions presented in this geotechnical report are not final. Field observations and foundation installation monitoring by the geotechnical engineer, as well as soil density testing and other quality assurance functions associated with site earthwork and foundation construction, are an extension of this report. Therefore, Carlin-Simpson \& Associates should be retained by the Owner to observe all earthwork and foundation construction, to document that the conditions anticipated in this study actually exist, and to finalize or amend our conclusions and recommendations Carlin-Simpson \& Associates is not responsible or liable for the conclusions and recommendations presented in this report if Carlin-Simpson \& Associates does not perform these observation and testing services.

Therefore, in order to preserve continuity in this project, the Owner must retain the services of Carlin-Simpson \& Associates to provide full time geotechnical related monitoring and testing during construction. At a minimum, this shall include the observation and testing of the following: 1) the removal of existing fill and unsuitable soil, where required; 2) the proofrolling of the subgrade soil prior to the placement of new compacted fill; 3) the placement and compaction of controlled fill; 4) the excavation for the building foundations; 5) the preparation of the subgrade for the floor slabs and pavement areas; and 6) the construction of the proposed retaining walls.

This report has been prepared in accordance with generally accepted geotechnical engineering practice. No other warranty is expressed or implied. The evaluations and
recommendations presented in this report are based on the available project information, as well as on the results of the exploration. Carlin-Simpson \& Associates should be given the opportunity to review the final drawings and site plans for this project to determine if changes to the recommendations outlined in this report are needed. Should the nature of the project change, these recommendations should be re-evaluated.

This report is provided for the exclusive use of Brynwood Partners, LLC and the project specific design team and may not be used or relied upon in connection with other projects or by other third parties. Carlin-Simpson \& Associates disclaims liability for any such third party use or reliance without express written permission. Use of this report or the findings, conclusions or recommendations by others will be at the sole risk of the user. Carlin-Simpson \& Associates is not responsible or liable for the interpretation by others of the data in this report, nor their conclusions, recommendations or opinions.

If the conditions encountered during construction vary significantly from those stated in this report, this office should be notified immediately so that additional recommendations can be made.

Thank you for allowing us to assist you with this project. Should you have any questions or comments, please contact this office.

Very truly yours,
CARLIN-SIMPSON \& ASSOCIATES

MEREDITH R. ANKE, P.E. Project Engineer

Robert Simpson
ROBERT B. SIMPSON, P.E.

File No. 12-175

TEST PIT LOGS

TP-1	Elevation +662		
0-0'9"	Brown Topsoil		
0'9"-2'0"	Brown coarse to fine SAND, and Silt, trace $(+)$ medium to fine Gravel	medium dense	moist
2'0"	Gneiss bedrock No water encountered		
TP-2	Elevation +672		
$0-1 \times 10$ "	FILL (Brown coarse to fine SAND, some silt, little (-) coarse to fine Gravel, with topsoil)	medium dense	moist
$1^{\prime} 10^{\prime \prime}-44^{\prime \prime}$	Light brown coarse to fine SAND, some (+) Silt	medium dense	moist
4'4"	Gneiss bedrock No water encountered		
TP-3	Elevation +672		
$0-0 \times{ }^{\prime \prime}$	Dark brown Topsoil with surface debris		
0'9"-2'2"	Brown coarse to fine SAND, some Silt	medium dense	moist
2'2"	Gneiss bedrock No water encountered		

TEST PIT LOGS

TP-4	Elevation +672		
0-0'6"	Brown Topsoil		
$06^{\prime \prime}-3{ }^{\prime} 6^{\prime \prime}$	Brown coarse to fine SAND, and (-) Silt, some coarse to fine Gravel	medium dense	moist
3'6"	Gneiss bedrock No water encountered		
TP-5	Elevation +670		
0-0'7'	Brown Topsoil		
$0^{\prime} 7^{\prime \prime}-3$ ' $8^{\prime \prime}$	Light brown coarse to fine SAND, some (+) Silt	medium dense	moist
3'8'-4'9"	Brown coarse to fine SAND, some Silt (completely weathered gneiss)	dense	moist
4'9"	Gneiss bedrock No water encountered		

TEST PIT LOGS

TP-6	Elevation +672		
0-0'10''	Brown Topsoil		
$0^{\prime} 10^{\prime \prime}-2^{\prime} 10^{\prime \prime}$	Light brown coarse to fine SAND, some (-) Silt, little coarse to fine Gravel	medium dense	moist
2'10"-4'7"	Brown coarse to fine SAND, some Silt, little coarse to fine Gravel (completely weathered gneiss)	dense	moist
4'7'	Gneiss bedrock No water encountered		
TP-7	Elevation +620		
0-0'9'	Brown Topsoil		
0'9'-2'8''	Brown coarse to fine SAND, some Silt, trace coarse to fine Gravel	medium dense	moist
2'8"	Probable Gneiss bedrock		
	Test pit abandoned No water encountered		
TP-8	Elevation +614		
0-0'8"	Dark brown Topsoil		
$0^{\prime} 8^{\prime \prime}-5{ }^{\prime}{ }^{\prime \prime}$	Mottled orange brown, gray coarse to fine SAND, and (-) Silt	medium dense	moist
	Groundwater encountered @ 4'1"	slow inflow	

TEST PIT LOGS

TP-9	Elevation +628		
0-0'4"	Topsoil		
$0^{\prime} 4^{\prime \prime}-6^{\prime} 9^{\prime \prime}$	FILL (Brown coarse to fine SAND, some (+) Silt, some (+) coarse to fine Gravel, with cobbles and boulders)	medium dense	moist
6'9'	FILL (Gray coarse to fine SAND, trace (+) Silt)	medium dense	moist
	Possible cover over for utility Test pit was abandoned		
	No water encountered		
TP-10	Elevation +625		
0-0'4"	Topsoil		
$0^{\prime} 4^{\prime \prime}-3^{\prime} 0^{\prime \prime}$	FILL (Boulders with topsoil)	loose	moist
$3^{\prime} 0^{\prime \prime}-8^{\prime} 0^{\prime \prime}$	Brown coarse to fine SAND, some (+) Silt	medium dense	moist

No water encountered

TEST PIT LOGS

TP-11	Elevation +642		
$0-0,6 "$	Brown Topsoil		
0'6"-3'9'	Brown coarse to fine SAND, some Silt, little coarse to fine Gravel, with occasional cobbles and boulders	medium dense	moist
3'9"-6'0"	Brown coarse to fine SAND, little (+) Silt, some coarse to fine Gravel (completely weathered gneiss)	dense	moist
6'0"	Weathered Gneiss bedrock No water encountered		
TP-12	Elevation +635		
0-0'6"	Brown Topsoil		
$0^{\prime} 6^{\prime \prime}-5^{\prime} 0{ }^{\prime \prime}$	FILL (Brown coarse to fine SAND, some (+) Silt, little (-) coarse to fine Gravel, with trace of debris)	loose	moist
5'0"-6' ${ }^{\prime \prime}$	Orange brown, gray coarse to fine SAND and Silt	dense	moist
	Refusal on boulder No water encountered		

TEST PIT LOGS

TP-13	Elevation +636		
0-0'9"	Brown Topsoil with roots		
0'9"-6'3"	Brown coarse to fine SAND, and Silt, little coarse to fine Gravel	medium dense	moist
6'3"-7'5"	Brown coarse to fine SAND, some (+) Silt, little (-) coarse to fine Gravel	dense	moist
7'5"	Gneiss bedrock Groundwater encountered @ 4'10"	slow inflow	
TP-14	Elevation +625		
0-0'3"	Brown Topsoil		
$0{ }^{\prime} 3^{\prime \prime}-3^{\prime} 4^{\prime \prime}$	FILL (Gray brown coarse to fine SAND, some Silt, little coarse to fine Gravel, with cobbles and boulders)	loose	moist
$3^{\prime} 4^{\prime \prime}-5^{\prime} 0 \prime$	FILL (Brown coarse to fine SAND, little Silt)	medium dense	moist
5'0"	Gneiss bedrock No water encountered		

TEST PIT LOGS

TP-15	Elevation +668		
0-0'3"	Brown Topsoil		
$0^{\prime} 3^{\prime \prime}-1{ }^{\prime} 8^{\prime \prime}$	Brown coarse to fine SAND, some (+) Silt, some (-) coarse to fine Gravel, with occasional cobbles and boulders	medium dense	moist
$1{ }^{\prime \prime}{ }^{\prime \prime}$	Gneiss bedrock No water encountered		
TP-16	Elevation +651		
0-0'8"	Dark brown Topsoil		
$0^{\prime} 8^{\prime \prime}-1 \times 10^{\prime \prime}$	FILL (Brown coarse to fine SAND, some (+) Silt, trace medium to fine Gravel, with cobbles)	medium dense	moist
$1^{\prime} 10^{\prime \prime}-4 \prime 10^{\prime \prime}$	Brown coarse to fine SAND, some (+) Silt, trace medium to fine Gravel	medium dense	moist
$4^{\prime} 10^{\prime \prime}$	Gneiss bedrock No water encountered		

TEST PIT LOGS

TP-17 Elevation +655
0-0'3" Topsoil
$0^{\prime} 3^{\prime \prime}-1$ ' $0^{\prime \prime} \quad$ Brown coarse to fine SAND, some (+)
Silt, little coarse to fine Gravel medium dense moist
Encountered irrigation pipes
Test pit abandoned
No water encountered

TP-18 Elevation +670
0-0'10" Brown Topsoil
0'10"-7'0" Brown SILT and, coarse to fine Sand, little (-) medium to fine Gravel medium dense moist

TEST PIT LOGS

TP-19

0-2'5" FILL (Brown coarse to fine SAND, some Silt, some coarse to fine Gravel,
with topsoil, cobbles, boulders)
loose
moist
2'5"-7'0" Brown coarse to fine SAND, some Silt, little coarse to fine Gravel

No water encountered

TP-20

0-0'6" Brown Topsoil
0'6"-4'3" Brown, orange brown coarse to fine SAND, some Silt, little coarse to fine Gravel

4'3"- $8^{\prime} 0^{\prime \prime} \quad$ Orange brown coarse to fine SAND, little (-) Silt, some coarse to fine Gravel, with occasional cobbles
medium dense moist
medium dense moist

No water encountered

Brynwood Club Development
Bedford Road
Town of North Castle, NY
(12-175)
13 September 2013

TEST PIT LOGS

TP-21

$0-0^{\prime} 6^{\prime \prime}$	Dark brown Topsoil		
$0^{\prime} 6^{\prime \prime}-1 ' 4 \prime$	FILL (Brown coarse to fine SAND, some (-) Silt, trace medium to fine Gravel, with few roots)	medium dense	moist
$1^{\prime} 4^{\prime \prime}-77^{\prime} 0^{\prime \prime}$	Brown coarse to fine SAND, little Silt, trace (+) coarse to fine Gravel, with occasional cobbles	medium dense	moist
$77^{\prime} 0 \prime$	Possible weathered bedrock		

No water encountered

TP-22

0-1'6" Dark brown Topsoil, with roots
1'6"-2'8" Mottled gray brown, orange brown Clayey SILT, little medium to fine Sand
medium dense moist
2'8"-3'6" Brown coarse to fine SAND, some (+) Silt, little medium to fine Gravel
medium dense moist
3'6"-6'0' Brown coarse to fine SAND, little (+) Silt, come coarse to fine Gravel

6'0"-7'6" Gray brown SILT little, coarse to fine Sand, trace medium to fine Gravel

Groundwater encountered @ 4'6"
medium dense wet
medium dense wet
slow inflow

TEST PIT LOGS

TP-23

0-0'7" Brown Topsoil
$0^{\prime} 7^{\prime \prime}-3^{\prime} 10^{\prime \prime} \quad$ Brown coarse to fine SAND, and (-) Silt, little (-) coarse to fine Gravel
dense
moist

3'10" Weathered bedrock
No water encountered

TP-24

0-0'8" Brown Topsoil
0'8"-6' $8^{\prime \prime} \quad$ Brown coarse to fine SAND, some (+) Silt, little (-) coarse to fine Gravel, with occasional cobbles

6'8" Possible weathered bedrock or boulder
No water encountered

TP-25

0-0'4" Brown Topsoil
$0^{\prime} 4^{\prime \prime}-33^{\prime} 4^{\prime \prime} \quad$ Brown coarse to fine SAND, and Silt, trace medium to fine Gravel

3'4" Possible bedrock or boulder
No water encountered
medium dense moist
medium dense moist
medium dense moist

TEST PIT LOGS

TP-26

$0-0 \cdot 6$ "	Brown Topsoil	
0'6"-2' ${ }^{\prime \prime}$	FILL (Brown coarse to fine SAND, some (-) Silt, little coarse to fine Gravel, with cobbles and boulders)	medium dense
$2^{\prime} 8^{\prime \prime}-4^{\prime} 0{ }^{\prime \prime}$	FILL (Brown Topsoil, with trace roots)	
4'0"-5'6"	FILL (Dark gray brown Clayey SILT, and, coarse to fine Sand, with trace roots, trace debris)	medium stiff
5'6"-8'0"	Brown coarse to fine SAND, and (-) Silt, trace coarse to fine Gravel	medium dense

No water encountered

TP-27

0-0'9" Brown Topsoil, with roots
0'9"-4'4" Light brown coarse to fine SAND, little Silt, trace coarse to fine Gravel medium dense dry

4'4" Probable weathered bedrock

No water encountered

Brynwood Club Development

Bedford Road
Town of North Castle, NY
(12-175)
13 September 2013

TEST PIT LOGS

TP-28

0-0'4" Brown Topsoil
0'4"-8‘6" FILL (Brown coarse to fine SAND, little Silt, little coarse to fine Gravel, with organics, debris)
$8^{\prime} 6^{\prime \prime}-9^{\prime} 0^{\prime \prime} \quad$ FILL (Gray coarse to fine SAND, some Silt, little coarse to fine Gravel, with organics)
loose
moist
medium dense wet
Groundwater encountered @ $8^{\prime} 0^{\prime}$

Borehole Permeability Test (B-4)

Ground Surface Elevation: +628.0
Top of Casing Elevation: +631.5
Bottom of Test Hole Elevation: +621.0
Test Hole Depth from Ground Surface Elevation: 7’0" (84")

Pre-Soak:

Start Date: 18 Dec 2012
End Date: 19 Dec 2012

Time: 1545 Water Level*: 4’4"
Time: 0900 Water Level*: 7’1"

33" drop $\mathrm{H}_{2} \mathrm{O}$ in 1035 minutes (17 hr .15 min.) $=\underline{0.03 \text { inches } p e r ~ m i n u t e ~}$

Test:

Start Date: 19 Dec 2012
End Date: 19 Dec 2012

Time: 1000 Water Level*: 4’3"
Time: 1515 Water Level*: 5'3.5"
$12.5 "$ drop $\mathrm{H}_{2} \mathrm{O}$ in 315 minutes (5 hr .15 min.) = 0.04 inches per minute

Time	Water Level*	Interval Water Level Drop (Inches)	Cumulative Water Level Drop (Inches)
1000	$4^{\prime} 3^{\prime \prime}$	0	0
1100	$4^{\prime} 6^{\prime \prime}$	3	3
1200	$4^{\prime} 8^{\prime \prime}$	2	5
1300	$4^{\prime} 10^{\prime \prime}$	2	7
1400	$5^{\prime} 1^{\prime \prime}$	3	10
1515	$5^{\prime} 3.5^{\prime \prime}$	2.5	12.5

Water Level* - Depth below top of casing (elevation +631.5)

Percolation Test P-1

(Elevation +620)
Test hole depth 42 " from ground surface elevation

Pre-Soak

$0-10 \mathrm{~min}, 22$ " drop of H2O (pipe drained)
22 " drop H2O in 10 minutes $=2.20$ inches per minute
Test Run \#1
$5 \mathrm{~min}, 15 "$ drop H2O (re-filled pipe)
Test Run \#2
5 min, 14" drop H2O (re-filled pipe)
Test Run \#3
5 min, 12" drop H2O (re-filled pipe)

Final Test Reading

Start @ 1245, 14" from top of pipe Finish @ 1300, 36" drop from top of pipe (pipe drained) 22 "drop H2O in 15 minutes $=1.46$ inches per minute

Percolation Hole P-2

(Elevation + 612)

Test hole depth 20 " from ground elevation
Groundwater @ 0'6" below surface
Percolation test unable to be performed

Percolation Test P-3

(Elevation + 616)
Test hole depth 32 " from ground surface elevation

Pre-Soak

0-24 min, 17" drop of H2O (pipe drained)
17 " drop H2O in 24 minutes $=0.71$ inches per minute
Test Run \#1
$5 \mathrm{~min}, 5^{\prime \prime}$ drop H2O (re-filled pipe)
Test Run \#2
5 min, 5" drop H2O (re-filled pipe)
Test Run \#3
5 min, 4" drop H2O (re-filled pipe)

Final Test Reading

Start @ 1535, 15" from top of pipe
Finish @ 1605, 28" drop from top of pipe
13 " drop H2O in 30 minutes $=0.43$ inches per minute

Percolation Hole P-4

(Elevation + 615)

Test hole depth 24 " from ground elevation
Groundwater @ 1'10" below surface
Percolation test unable to be performed

APPENDIX B

PUMP PERFORMANCE CURVES

EQUALIZATION TANK

RAW SEWAGE PUMPS

TDH CALCULATIONS

RAW SEWAGE PUMPS
7. TOTAL DYNAMIC HEAD (TDH)

WS_BF Series
 Model 3887BF

FEATURES

Impeller: Cast iron, semi-open, non-clog, dynamically balanced with pump out vanes for mechanical seal protection.

Casing: Cast iron flanged volute type for maximum efficiency. Designed for easy installation on A10-20 slide rail or base elbow rail systems.
Mechanical Seal: SILICON CARBIDE VS. SILICON CARBIDE sealing faces for superior abrasive resistance, stainless steel metal parts, BUNA-N elastomers.

Shaft: Corrosion-resistant, 300 series stainless steel. Threaded design. Locknut on all models to guard against component damage on accidental reverse rotation.

APPLICATIONS

Specifically designed for the following uses:

- Homes
- Water transfer
- Sewage systems
- Light industrial
- Dewatering/Effluent • Commercial applications Anywhere waste or drainage must be disposed of quickly, quietly and efficiently.

SPECIFICATIONS

Pump

- Solids handling capabilities: 2" maximum
- Capacities: up to 185 GPM
- Total heads: up to 38 feet TDH
- Discharge size: 2" NPT threaded companion flange as standard. 3" option available but must be ordered separately. (Order no. A1-3)
- Temperature: $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ continuous $140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)$ intermittent.

MOTORS

- Fully submerged in high grade turbine oil for lubrication and efficient heat transfer. All ratings are within the working limits of the motor.
- Class B insulation

Fasteners: 300 series stainless steel.
Capable of running dry without damage to components.

Designed for continuous operation when fully submerged.

EXTENDED WARRANTY AVAILABLE FOR RESIDENTIAL APPLICATIONS.

AGENCY LISTINGS

Tested to UL 778 and CSA 22.2 108 Standards
By Canadian Standards Association
File \#LR38549

Single phase (60 Hz):

- Capacitor start motors for maximum starting torque.
- Built-in overload with automatic reset.
- SJTOW or STOW severe duty oil and water resistant power cords.
- 1⁄3-1 HP models have NEMA three prong grounding plugs.

Three phase (60 Hz):

- Class 10 overload protection must be provided in separately ordered starter unit.
- STOW power cords all have bare lead cord ends.
- Bearings: Upper and lower heavy duty ball bearing construction.
- Designed for Continuous Operation: Pump ratings are within the motor manufacturer's recommended working limits, can be operated continuously without damage when fully submerged.
- Power Cable: Severe duty rated, oil and water resistant. Epoxy seal on motor end provides secondary moisture barrier in case of outer jacket damage and to prevent oil wicking. Standard cord is 20'. Optional lengths are available.
- Motor Cover O-ring: Assures positive sealing against contaminants and oil leakage.

Wastewater

MOTOR AND MODEL INFORMATION

Order Number	HP	Phase	Volts	RPM	Impeller Diameter (in.)	Maximum Amps	Locked Rotor Amps	KVA Code	Full Load Efficiency	Resistance		Weight (lbs.)
										Start	Line-Line	
WS0311BF	0.33	1	115	4.69		10.7	30.0	M	54	11.9	1.7	63
WS0318BF			208			6.8	19.5	K	51	9.1	4.2	
WS0312BF			230			4.9	14.1	L	53	14.5	8.0	
WS0511BF	0.5		115	1750	5.00	14.5	31.1	J	55	9.3	1.4	65
WS0518BF			208			8.0	19.5	K	51	9.1	4.2	
WS0512BF			230			7.3	16.5	J	54	11.7	5.6	
WS0538BF		3	200			3.8	12.3	K	75	-	6.7	
WS0532BF			230			3.3	9.7	K	75	-	9.9	
WS0534BF			460			1.7	4.9	K	75	-	39.4	
WS0537BF			575			1.4	4.3	K	68	-	47.8	
WS0718BF	0.75	1	208		5.38	11.0	39.0	K	65	2.6	1.4	85
WS0712BF			230			9.4	24.8	J	57	4.8	2.3	
WS0738BF		3	200			4.1	21.2	H	74	-	4.3	
WS0732BF			230			3.6	17.3	J	76	-	5.6	
WS0734BF			460			1.8	8.9	J	76	-	22.4	
WS0737BF			575			1.5	7.3	J	71	-	29.2	
WS1018BF	1	1	208		5.75	14.0	39.0	K	65	2.6	1.4	
WS1012BF			230			12.3	30.5	H	60	4.3	1.8	
WS1038BF		3	200			6.0	21.2	H	74	-	4.3	
WS1032BF			230			5.8	17.3	J	76	-	5.6	
WS1034BF			460			2.9	8.9	J	76	-	22.4	
WS1037BF			575			2.4	7.3	J	71	-	29.2	

METERS FEET

PERFORMANCE RATINGS (gallons per minute)

Order No.		WS03BF	WS05BF	WS07BF	WS10BF
HP ${ }^{\text {- }}$		1/3	1/2	$3 / 4$	1
RPM -		1750	1750	1750	1750
	10 -	80	122	145	183
	15	36	90	116	152
	20	-	50	86	123
	25	-	-	48	95
	30	-	-	-	58
	35	-	-	-	20

COMPONENTS

Item No.	Description
1	Impeller
2	Casing
3	Mechanical Seal
4	Motor Shaft
5	Motor
6	Ball Bearings
7	Power Cable
8	Casing O-Ring

* For available repair parts, see repair parts book.

DIMENSIONS

(All dimensions are in inches. Do not use for construction purposes.)

Discharge Flange:

(1) 2" NPT standard
(2) 3" NPT optional (order an A1-3)

Let's Solve Water

Xylem Inc.
2881 East Bayard Street Ext., Suite A
Seneca Falls, NY 13148
Phone: (866) 325-4210
Fax: (888) 322-5877
www.gouldswatertechnology.com
Goulds is a registered trademark of Goulds Pumps, Inc. and is used under license.
© 2016 Xylem Inc. B3887BF R2 September 2016

SLUDGE DECANT PUMP

SHT DECANT PUMPS

TDH CALCULATIONS

SHT DECANT PUMPS

WS_BF Series
 Model 3887BF

FEATURES

Impeller: Cast iron, semi-open, non-clog, dynamically balanced with pump out vanes for mechanical seal protection.

Casing: Cast iron flanged volute type for maximum efficiency. Designed for easy installation on A10-20 slide rail or base elbow rail systems.
Mechanical Seal: SILICON CARBIDE VS. SILICON CARBIDE sealing faces for superior abrasive resistance, stainless steel metal parts, BUNA-N elastomers.

Shaft: Corrosion-resistant, 300 series stainless steel. Threaded design. Locknut on all models to guard against component damage on accidental reverse rotation.

APPLICATIONS

Specifically designed for the following uses:

- Homes
- Water transfer
- Sewage systems
- Light industrial
- Dewatering/Effluent • Commercial applications Anywhere waste or drainage must be disposed of quickly, quietly and efficiently.

SPECIFICATIONS

Pump

- Solids handling capabilities: 2" maximum
- Capacities: up to 185 GPM
- Total heads: up to 38 feet TDH
- Discharge size: 2" NPT threaded companion flange as standard. 3" option available but must be ordered separately. (Order no. A1-3)
- Temperature: $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ continuous $140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)$ intermittent.

MOTORS

- Fully submerged in high grade turbine oil for lubrication and efficient heat transfer. All ratings are within the working limits of the motor.
- Class B insulation

Fasteners: 300 series stainless steel.
Capable of running dry without damage to components.

Designed for continuous operation when fully submerged.

EXTENDED WARRANTY AVAILABLE FOR RESIDENTIAL APPLICATIONS.

AGENCY LISTINGS

Tested to UL 778 and CSA 22.2 108 Standards
By Canadian Standards Association
File \#LR38549

Single phase (60 Hz):

- Capacitor start motors for maximum starting torque.
- Built-in overload with automatic reset.
- SJTOW or STOW severe duty oil and water resistant power cords.
- 1⁄3-1 HP models have NEMA three prong grounding plugs.

Three phase (60 Hz):

- Class 10 overload protection must be provided in separately ordered starter unit.
- STOW power cords all have bare lead cord ends.
- Bearings: Upper and lower heavy duty ball bearing construction.
- Designed for Continuous Operation: Pump ratings are within the motor manufacturer's recommended working limits, can be operated continuously without damage when fully submerged.
- Power Cable: Severe duty rated, oil and water resistant. Epoxy seal on motor end provides secondary moisture barrier in case of outer jacket damage and to prevent oil wicking. Standard cord is 20'. Optional lengths are available.
- Motor Cover O-ring: Assures positive sealing against contaminants and oil leakage.

Wastewater

MOTOR AND MODEL INFORMATION

Order Number	HP	Phase	Volts	RPM	Impeller Diameter (in.)	Maximum Amps	Locked Rotor Amps	KVA Code	Full Load Efficiency	Resistance		Weight (lbs.)
										Start	Line-Line	
WS0311BF	0.33	1	115	4.69		10.7	30.0	M	54	11.9	1.7	63
WS0318BF			208			6.8	19.5	K	51	9.1	4.2	
WS0312BF			230			4.9	14.1	L	53	14.5	8.0	
WS0511BF	0.5		115	1750	5.00	14.5	31.1	J	55	9.3	1.4	65
WS0518BF			208			8.0	19.5	K	51	9.1	4.2	
WS0512BF			230			7.3	16.5	J	54	11.7	5.6	
WS0538BF		3	200			3.8	12.3	K	75	-	6.7	
WS0532BF			230			3.3	9.7	K	75	-	9.9	
WS0534BF			460			1.7	4.9	K	75	-	39.4	
WS0537BF			575			1.4	4.3	K	68	-	47.8	
WS0718BF	0.75	1	208		5.38	11.0	39.0	K	65	2.6	1.4	85
WS0712BF			230			9.4	24.8	J	57	4.8	2.3	
WS0738BF		3	200			4.1	21.2	H	74	-	4.3	
WS0732BF			230			3.6	17.3	J	76	-	5.6	
WS0734BF			460			1.8	8.9	J	76	-	22.4	
WS0737BF			575			1.5	7.3	J	71	-	29.2	
WS1018BF	1	1	208		5.75	14.0	39.0	K	65	2.6	1.4	
WS1012BF			230			12.3	30.5	H	60	4.3	1.8	
WS1038BF		3	200			6.0	21.2	H	74	-	4.3	
WS1032BF			230			5.8	17.3	J	76	-	5.6	
WS1034BF			460			2.9	8.9	J	76	-	22.4	
WS1037BF			575			2.4	7.3	J	71	-	29.2	

METERS FEET

PERFORMANCE RATINGS (gallons per minute)

Order No.		WS03BF	WS05BF	WS07BF	WS10BF
HP ${ }^{\text {- }}$		1/3	1/2	$3 / 4$	1
RPM -		1750	1750	1750	1750
	10 -	80	122	145	183
	15	36	90	116	152
	20	-	50	86	123
	25	-	-	48	95
	30	-	-	-	58
	35	-	-	-	20

COMPONENTS

Item No.	Description
1	Impeller
2	Casing
3	Mechanical Seal
4	Motor Shaft
5	Motor
6	Ball Bearings
7	Power Cable
8	Casing O-Ring

* For available repair parts, see repair parts book.

DIMENSIONS

(All dimensions are in inches. Do not use for construction purposes.)

Discharge Flange:

(1) 2" NPT standard
(2) 3" NPT optional (order an A1-3)

Let's Solve Water

Xylem Inc.
2881 East Bayard Street Ext., Suite A
Seneca Falls, NY 13148
Phone: (866) 325-4210
Fax: (888) 322-5877
www.gouldswatertechnology.com
Goulds is a registered trademark of Goulds Pumps, Inc. and is used under license.
© 2016 Xylem Inc. B3887BF R2 September 2016

APPENDIX C

MANUFACTURER'S PROCESS CALCULATIONS

PES Project \# Job Name: QTY \& Flow	BJB-022522-SC(Rev5)	Date:	4/7/22
	Summit Club		

BESST DESIGN CALCULATIONS

1) $\mathbf{B}_{\mathbf{x}} \quad$ Actual Sludge Load $\left[\mathrm{kg} \mathrm{BOD}_{5} / \mathrm{kg}\right.$ VSS / d]

$$
\begin{aligned}
& \mathbf{B}_{\mathbf{x}}=\mathbf{B} \times 1.02^{(\text {tmin }-20)} \\
& \mathbf{B}_{\mathbf{x}}=0.120 \times 1.02(10-20) \\
& \mathbf{B}_{\mathbf{x}}=0.0984 \mathrm{~kg} \mathrm{BOD} \\
& 5
\end{aligned} \mathrm{~kg} \mathrm{VSS} / \mathrm{d}
$$

2) A Sludge Age [days]

$$
\begin{aligned}
\mathbf{A}= & \left(1 /\left(\mathrm{YB}_{\mathrm{x}}\right)\right) \times\left(1-0.5\left(\left(\mathrm{YB}_{\mathrm{x}}\right) / \mathrm{k}_{\mathrm{ac}}\right)\right)+\left(\operatorname{Sqrt}\left(1+\left(\left(\mathrm{YB}_{\mathrm{x}}\right) / 2 \mathrm{k}_{\mathrm{ac}}\right)^{2}\right)\right) \\
\mathbf{A}= & (1 /(0.60 \times 0.0984)) \times(1-0.5 \times((0.60 \times 0.0984) / 0.090))+ \\
& \left(\text { Sqrt }\left(1+(0.60 \times 0.0984) /(2 \times 0.090)^{2}\right)\right) \\
\mathbf{A}= & 29.1936 \text { days }
\end{aligned}
$$

3) $\mathbf{k}_{\mathbf{d}} \quad$ Actual Rate of Decay $\left[\mathrm{d}^{-1}\right]$

$$
\begin{aligned}
& \mathbf{k}_{\mathrm{d}}=\mathrm{k}_{\mathrm{ac}} /\left(1+\mathrm{A} \mathrm{k}_{\mathrm{ac}}\right) \\
& \mathbf{k}_{\mathrm{d}}=0.090 /(1+(29.1936)(0.090)) \\
& \mathbf{k}_{\mathrm{d}}=0.0248 \quad \mathrm{~d}^{-1}
\end{aligned}
$$

4) $X \quad$ Sludge Concentration [$\mathrm{kg} \mathrm{ss} / \mathrm{m}^{3}$]

$$
\begin{aligned}
& \mathbf{X}=1000 \times \mathrm{V}_{\mathrm{x}} / \mathrm{KI} \\
& \mathbf{X}=1000 \times 0.600) / 100 \\
& \mathbf{X}=6.0000 \mathrm{~kg} \mathrm{ss} / \mathrm{m}^{3}
\end{aligned}
$$

PES Project \#	BJB-022522-SC(Rev5)	Date:	4/7/22
Job Name:	Summit Club		
QTY \& Flow	0		

BESST DESIGN CALCULATIONS, Cont'd.

5) X_{v} Volatile Suspended Solids Concentration [kg VSS / m ${ }^{3}$]

$$
\begin{aligned}
& \mathbf{X}_{\mathrm{v}}=(\mathrm{X})(\mathrm{p}) \\
& \mathbf{X}_{\mathrm{v}}=6.0000 \times 0.65 \\
& \mathbf{X}_{\mathrm{v}}=3.9000 \quad \mathrm{~kg} \mathrm{VSS} / \mathrm{m}^{3}
\end{aligned}
$$

6) v Actual Hydraulic Loading [m/h]

$$
\begin{aligned}
& \mathbf{v}=\text { Lesser of } \mathbf{v}_{\mathbf{l}} \text { or } \mathbf{v}_{\mathbf{v}_{\mathrm{c}}} \text {, where } \mathrm{v}_{\mathrm{l}}=1 \\
& \mathbf{v}_{\mathbf{c}}=\left(N_{x} / X\right) \times \mathrm{e}^{0.03(\min -20)} \\
& \mathbf{v}_{\mathbf{c}}=(6.0000 / 6.0000)\left(\mathrm{e}^{0.03 *(10-20)}\right) \\
& \mathbf{v}_{\mathbf{c}}=0.7408 \mathrm{~m} / \mathrm{h}
\end{aligned}
$$

7) V_{B} Aeration Volume $\left[\mathrm{m}^{3}\right]$

$$
\begin{aligned}
& \mathbf{S}_{\mathrm{R}}=\mathrm{S}_{\mathrm{T}}-(0.966(\mathrm{p})(\mathrm{NL})) \\
& \mathbf{V}_{\mathrm{B}}=\left(\mathrm{Q}\left(\mathrm{~S}_{\mathrm{O}}-\mathrm{S}_{\mathrm{R}}\right)\right) / \mathrm{X}_{\mathrm{V}} \mathrm{~B}_{\mathrm{x}} \\
& \mathbf{V}_{\mathbf{B}}=((170.326)(0.2400-0.0037) \cdot /(3.900)(0.0984) \\
& \mathbf{V}_{\mathbf{B}}=104.82 \mathrm{~m}^{3}
\end{aligned}
$$

8) S_{s} Clarifier Surface Area $\left[\mathrm{m}^{2}\right]$

$$
\begin{aligned}
& \mathbf{S}_{\mathbf{s}}=\left(\left(\mathrm{Q}_{\mathrm{Q}}\right)(\mathrm{Q}) / 24 \mathrm{v}\right. \\
& \mathbf{S}_{\mathbf{s}}=((3))(170.326) /(24 * 0.7408) \\
& \mathbf{S}_{\mathbf{s}}=28.739 \mathrm{~m}^{2}
\end{aligned}
$$

9) $\mathbf{V}_{\mathbf{S}}$ Clarifier Volume $\left[\mathrm{m}^{3}\right.$]

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{s}}=\mathrm{S}_{\mathrm{S}} / \mathrm{SV} \\
& \mathbf{V}_{\mathbf{s}}=28.739 \quad / \quad 0.63 \\
& \mathbf{V}_{\mathbf{S}}=45.618 \quad \mathrm{~m}^{3}
\end{aligned}
$$

PES Project \#	BJB-022522-SC(Rev5)	Date:	4/7/22
Job Name:	Summit Club		
QTY \& Flow	0		

BESST DESIGN CALCULATIONS, Cont'd.

10) \mathbf{P}_{x} Net Mass of Volatile Suspended Solids Produced [kg VSS / d]

$$
\begin{aligned}
& \mathbf{P}_{\mathbf{x}}=\left(\mathrm{Y} /\left(1+\mathrm{Ak}_{\mathrm{d}}\right)\right)(\mathrm{Q})\left(\mathrm{S}_{\mathrm{O}}-\mathrm{S}_{\mathrm{R}}\right) \\
& \mathbf{P}_{\mathbf{x}}=(0.60 /(1+(29.1936)(0.0248))(170.33)(0.2400-0.0037) \\
& \mathbf{P}_{\mathbf{x}}=14.004 \mathrm{~kg} \mathrm{VSS} / \mathrm{d}
\end{aligned}
$$

11) $\mathbf{P}_{\mathbf{t}}$ Sludge Production [kg ss / d]

$$
\begin{array}{lll}
\mathbf{P}_{\mathbf{t}}=\mathbf{P}_{\mathrm{x}} / \mathrm{p} & \\
\mathbf{P}_{\mathbf{t}}=14.004 & / 0.6500 \\
\mathbf{P}_{\mathbf{t}}=21.544 & \mathrm{~kg} \mathrm{ss} / \mathrm{d}
\end{array}
$$

12) \mathbf{V}_{N} Nitrification Volume $\left[\mathrm{m}^{3}\right]$

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{N}}=\left(Q\left(\mathrm{~N}_{\mathrm{O}}-\mathrm{N}\right)\right) /\left(\mathrm{p}_{\mathrm{N}} \mathrm{~m}_{\mathrm{U}} \mathrm{X}_{\mathrm{V}}\right) \\
& \mathbf{V}_{\mathbf{N}}=(170.326(0.0400-0.0010)) /((0.0450)(0.6085)(3.9000)) \\
& \mathbf{V}_{\mathbf{N}}=62.149 \mathrm{~m}^{3}
\end{aligned}
$$

13) V_{D} Denitrification Volume $\left[\mathrm{m}^{3}\right]$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{D}}=\left(\mathrm{QN}_{\mathrm{O}} \mathrm{Y}\right) /\left(0.75 \mathrm{~m}_{\mathrm{z}} \mathrm{X}_{\mathrm{V}}\right) \\
& \mathrm{V}_{\mathrm{D}}=(170.33((0.0400)(0.60))) /(0.75(0.0750)(3.9000)) \\
& \mathrm{V}_{\mathrm{D}}=18.634 \mathrm{~m}^{3}
\end{aligned}
$$

14) V_{A} Volume of Aeration [m^{3}]

$$
\begin{aligned}
\mathrm{V}_{\mathrm{A}} & =\operatorname{Larger} \text { of } \mathrm{V}_{\mathrm{AB}} \text { or } \mathrm{V}_{\mathrm{N}} \\
\mathrm{~V}_{\mathrm{AB}} & =\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{D}}\left(\left(1+\mathrm{Ak}_{\mathrm{d}}\right) /\left(2.77\left(\mathrm{Am}_{\mathrm{Z}}\right)\right)\right) \\
\mathrm{V}_{\mathrm{AB}} & =104.82-18.634((1+(29.1936)(0.0248)) / \\
\mathrm{V}_{\mathrm{AB}} & =99.77(29.1936)(0.0750)) \\
\mathrm{V}_{\mathrm{A}} & =99.526 \mathrm{~m}^{3}
\end{aligned}
$$

15) \mathbf{V}_{T} Total Volume of Reactor $\left[\mathrm{m}^{3}\right]$

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{T}}=\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{D}}+\mathrm{V}_{\mathrm{S}} \\
& \mathbf{V}_{\mathbf{T}}=99.526+18.634+45.618 \\
& \mathbf{V}_{\mathbf{T}}=163.78 \mathrm{~m}^{3}
\end{aligned}
$$

16) O_{2} Oxygen Consumption [$\mathrm{kg} \mathrm{O}_{2} / \mathrm{d}$]

$$
\begin{aligned}
\mathbf{O}_{2}= & \mathrm{Q}\left(\left(\mathrm{~S}_{\mathrm{O}}-\mathrm{S}_{\mathrm{R}}\right) / 0.68\right)-1.42 \mathrm{P}_{\mathrm{x}}+4.57 \mathrm{Q}\left(\mathrm{~N}_{\mathrm{O}}-\mathrm{N}\right) \\
\mathbf{O}_{2}= & 170.33((0.2400-0.0037) / 0.68)-1.42(14.004) \\
& +4.57(170.33)(0.0400-0.0010) \\
\mathbf{O}_{2}= & 69.655 \quad \mathrm{~kg} \mathrm{O}_{2} / \mathrm{d}
\end{aligned}
$$

17) $\mathbf{N m}$ Air Consumption $\left[\mathrm{Nm}^{3} / \mathrm{h}\right.$]

$$
\begin{aligned}
& \mathbf{N m}= \mathrm{O}_{2}\left(\mathrm{c}_{\mathrm{s}} /\left(\mathrm{c}_{\mathrm{s}}-2\right)\right)\left(\mathrm{o}_{\mathrm{k}} /(0.024 \mathrm{a})\right) \\
& \mathrm{Nm}= 69.655 \quad(8.1224 /(8.1224-2)) \\
&(1.3000 /(0.024(130))) \\
& \mathbf{N m}=166.85 \mathrm{Nm}^{3} / \mathrm{h}
\end{aligned}
$$

BESST PROGRAM AND FORMULA LISTING

The following variable and formula lists represent the program listing for the computer model used to design and size the BESST system. Not all of the formulas are listed due to copyright and patent protection.
Formulas that are NOT shown are mainly sub-formulas of those listed. For formula verification see Metcalf δ Eddy: Wastewater Engineering; and K.R. Imhoff: Taschenbuch def Stadtenwasterung. 28. Auflage, Oldenbo। Munchen - Wien 1993.

INPUT VALUES

1.)	B	Sludge Load (kg BOD / kg VSS)	0.03 to 0.20
2.)	N_{X}	Flux Flow (kg ds / m ${ }^{2} / \mathrm{h}$) function of temperature (use @ 20 degrees Celsius)	6.00
3.)	V_{L}	Limit Hydraulic Loading (m/h)	0.99 to 1.1
4.)	V_{x}	Sludge Volume (mL / L)	4.0 to 0.7
5.)	KI	Sludge Index (mL / g)	70 to 120
6.)	p	Volatile Suspended Solids (\%)	0.62 to 0.68
7.)	Y	Maximum Yield Coefficient (kg VSS / kg BOD)	0.53 to 0.6
8.)	$\mathrm{k}_{\text {ac }}$	Decay Rate (d) constant	0.09
9.)	Q	Flow Rate ($\mathrm{m}^{3} / \mathrm{d}$)	
10.)	Q_{Q}	Flow Variation	1.5 to 3
11.)	S_{0}	Influent BOD (kg / m ${ }^{\mathbf{3}}$)	
12.)	S_{T}	Effluent BOD (kg / m${ }^{\mathbf{3}}$)	
13.)	N_{0}	Influent Ammonia (kg / m ${ }^{\mathbf{3}}$)	
14.)	N	Effluent Ammonia (kg / m ${ }^{\mathbf{3}}$) typically	0.005

INPUT VALUES

15.)	N_{3}	Effluent Nitrates $\mathrm{N}-\mathrm{NO}_{3}\left(\mathrm{~kg} / \mathrm{m}^{\mathbf{3}}\right)$	typically	0.001 to 0.015
16.)	NLo	Influent TSS (kg / m ${ }^{\mathbf{3}}$)		
17.)	NL	Effluent TSS (kg / m ${ }^{\mathbf{3}}$		
18.)	min	Minimum Water Temperature (${ }^{\circ} \mathrm{C}$)		
19.)	max	Maximum Water Temperature (${ }^{\circ} \mathrm{C}$)		
20.)	a	Oxygen Transfer Coefficient ($\mathrm{g} / \mathrm{Nm}^{\mathbf{3}}$)		15 to 50
21.)	SV	Ratio, Separation Surface to Separation	Volume	
22.)	m_{i}	Specific Growth Rate of Nitrificants	constant	1.37
23.)	pH	pH		6.0 to 8.0
24.)	$\mathrm{m}_{\text {id }}$	Specific Growth Rate of Denitrificants	constant	0.1 to 0.3
25.)	O_{k}	Peak Load of Aeration	constant	1.3

Nitrification and Denitrification

Nitrogen is removed by the nitrification and denitrification processes. Nitrification is autotropic and all Purestream ES, LLC integrated bioreactors are designed for complete nitrification of ammonia to NO_{3} (pleas see Metcalf \& Eddy, Third Edition, Chapter 11-6).

Denitrification, however, is heterotropic and requires a carbon source. Conventional plants' "separate sludge denitrification" requires that carbon is added, typically in the form of methanol. This adds to operating costs, and if used in excess, to increased BOD_{5} content. BESST technology's "single-sludge denitrification" approach uses an endogenous carbon source to maintain dentrifiers. Influent is combined with nitrified mixe liquor in the anoxic compartment providing the carbon source needed for denitrification. Relatively high mixe liquor recycle rates are employed and sufficient denitrification retention times provided.

Total nitrogen reduction $\left(\mathbf{N}_{\mathrm{T}}\right)$ is a subject of not only providing sufficient anoxic volume for denitrification and keeping temperature above a certain minimum, but also a function of Recycled Activated Sludge (RAS) flow rate. The efficiency of \mathbf{N}_{T} reduction is expressed as follows:

$$
\eta=(1-1 /(1+n)) \times 100
$$

Where $\mathrm{n}=$ RAS flow multiple of average flow Q .
The following are typical efficiencies and RAS flow multiples used / required:
n
2
3
4

Slaughterhouse Wastewater 14
Hog Manure 29
η (\%)

Domestic
.
66
75
80
93
97

BESST technology delivers not only high efficiency reduction of organic matter, but also increased efficiency of phosphorous removal. Two processes, biological and chemical precipitation are employed with advantage

The mechanics of biological phosphorous removal, known as "Luxury Uptake", are due to exposure of activated sludge to alternating oxic and anoxic conditions. Under these conditions, the cells store more energy in the form of phosphorous than needed for their survival. If strictly oxic conditions are maintained during subsequent clarification, phosphorous will be retained by the cells and will eventually be removed with the excess sludge. Unlike most other methods of clarification, these conditions are maintained by the BESS process, and biological phosphorous reduction to less than $3 \mathrm{mg} / \mathrm{L}$ are readily achievable.

The basic reaction involved in the precipitation of phosphorous with iron is as follows:

$$
\mathrm{Fe}^{+3}+\mathrm{H}_{\mathrm{n}}\left(\mathrm{PO}_{4}\right)^{\mathrm{n}-3} \cdot \mathrm{FePO}_{4}+\mathrm{nH}^{+}
$$

In the case of iron, 1 mole will precipitate 1 mole of phosphate. The advantage of the process is its low chemical consumption, close to stoichiometric, and consequently, the reduction of ballast sludge production. Followed by microfiltration, reductions to $0.5 \mathrm{mg} / \mathrm{L}$ are possible.

If yet further reduction of phosphorous is required, ferric sulfate precipitation after the bioreactor followed by microfiltration must be used.

February 28, 2022
Project: Summit Club 45,000 gpd

SLUDGE AIRLIFT CALCULATIONS AND DATA

A. Maximum flow at six times average daily flow
$\frac{45,000 \times 6}{1440}=188$ GPM total
B. Two (2) 4" airlifts provided, each rated at 94 GPM
C. See performance curve attached for 4 " airlift

At Lift (HL) = 1,
Flow $=94$ GPM
Submergence (Hs) $=9^{\text {, }}$
$\%$ Subm. $=\frac{9}{10} \times 100=90 \%$
Required Air $=12 \mathrm{CFM}$ per airlift

At Lift (HL) = 2'
Flow $=94$ GPM
Submergence (Hs) =9,
$\%$ Subm. $=\frac{9}{11} \times 100=81.8 \%$
Required Air $=18$ CFM per airlift

At actual lift $(\mathrm{HL})=1.5^{\prime}$, use 15 CFM per sludge airlift
D. Minimum flow at four times average daily flow
$\frac{45,000 \times 4}{1440}=125$ GPM total
E. Two (2) 4" airlifts provided, each rated at 63 GPM
F. See performance curve attached for 4 " airlift

At Lift (HL) = 1,
Flow $=63$ GPM
Submergence (Hs) $=9^{\prime}$
$\%$ Subm. $=\frac{9}{10} \times 100=90 \%$
Required Air $=10 \mathrm{CFM}$ per airlift

At Lift (HL) $=2$,
Flow $=63$ GPM
Submergence (Hs) $=9^{\prime}$
$\%$ Subm. $=\frac{9}{11} \times 100=81.8 \%$
Required Air $=16$ CFM per airlift

At actual lift $(\mathrm{HL})=1.5^{\prime}$, use 13 CFM per sludge airlift

February 28, 2022
Project: Summit Club 45,000 gpd

SKIMMER AIRLIFT CALCULATIONS AND DATA

A. Maximum flow at two times average daily flow
$\frac{45,000 \times 2}{1440}=63$ GPM total
B. Two (2) 2.5 " airlifts provided, each rated at 32 GPM
C. See performance curve attached for $2.5 "$ airlift

At Lift $\left(\mathrm{H}_{\mathrm{L}}\right)=1$,
Flow $=32$ GPM
Submergence (Hs) $=5^{\text {, }}$
$\%$ Subm. $=\frac{5}{6} \times 100=83.3 \%$
Required Air $=3 \mathrm{CFM}$ per airlift

At Lift (HL) $=2^{\prime}$
Flow $=32$ GPM
Submergence (Hs) $=5$,
$\%$ Subm. $=\frac{5}{7} \times 100=71.4 \%$
Required Air $=7 \mathrm{CFM}$

At actual lift (HL) $=1.5^{\prime}$, use 5 CFM per sludge airlift

NOTES:

I. THE AN LIFT PERFORMANCE CURVES ON THIS CHART ARE TYPICAL FOR PUMPING CLEAR WATER ANO ARE INTENDED TO BE USED FOR ESTIMATING
2 THE PER CENT SUQMERGENCE $=\frac{\mathrm{H}_{3}}{\mathrm{H}_{\mathrm{s}}+\mathrm{H}_{2}} \times 100$.
3. IT is suggested that the curves be not EXTENDED BEYOND THE LIMITS SHOWN BECAUSE THE APPROXOMATE MAXIMUM DISCHARGE FOR EACH CONDITION IS INDICATED.
4 FOR LIFTS BETWEEN THOSE INDICATED ON THIS CHART USE A STRANGHT ARITHMETIC PROPORTION WHEN INTERPOLATING VALUES.
EXAMPLE 1:
GVEN: LFT, $H_{2}=5^{\circ}$: SUBM, $H_{3}=13^{\circ}$. DESRED DSCH. $=100$ G.P.M.
FIND: PER CENT SUBMERGENCE: $\frac{13}{13+5} \times 100=72$ AIR RECDR $=24$ CF.M. (FREE AIR) VELOCTY IN $4^{\prime \prime}$ TAML PIPE $=2.6$ F.P.S.

EXAMPLE 2:

GIVEN: LIFT, $H_{L}=5.5^{\prime}$; SUBM, $H_{s}=12.5^{\prime}$. DESIRED VEL. IN 4^{*} TALL PIPE $=3.0$ F.P.S.
FIND: DISCH. FROM $4^{\prime \prime}$ ARR LFT $=117$ G.P.M
PER CENT SUBM. $=\frac{12.5}{125+53} \times 100=69.3$.
AIR REOD.
$=$ (ANR $\odot H=5)^{\circ}-\frac{5.5-50}{7.0-5.0}$ (DIFF. AN O $O=5^{\prime} B 7^{\prime}$.

- 40-0.25(40-30)
- 38 GF.M. (FREE ANR).

TYPICAL AIR LIFTS FOR WHICH CURVES ARE APPLICABLE

engineering
data sheet

TYPICAL PERFORMANCE CURVES

NOTES：

1．TME ARR LIFT PERFORMANCE CURVES ON THES CHART ARE TYPICAL FOR PUMPING CIEAR WATER AND ARE INTENOED TO EE USED FOR ESTIMATING．
2．THE PER CENT SUQMEROENCE $=\frac{\mathrm{H}_{\mathrm{S}}}{\mathrm{H}_{\mathrm{S}}+\mathrm{H}_{\mathrm{L}}} \times 100$
3．IT S SUGGESTED THAT THE CURVES NOT BE EXTENDED BEYOND THE LIMITS SHOWN gECAUSE THE APPROXIMATE MAXIMUM OISCHARGE FOR EACH CONDITION IS INDICATED．
4．FOR LIFTS BETWEEN THOSE NOICATED ON THS CHART USE A STRAIGHT ARITHMETIC PGOPORTION WHEN INTERAOLATING VALUES．

ЕメAんが튼

GIVEN： $\operatorname{LIFT} \mathrm{H}_{2}=3^{4}, S U B M_{i} H_{S}=12^{*}$
OESIRED OISCH， 40 GPM
FIND：PER CENT SUEMERGENCE $=\frac{12}{12^{2}+3} \times 100=80 \%$
AIP REOLO 4 SCFM
VELOCITY IN $2 \frac{1}{2}$ TAIL PIPE $=2.5 \mathrm{FPS}$
＊standaro cuble feet of air per minute at 14.7 PSIA AND $70^{\circ} \mathrm{F}$ ．

APPENDIX D
 BLOWER PERFORMANCE DATA

Customer: Summit Club-Process/Airlift INPUT DATA:

Operating mode:	Gauge pressure
Kind of package:	Com-paK Plus
Inlet temperature:	$90^{\circ} \mathrm{F}$
Inlet pressure:	14.7 psia
Inlet flow:	$\mathbf{1 6 0} \mathbf{~ i c f m}$

Prepared By: David W. Martine

	Flow medium : Humid Air
on frequency control \quad Specific heat constantk : 1.40	

Specific weight at standard conditions $: 0.0760$
 $\mathrm{lb} / \mathrm{ft}^{3}$
 Pressure difference : 6.0 psig

Discharge pressure : 20.7 psia

Technical data:

The stated control range can vary depending on manufacturer and type of the frequency converter. Standard motor with impulse peak resistance in accordance with IEC 60034-1 for operation with a IGBT frequency converter.

[^7]
Customer：Summit Club－Process／Airlift

Kind of package：Com－paK Plus on frequency control

Prepared By：David W．Martine
Operating mode：Gauge pressure

Inlet temperature：	$90^{\circ} \mathrm{F}$	Valve set	$\mathbf{1 0 . 4}$	psig
Inlet pressure：	14.7 psia	pressure：		

Input inlet flow：$\quad 160 \mathrm{icfm}$

Package：BB 69C
Blower：OMEGA 22P
Motor power： 10.0 hp
Operating voltage： $208 \mathrm{~V} / 60 \mathrm{~Hz}$

Blower speed（60Hz）：5125 rpm
Connection ANSI2
\％of maximum speed： 86
Fan voltage $208 \mathrm{~V} / 3 \mathrm{Ph} / 60 \mathrm{~Hz}$

Accessories：	yes no	NOTE：ACCESSORIES SHOWN ARE INTENDED F		USE ONLY no
Unloaded start up valve：AFM5	\square 区	Sound enclosure：	区	\square
Check plate： $21 / \mathbf{2}^{\prime \prime}$	X \square	Suction from ambient：	区	\square
		Suction from pipe：	\square	X
Instrument／sensor：		Optional for package with sound enclosure		
Temperature gauge with switch point：	X \square	Sound enclosure for outdor installation：	\square	区
Pressure gauge：	X \square			
Filter differential pressure switch：	\square 区			
oil level sensor	X			
speed monitor	X	Frequency converter（FC）：		
Auxiliary heating：	\square X	Frequency converter（FC）by customer：	X	\square
Omega P－GRD：	$\square \mathbf{X}$	Kaeser FC type OFC：	\square	区

Standard equipment with s．encl．：1x 2＂
Standard equipment without s．encl．：1x 2＂

Blowoff valve，pressure gauge，filter with maintenance indicator
Blowoff valve，filter with maintenance indicator

Comments for project：

Kaeser Com-paK Installation Data Sheet

BB52C

Package	Blower	Horsepower
BB52C	Omega 21P	$3,5,7.5,10$

Electrical Data Drive Motor											
						wye-delta starting (2-wire per phase)			direct online (1-wire per phase)		
Hp	Voltage (3ph/60Hz)	$\begin{gathered} \text { FLA +/- } \\ 10 \% \end{gathered}$	Nominal Eff	Insulation Class	Enclosure Type	Jumper Connection	Disconnect Fuse	Wire Size ($75^{\circ} \mathrm{C}$ or higher)	Jumper Connection	Disconnect Fuse	Wire Size ($75^{\circ} \mathrm{C}$ or higher)
3	208	9.1	86.5	F	TEFC	YY \rightarrow - $\Delta \Delta$	10 AMP	14 AWG	$\Delta \triangle$	10 AMP	14 AWG
	230	8.2				$Y Y$-> $\Delta \Delta$	10 AMP	14 AWG	$\Delta \Delta$	10 AMP	14 AWG
	460	4.1				$Y \rightarrow \Delta$	6 AMP	14 AWG	Δ	6 AMP	14 AWG
5	208	13.5	88.5	F	TEFC	$Y Y \rightarrow \Delta \Delta$	20 AMP	14 AWG	$\Delta \triangle$	20 AMP	12 AWG
	230	12.2				$Y Y \rightarrow \Delta \Delta$	15 AMP	14 AWG	$\Delta \Delta$	20 AMP	14 AWG
	460	6.1				$\mathrm{Y} \rightarrow \Delta$	10 AMP	14 AWG	Δ	10 AMP	14 AWG
7.5	208	18.4	89.9	F	TEFC	$Y Y \rightarrow \Delta \Delta$	25 AMP	14 AWG	$\Delta \Delta$	30 AMP	10 AWG
	230	17.6				$Y Y ~->\Delta \Delta$	25 AMP	14 AWG	$\Delta \Delta$	30 AMP	10 AWG
	460	8.8				$Y \rightarrow \Delta$	10 AMP	14 AWG	Δ	15 AMP	14 AWG
10	208	25	90.8	F	TEFC	$Y Y \rightarrow \Delta \Delta$	35 AMP	14 AWG	$\Delta \Delta$	40 AMP	8 AWG
	230	23				YY \rightarrow - $\Delta \Delta$	30 AMP	14 AWG	$\Delta \Delta$	35 AMP	8 AWG
	460	11.5				Y-> Δ	20 AMP	14 AWG	Δ	20 AMP	12 AWG

Electrical Data Drive Motor

Notes: 1. Disconnect fuses should be of dual element time delay design.
2. Breaker should be suitable for a heavy duty starting load and of inverse time delay design that complies to regulations outlined in NEC 430.52
3. Fuse and wire sizes determined in accordance to NEC $240.6,430.52$ and tables 250.122, 430.248, 430.250, 430.252.

Enclosure Fan Data

Power	Voltage $(60 \mathrm{~Hz})$	Phase $(60 \mathrm{~Hz})$	Current Draw	Jumper Connection	Quantity	Enclosure Type	Fan Type	Flow
110 W	115	1	3.42	Capacitor	1	TEFC	Radial	280 CFM
80 W	230	1	0.60	Capacitor	1	TEFC	Radial	280 CFM
80 W	208	3	0.61	Δ	1	TEFC	Radial	280 CFM
120 W	230	3	0.68	Δ	1	TEFC	Radial	280 CFM
120 W	460	3	0.37	Y	1	TEFC	Radial	280 CFM
120 W	575	3	0.28	Y	1	TEFC	Radial	280 CFM

Notes: 1.) Nominal power in Watts.
2.) Current in $A(+/-10 \%)$.
3.) Default fan selection is $230 / 460 \mathrm{~V}$. If other voltage is required, it must be noted at time of order.
4.) Fan requires separate power supply.
5.) Fan should run at the same time as main motor. If fan is able to run for 15 minutes after machine is turned off, it will improve thermal conditions inside enclosure.

BB52C

Oil System Data	
Drive End Capacity	0.15 quarts
Gear End Capacity	0.13 quarts
Oil Type (Synthetic)	SB 220

Package Connections									
Hp	Cable Entry		$\begin{gathered} \text { Length (in.) } \\ \mathrm{L} \end{gathered}$	Width (in.) W	$\begin{gathered} \text { Height (in.) } \\ H \end{gathered}$	Floor (sq ft)	Weight (lb)	Connection Size (in.)	Type
	Drive Motor	Fan Motor							
3	3×17 NPT	$2 \times \mathrm{M} 16$	31 1/2	$283 / 8$	44	$61 / 5$	382	2	Tube
5							424	2	Tube
7.5							463	2	Tube
10							474	2	Tube

Safety Devices

Discharge Temperature Gauge with Switch	Motor Winding PTC's
Range: $120-400^{\circ} \mathrm{F}\left(50-200^{\circ} \mathrm{C}\right)$ Switching point: adjustable Switching: 1 = common, 2 = NC, 4 = NO Contacts: 5A / 24VDC non-inductive Blower discharge temperature switch should be wired into control system to shut down blower operation when switch point is achieved.	 Motor winding PTC's require use of a control module. Kaeser part number 7.2710 .2 can be purchased and integrated into control scheme for this purpose.

BB52C

Ventilation of Blower Room	
Air Inlet Opening	1
Cooling Fan Capacity (forced ventilation)	2
Max Heat Rejection	3

Ventilation values based on 190 CFM @ 15 PSIG $\Delta \mathrm{P}, 20 \mathrm{Hp}$ and ambient inlet. Max. room temp. $=104^{\circ} \mathrm{F}$ and cooling air temp $=95^{\circ} \mathrm{F}$. Discharge piping length $=5 \mathrm{ft}$.

It is recommended to extract the exhaust air from the upper third of the room as this is where the heat collects. The room ventilation openings should be arranged that the current of cooling air flowing through the room passes over the blower inlet and exhaust ports and, if possible, should leave no stagnant air in the room. (A thermal short circuit must be avoided, i.e. discharged cooling air must not find its way to the cooling air inlet.)
The blower must not be positioned so near to a wall that the inflow of cooling air is obstructed.

Pipework should be insulated against heat emission.
If the blower station is located in the middle of a large hall its exhaust air can be extracted by means of a duct positioned above the exhaust port (illustrated in broken lines).

EQUALIZATION TANK \& SLUDGE HOLDING TANK BLOWER

Customer: Summit Club-EQ_Sludge Holding INPUT DATA:

Prepared By: David W. Martine

Operating mode:	Gauge pressure
Kind of package:	Com-paK Plus
Inlet temperature:	$90^{\circ} \mathrm{F}$
Inlet pressure:	14.7 psia
Inlet flow:	$\mathbf{8 0} \mathbf{~ i c f m}$

Flow medium : Humid Air
Specific heat constantк : 1.40
Specific weight at standard conditions $0.0760 \mathrm{lb} / \mathrm{ft}^{3}$
Pressure difference : 6.0 psig

Discharge pressure : 20.7 psia
Air humidity: 80 [\%]

Technical data:

The stated control range can vary depending on manufacturer and type of the frequency converter. Standard motor with impulse peak resistance in accordance with IEC 60034-1 for operation with a IGBT frequency converter.

[^8]Customer：Summit Club－EQ＿Sludge Holding
Kind of package：Com－paK Plus on frequency control

Prepared By：David W．Martine
Operating mode：Gauge pressure

Inlet temperature：	$90^{\circ} \mathrm{F}$	Valve set	$\mathbf{9 . 6}$	psig
Inlet pressure：	14.7 psia	pressure：		

Input inlet flow： 80 icfm

Package：BB 52C
Blower：OMEGA 21P
Motor power： 5.0 hp
Operating voltage： $208 \mathrm{~V} / 60 \mathrm{~Hz}$

Blower speed（60Hz）：3490 rpm
Connection ANSI2＂
\％of maximum speed： 56
Fan voltage208V／3Ph／60Hz

Accessories：	yes no	NOTE：ACCESSORIES SHOWN ARE INTENDED F		USE ONLY no
Unloaded start up valve：AFM4	\square 区	Sound enclosure：	区	\square
Check plate：G2＂	X \square	Suction from ambient：	区	\square
		Suction from pipe：	\square	X
Instrument／sensor：		Optional for package with sound enclosure		
Temperature gauge with switch point：	X \square	Sound enclosure for outdor installation：	\square	区
Pressure gauge：	X \square			
Filter differential pressure switch：	\square 区			
oil level sensor	X			
speed monitor	\square X	Frequency converter（FC）：		
Auxiliary heating：		Frequency converter（FC）by customer：	X	\square
Omega P－GRD：	$\square \mathbf{X}$	Kaeser FC type OFC：	\square	区

Standard equipment with s．encl．： $1 x 1$ 1／4＂
Standard equipment without s．encl．：1x 1 1／4＂

Blowoff valve，pressure gauge，filter with maintenance indicator
Blowoff valve，filter with maintenance indicator

Comments for project：

Kaeser Com-paK Installation Data Sheet

BB52C

Package	Blower	Horsepower
BB52C	Omega 21P	$3,5,7.5,10$

Electrical Data Drive Motor											
						wye-delta starting (2-wire per phase)			direct online (1-wire per phase)		
Hp	Voltage (3ph/60Hz)	$\begin{gathered} \text { FLA +/- } \\ 10 \% \end{gathered}$	Nominal Eff	Insulation Class	Enclosure Type	Jumper Connection	Disconnect Fuse	Wire Size ($75^{\circ} \mathrm{C}$ or higher)	Jumper Connection	Disconnect Fuse	Wire Size ($75^{\circ} \mathrm{C}$ or higher)
3	208	9.1	86.5	F	TEFC	YY \rightarrow - $\Delta \Delta$	10 AMP	14 AWG	$\Delta \triangle$	10 AMP	14 AWG
	230	8.2				$Y Y$-> $\Delta \Delta$	10 AMP	14 AWG	$\Delta \Delta$	10 AMP	14 AWG
	460	4.1				$Y \rightarrow \Delta$	6 AMP	14 AWG	Δ	6 AMP	14 AWG
5	208	13.5	88.5	F	TEFC	$Y Y \rightarrow \Delta \Delta$	20 AMP	14 AWG	$\Delta \triangle$	20 AMP	12 AWG
	230	12.2				$Y Y \rightarrow \Delta \Delta$	15 AMP	14 AWG	$\Delta \Delta$	20 AMP	14 AWG
	460	6.1				$\mathrm{Y} \rightarrow \Delta$	10 AMP	14 AWG	Δ	10 AMP	14 AWG
7.5	208	18.4	89.9	F	TEFC	$Y Y \rightarrow \Delta \Delta$	25 AMP	14 AWG	$\Delta \Delta$	30 AMP	10 AWG
	230	17.6				$Y Y ~->\Delta \Delta$	25 AMP	14 AWG	$\Delta \Delta$	30 AMP	10 AWG
	460	8.8				$Y \rightarrow \Delta$	10 AMP	14 AWG	Δ	15 AMP	14 AWG
10	208	25	90.8	F	TEFC	$Y Y \rightarrow \Delta \Delta$	35 AMP	14 AWG	$\Delta \Delta$	40 AMP	8 AWG
	230	23				YY \rightarrow - $\Delta \Delta$	30 AMP	14 AWG	$\Delta \Delta$	35 AMP	8 AWG
	460	11.5				Y-> Δ	20 AMP	14 AWG	Δ	20 AMP	12 AWG

Electrical Data Drive Motor

Notes: 1. Disconnect fuses should be of dual element time delay design.
2. Breaker should be suitable for a heavy duty starting load and of inverse time delay design that complies to regulations outlined in NEC 430.52
3. Fuse and wire sizes determined in accordance to NEC $240.6,430.52$ and tables 250.122, 430.248, 430.250, 430.252.

Enclosure Fan Data

Power	Voltage $(60 \mathrm{~Hz})$	Phase $(60 \mathrm{~Hz})$	Current Draw	Jumper Connection	Quantity	Enclosure Type	Fan Type	Flow
110 W	115	1	3.42	Capacitor	1	TEFC	Radial	280 CFM
80 W	230	1	0.60	Capacitor	1	TEFC	Radial	280 CFM
80 W	208	3	0.61	Δ	1	TEFC	Radial	280 CFM
120 W	230	3	0.68	Δ	1	TEFC	Radial	280 CFM
120 W	460	3	0.37	Y	1	TEFC	Radial	280 CFM
120 W	575	3	0.28	Y	1	TEFC	Radial	280 CFM

Notes: 1.) Nominal power in Watts.
2.) Current in $A(+/-10 \%)$.
3.) Default fan selection is $230 / 460 \mathrm{~V}$. If other voltage is required, it must be noted at time of order.
4.) Fan requires separate power supply.
5.) Fan should run at the same time as main motor. If fan is able to run for 15 minutes after machine is turned off, it will improve thermal conditions inside enclosure.

BB52C

Oil System Data	
Drive End Capacity	0.15 quarts
Gear End Capacity	0.13 quarts
Oil Type (Synthetic)	SB 220

Package Connections									
Hp	Cable Entry		$\begin{gathered} \text { Length (in.) } \\ \mathrm{L} \end{gathered}$	Width (in.) W	$\begin{gathered} \text { Height (in.) } \\ H \end{gathered}$	Floor (sq ft)	Weight (lb)	Connection Size (in.)	Type
	Drive Motor	Fan Motor							
3	3×17 NPT	$2 \times \mathrm{M} 16$	31 1/2	$283 / 8$	44	$61 / 5$	382	2	Tube
5							424	2	Tube
7.5							463	2	Tube
10							474	2	Tube

Safety Devices

Discharge Temperature Gauge with Switch	Motor Winding PTC's
Range: $120-400^{\circ} \mathrm{F}\left(50-200^{\circ} \mathrm{C}\right)$ Switching point: adjustable Switching: 1 = common, 2 = NC, 4 = NO Contacts: 5A / 24VDC non-inductive Blower discharge temperature switch should be wired into control system to shut down blower operation when switch point is achieved.	 Motor winding PTC's require use of a control module. Kaeser part number 7.2710 .2 can be purchased and integrated into control scheme for this purpose.

BB52C

Ventilation of Blower Room	
Air Inlet Opening	1
Cooling Fan Capacity (forced ventilation)	2
Max Heat Rejection	3

Ventilation values based on 190 CFM @ 15 PSIG $\Delta \mathrm{P}, 20 \mathrm{Hp}$ and ambient inlet. Max. room temp. $=104^{\circ} \mathrm{F}$ and cooling air temp $=95^{\circ} \mathrm{F}$. Discharge piping length $=5 \mathrm{ft}$.

It is recommended to extract the exhaust air from the upper third of the room as this is where the heat collects. The room ventilation openings should be arranged that the current of cooling air flowing through the room passes over the blower inlet and exhaust ports and, if possible, should leave no stagnant air in the room. (A thermal short circuit must be avoided, i.e. discharged cooling air must not find its way to the cooling air inlet.)
The blower must not be positioned so near to a wall that the inflow of cooling air is obstructed.

Pipework should be insulated against heat emission.
If the blower station is located in the middle of a large hall its exhaust air can be extracted by means of a duct positioned above the exhaust port (illustrated in broken lines).

Customer: Summit Club-Tertiary Filter Prepared By: David W. Martine

INPUT DATA:

Operating mode: Gauge pressure Kind of package: Com-paK Plus			Flow medium: Humid Air	
			Specific heat constant	1.40
Inlet temperature :	90	${ }^{\circ} \mathrm{F}$	Specific weight at standard conditio	$0.076 \mathrm{lb} / \mathrm{ft}^{3}$
Inlet pressure :	14.7		Pressure differe	7.0 psig
Air humidity:		[\%]	Discharge press	21.7 psi

| Technical data: | | NOTE: ACCESSORIES SHOWN ARE INTENDED FOR AIR USE ONLY. |
| :--- | :--- | :--- | :--- | :--- |

[^9]Customer: Summit Club-Tertiary Filter
Kind of package:Com-paK Plus
Inlet temperature : 90
Inlet pressure: 14.7 psi
Input inlet flow: 160 icfm

Package: BB 69C

Blower: OMEGA 22P
Motor power: 10.0 hp
Operating voltage: $208 \mathrm{~V} / 60 \mathrm{~Hz}$

Prepared By: David W. Martine
Operating mode: Gauge pressure

Blower speed: 5125 rpm
Connection ANSI: 2 1/2"
\% of maximum speed: 85
Fan voltage: $208 \mathrm{~V} / 3 \mathrm{Ph} / 60 \mathrm{~Hz}$

Accessories:

Unloaded start up valve: AFM5
Check plate: $21 / 2^{\prime \prime}$
Instruments/ sensor:
Temperature gauge with switch point:
Pressure gauge:
Filter differential pressure switch:
oil level sensor:
speed monitor:

Standard equipment with s. encl.: 1x 2"
Standard equipment without s. encl.: 1x 2"

NOTE: ACCESSORIES SHOWN ARE INTENDED FOR AIR USE ONLY.

yes no		yes no		
\square	\mathbf{X}	Sound enclosure:	\mathbf{X}	\square
\mathbf{X}	\square	Inlet silencer-suction from ambient:	\mathbf{X}	\square
\mathbf{X}	\square	Inlet silencer-suction from pipe:	\square	\mathbf{X}
\mathbf{X}	\square	Optional for package with sound enclosure		
\square	\mathbf{X}	Sound enclosure for outdor installation:	\square	\mathbf{X}
\square	\mathbf{X}			
\square	\mathbf{X}			
		Auxiliary heating:	\square	\mathbf{X}
		Omega P-GRD:	\square	\mathbf{X}

Blowoff valve, pressure gauge, filter with maintenance indicator

Blowoff valve, filter with maintenance indicator

Comments for project:

Kaeser Com-paK Installation Data Sheet

BB52C

Package	Blower	Horsepower
BB52C	Omega 21P	$3,5,7.5,10$

Electrical Data Drive Motor											
						wye-delta starting (2-wire per phase)			direct online (1-wire per phase)		
Hp	Voltage (3ph/60Hz)	$\begin{gathered} \text { FLA +/- } \\ 10 \% \end{gathered}$	Nominal Eff	Insulation Class	Enclosure Type	Jumper Connection	Disconnect Fuse	Wire Size ($75^{\circ} \mathrm{C}$ or higher)	Jumper Connection	Disconnect Fuse	Wire Size ($75^{\circ} \mathrm{C}$ or higher)
3	208	9.1	86.5	F	TEFC	YY \rightarrow - $\Delta \Delta$	10 AMP	14 AWG	$\Delta \triangle$	10 AMP	14 AWG
	230	8.2				$Y Y$-> $\Delta \Delta$	10 AMP	14 AWG	$\Delta \Delta$	10 AMP	14 AWG
	460	4.1				$Y \rightarrow \Delta$	6 AMP	14 AWG	Δ	6 AMP	14 AWG
5	208	13.5	88.5	F	TEFC	$Y Y \rightarrow \Delta \Delta$	20 AMP	14 AWG	$\Delta \triangle$	20 AMP	12 AWG
	230	12.2				$Y Y \rightarrow \Delta \Delta$	15 AMP	14 AWG	$\Delta \Delta$	20 AMP	14 AWG
	460	6.1				$\mathrm{Y} \rightarrow \Delta$	10 AMP	14 AWG	Δ	10 AMP	14 AWG
7.5	208	18.4	89.9	F	TEFC	$Y Y \rightarrow \Delta \Delta$	25 AMP	14 AWG	$\Delta \Delta$	30 AMP	10 AWG
	230	17.6				$Y Y ~->\Delta \Delta$	25 AMP	14 AWG	$\Delta \Delta$	30 AMP	10 AWG
	460	8.8				$Y \rightarrow \Delta$	10 AMP	14 AWG	Δ	15 AMP	14 AWG
10	208	25	90.8	F	TEFC	$Y Y \rightarrow \Delta \Delta$	35 AMP	14 AWG	$\Delta \Delta$	40 AMP	8 AWG
	230	23				YY \rightarrow - $\Delta \Delta$	30 AMP	14 AWG	$\Delta \Delta$	35 AMP	8 AWG
	460	11.5				Y-> Δ	20 AMP	14 AWG	Δ	20 AMP	12 AWG

Electrical Data Drive Motor

Notes: 1. Disconnect fuses should be of dual element time delay design.
2. Breaker should be suitable for a heavy duty starting load and of inverse time delay design that complies to regulations outlined in NEC 430.52
3. Fuse and wire sizes determined in accordance to NEC $240.6,430.52$ and tables 250.122, 430.248, 430.250, 430.252.

Enclosure Fan Data

Power	Voltage $(60 \mathrm{~Hz})$	Phase $(60 \mathrm{~Hz})$	Current Draw	Jumper Connection	Quantity	Enclosure Type	Fan Type	Flow
110 W	115	1	3.42	Capacitor	1	TEFC	Radial	280 CFM
80 W	230	1	0.60	Capacitor	1	TEFC	Radial	280 CFM
80 W	208	3	0.61	Δ	1	TEFC	Radial	280 CFM
120 W	230	3	0.68	Δ	1	TEFC	Radial	280 CFM
120 W	460	3	0.37	Y	1	TEFC	Radial	280 CFM
120 W	575	3	0.28	Y	1	TEFC	Radial	280 CFM

Notes: 1.) Nominal power in Watts.
2.) Current in $A(+/-10 \%)$.
3.) Default fan selection is $230 / 460 \mathrm{~V}$. If other voltage is required, it must be noted at time of order.
4.) Fan requires separate power supply.
5.) Fan should run at the same time as main motor. If fan is able to run for 15 minutes after machine is turned off, it will improve thermal conditions inside enclosure.

BB52C

Oil System Data	
Drive End Capacity	0.15 quarts
Gear End Capacity	0.13 quarts
Oil Type (Synthetic)	SB 220

Package Connections									
Hp	Cable Entry		$\begin{gathered} \text { Length (in.) } \\ \mathrm{L} \end{gathered}$	Width (in.) W	$\begin{gathered} \text { Height (in.) } \\ H \end{gathered}$	Floor (sq ft)	Weight (lb)	Connection Size (in.)	Type
	Drive Motor	Fan Motor							
3	3×17 NPT	$2 \times \mathrm{M} 16$	31 1/2	$283 / 8$	44	$61 / 5$	382	2	Tube
5							424	2	Tube
7.5							463	2	Tube
10							474	2	Tube

Safety Devices

Discharge Temperature Gauge with Switch	Motor Winding PTC's
Range: $120-400^{\circ} \mathrm{F}\left(50-200^{\circ} \mathrm{C}\right)$ Switching point: adjustable Switching: 1 = common, 2 = NC, 4 = NO Contacts: 5A / 24VDC non-inductive Blower discharge temperature switch should be wired into control system to shut down blower operation when switch point is achieved.	 Motor winding PTC's require use of a control module. Kaeser part number 7.2710 .2 can be purchased and integrated into control scheme for this purpose.

BB52C

Ventilation of Blower Room	
Air Inlet Opening	1
Cooling Fan Capacity (forced ventilation)	2
Max Heat Rejection	3

Ventilation values based on 190 CFM @ 15 PSIG $\Delta \mathrm{P}, 20 \mathrm{Hp}$ and ambient inlet. Max. room temp. $=104^{\circ} \mathrm{F}$ and cooling air temp $=95^{\circ} \mathrm{F}$. Discharge piping length $=5 \mathrm{ft}$.

It is recommended to extract the exhaust air from the upper third of the room as this is where the heat collects. The room ventilation openings should be arranged that the current of cooling air flowing through the room passes over the blower inlet and exhaust ports and, if possible, should leave no stagnant air in the room. (A thermal short circuit must be avoided, i.e. discharged cooling air must not find its way to the cooling air inlet.)
The blower must not be positioned so near to a wall that the inflow of cooling air is obstructed.

Pipework should be insulated against heat emission.
If the blower station is located in the middle of a large hall its exhaust air can be extracted by means of a duct positioned above the exhaust port (illustrated in broken lines).

APPENDIX E

DISINFECTION EQUIPMENT CUTS

Non-contact UV disinfection systems

Dry • Simple • Intelligent • Energy Efficient

The right choice

UV is the most cost effective and environmental friendly disinfection solution for wastewater.

About UV Disinfection

Ultraviolet light irradiation is a proven disinfection process using short wave length 254 nm Ultraviolet (UV) energy to inactivate harmful microorganisms. UV radiation disrupts the DNA of pathogenic organisms such as bacteria, viruses and molas, leaving mes of effluent from low-quality combined sewer overflow (CSO) types of effluent from low-quality combined sewer overfiow (CSO) hish-quality tertiary effluent since early 1900 's.

UV - The preferred disinfection method in municipal wastewater
To comply federal Clean Water Act, and other regulations for indicator organisms, municipal wastewater must be disinfected before discharging or reusing. There are multiple options for chemical disinfection, but only one non-chemical disinfection technology. UV is the preferred disinfection method for municipal wastewater discharge or water reuse applications various chemical disinfection technologies. Currently more than 20% of wastewater treatment plants in the United States use UV as their preferred disinfection technology and this percentage has been increasing year over year.

$$
80 \cdot 8 / f^{20}
$$

${ }^{\circ}$

Enaqua - a history of innovation

1985	1990	1992	1993	1997	1999	2003	2007	2009	2012	2013	2015	2017
Enaqua founded									Acquisition by Grundfos			
First Non-Contact UV System Water Technology Consulting	Patented Non-Contact Opaque Fluid UV System	Chemical Recovery RO Systems Brackish Water RO Systems	Municipal UV Waste-water System	Distribution of Membrane Products	Large Municipal UV Wastewater Systems	Seawater De-salination RO Systems	UV Web-based Control System	UV / UF / RO Municipal Waste-water Systems	Ensure Dosing System(EDS)* SMART Lamps*	\$11 Million UV/ UF/ RO Chemical Recovery System	Validation test NWRI Title 22 and T1	Approval for CA Title 22 recycled water
Sersaus						-			Encelis			

Advantages \& benefits

	Ultraviolet light	Sodium hypochlorite	Chlorine gas
Disinfection effectiveness	High	High*	High*
Disinfection by products	No	Yes	Yes
Safety risks	Low	High	High
De-chlorination required	No	Yes	Yes
Contact channel	Small	Large	Large
pH dependency, Corrosion	No	Yes	Yes
O\&M Cost	Low	High	Medium
Capital Investment	Medium	Low	High
*Crypotosoridium and Girardia are resistantagainst chlorination			

Third party validated technology, approved for

 CA Title 22 Recycled Water.Enaqua is the first non-contact UV system supplier to have applied and received Third Party Validation, as a result of continuous efforts improving the Non-Contact UV disinfection technology.
The validation testing and reports were conducted in 2015 by Carollo Engineers in accordance with the following protocols:
UV - Disinfection Guidelines for Drinking Water and Water 1. UV - Disinfection Guidelines for Drinking Water and Water
Reuse (National Water Research Institute [NWRI], August 2012 . 53% to 80.0% UVT range validated* ${ }^{*}$
2. Uniform Protocol for Wastewater UV Validation Applications (International Ultraviolet Association [IUVA], 2011) - 36.0\% to 81.0% UVT validated range ${ }^{*}$

- MS2 Bacteriophage
- T1 Coliphage

[^10]
UV made simple - features at a glance

All of Enaqua's Non-Contact UV disinfection systems are built
out of standard modules with high customization flexibility. The UV reactors are offered for both In-pipe or In-Channel configurations with variable plug \& play inlets and outlets (page 10).

The systems are very easy to install as they are prefabricated and self-contained.

2. Ensure Dosing System (EDS) Intelligent monitoring, control and FAIL SAF ensures compliance at all times (page 8)
3) Electrical panel

Simple, compact and operator friendly HM
4) Flow \& Level pacing

Optimize energy consumption \& lif
of consumables
5. Heat Exchange System
5. Heat Exchange Sys temperature for optimal UVC output using Effluent, plant W3 water, Putable
or Closed Loop system

6) UV Intensity Monito UV Sensor placed outside of AFP" tubes

- Dry without fouling

7 Individually fused and switched lamp rack No cranes required, simple maintenance
(page 7) (page 7)

Single lamp ballast Non-prorated Warranty up
to 24 on/off cycles per day

Always dry - AFP ${ }^{\text {TM }}$
 Non-Contact UV Technology

Enaqua - The Pioneer in cost effective Non-Contact UV design

Simple - maintenance made clean, fast and easy

Enaqua's Non-Contact UV technology system maintenance is simple:

Enaqua's innovative non-contact UV technology means no more repairing and replacing submerged components. Effluent flows through Enaqua's AFP tubes leaving the UV lamps, electronics and other components- accessible, and easy to maintain in the dry body of the UV reactor.

AFP ${ }^{\text {TM }}$ tubes - The secret behind the performance AFP stands for "Activated Fluoropolymer" which Enaqua specifically developed for Non-Contact UV applications:

- High transmissivity of UVC
- AFP Tubes have no micro-structure-hence very resistant to scaling and fouling
- Durable, flexible, and fracture resistant material
- Long term UVC stability and Chemical resistance
- Multiple plants with over 20+ years of continuous operation

Technologies in comparison

ENAQUA AFPTM
Non-Contact Technology

Low cost high output lamps No quartz sleeves
ouling and Scaling Resistant AFP tube Uorbuent flow provides self-cleaning of AFP'm tube No AFP tube replacement needed under normal operating conditions simple pipe hydraulics makes UV disinfection easy to predict Level Control Devices typically not required

Quartz Sleeve UV
traditional Contact Technolo

High cost amalgam lamps
Fragile quartz sleeves with risk of mercury and glass contamintion Fragile quartz sleeves with risk of mercury and glass contamination Fouling-prone quartz sleeves
Quartz sleeves need to be replaced over time Quartz sleeves need to be replaced over time Channel hydraulics makes UV disisfection

No more:

- High cost amalgam lamps
- Dirty and fouled quartz sleeves
- Problems with quartz cleaning devices
- Need to interrupt or remove any hydraulic seals

Heavy duty cranes required for system maintenance

- Minimize Civil and Structural construction costs

Time consuming lamp replacements
Algae growth on the lamp rack

- Quartz sleeves to break and replace*
- SCADA programming

No AFpm tube replacement under no1 minute - Enaqua's Non-Contact UV
15 minutes - Traditional Contact UV

Intelligence - you don't want to miss...
Where Energy Efficiency matters

The Ensure Dosing System (EDS) is the most comprehensive monitoring and control system in the industry.

SCADA built in - Full system control and performance monitoring wherever and whenever you want:

No special hardware and software requirements

- Simple connection via web browser
- Multiple Levels of Access
- Remote monitoring and control via Internet
- Stand-alone Wifi control e.g. with iPad ${ }^{\text {® }}$
- SCADA integration with ModBUS TCP/IP
- Remote troubleshooting
- Email and text notification

Fail Safe - Intuitive protection

Enaqua's FAIL SAFE intelligence ensures compliance at all times. In case a lamp in one stage fails, the system will command selected lamps in a redundant stage to power-on to compensate for any UV dosage reduction (see application example).

SMART Lamps - Advanced lamp control

Enaqua's Low Pressure High Output (LPHO) lamps are equipped with a unique Smart Lamp Technology, a microchip integrated with the lamp connector identifies each UV lamp with a unique ID, monitors and logs lamp status, run time, lamp cycles, etc.

Flow \& Level Pacing - Best energy efficiency

Enaqua's Flow \& Level Pacing system automaticall turns on only lamps which are required. This improves lamp and ballast life and reduces power consumption compared to systems that use "dimming".

Annual Energy Cost Comparison

Features and functions

For specific selection and sizing please contact Enaqua

[^11]
3

M Series UV reactors

- compact uv reactors ideal for small treatment plants for surface discharge, reuse, and industrial applications.

M3 Series
low rates up to $80 \mathrm{gpm}\left(18.2 \mathrm{~m}^{3} / \mathrm{h}\right)$

M4 Series
N4 Series
Flow rates up to $120 \mathrm{gpm}\left(27.25 \mathrm{~m}^{3} / \mathrm{h}\right)$

M5 Series Flow rates up to $360 \mathrm{gpm}\left(81.8 \mathrm{~m}^{3} / \mathrm{h}\right)$

C1, C2, C3 \& D1, D2, D3 UV series reactors

- medium size uv reactors for surface discharge, reuse, and industrial applications.

\& D1 Series
In pipe UV reactors, single or double banks- for Flow rates up to 2.0 MGD ($315.4 \mathrm{~m}^{3} / \mathrm{h}$).

C2 \& D2 Series
In pipe UV reactors, single or double banks- for Flow rates up to 4.2 MGD ($662.5 \mathrm{~m}^{3} / \mathrm{h}$).

C3 \& D3 Serie
In pipe UV reactors, single or double banks- for Flow rates up to 6.0 MGD ($946.4 \mathrm{~m}^{3} / \mathrm{h}$).

4-11 Series UV reactors
large uv reactors offered "in-pipe" or "in-channel" configurations.

Series "In pipe" or "In Channel" Multi Bank UV reactors for Flow rates up to $24.0+$ MGD . Applications- UV up to $24.0+$ MGD. Applications-
disinfection for surface discharge, Reuse, industrial appli-cation, Etc.

C Series "In Pipe " Reactor

C Series "In Channel" Reactor

D Series "In pipe" or "In Channel" D Series "In pipe" or "In Channel"
Multi Bank UV reactors for Flow rates Multi Bank UV reactors for Flow rates
up to 36 + MGD. Applications- UV disinfec-tion for surface discharge, cso, Industrial Applications, Etc.

D Series "In Pipe " Reactor

D Series "In Channel" Reactor

E Series "In Channel"
E Series "In Channel"
Multi Bank UV reactors for Flow rates Mutt Bank UV reactors for Flow rates
up to $100+$ MGD. Applications- UV disinfection for surface discharge cso, Etc.

Enaqua - UV made simple Non-contact UV disinfection

- The Engineer's Choice for State-of-the-Art Technology
- The City Manager's Choice for Low Capital Cost
- The Superintendent's Choice for Low O\&M Cost
- The Operator's Choice for Simple Operation
- The Contractor's Choice for Simple Installation
- The Finance Director's Choice for Lowest 20 Years Capital and Operations Cost Potential

ENAQUA

1350 Specialty Drive, Ste. D/F
Vista, CA 92081 USA
Tel: +1.760.599.2644
Fax: +1.760.599.2642
www.enaqua.com

APPENDIX F

SAMPLING LOCATIONS

PROCESS CONTROL MONITORING LOCATIONS

Permittee shall take samples and measurements to meet the monitoring requirements at the locations indicated below.

PROCESS CONTROL MONITORING LOCATION DESCRIPTION
Influent (INF): Sample taken in influent pump station
Effluent (EFF): Sample taken in effluent sampling manhole

DRAWING No. 1
STP SITE PLAN

DRAWING No. 2
HYDRAULIC PROFILE

DRAWING No. 3
MANUFACTURER'S STP LAYOUT

[^0]:

[^1]:

 \qquad
 Cositiv unt oeffition

[^2]: * Performance data to DIN ISO 1217, PART 1, ANNEX C
 ** Measured to DIN EN ISO 2151, figures $\pm 3 \mathrm{~dB}(A)$, with sound isolated pipework.
 Motor shaft power includes belt losses in addition to dirty filter losses of 0.6 psig (40 mbar)

[^3]: * Performance data to DIN ISO 1217, PART 1, ANNEX C
 ** Measured to DIN EN ISO 2151, figures $\pm 3 \mathrm{~dB}(A)$, with sound isolated pipework.
 Motor shaft power includes belt losses in addition to dirty filter losses of 0.6 psig (40 mbar)

[^4]: * Performance data to DIN ISO 1217, part 1, annex C
 ${ }^{* *}$ Measured to DIN EN ISO 2151, figures $\pm 3 \mathrm{~dB}(\mathrm{~A})$, with sound isolated pipework
 Motor shaft power includes belt losses in addition to dirty filter losses of 0.6 psig ($\mathbf{4 0} \mathbf{~ m b a r}$).

[^5]: Pleasese contact Enaqua for validation range,
 parameters, and other technical details

[^6]: Design consideration $65 \% \mathrm{UVT}, \sim 30 \mathrm{~mJ} / \mathrm{cm}^{2}$, Contact Enaqua for more details
 2 Max pressure for High Pressure Option: 80 psi (5.5 bar)
 ${ }^{3}$ Three-phase voltage requires neutral wire
 *4 On/off switch only

[^7]: * Performance data to DIN ISO 1217, PART 1, ANNEX C
 ** Measured to DIN EN ISO 2151, figures $\pm 3 \mathrm{~dB}(A)$, with sound isolated pipework.
 Motor shaft power includes belt losses in addition to dirty filter losses of 0.6 psig (40 mbar)

[^8]: * Performance data to DIN ISO 1217, PART 1, ANNEX C
 ** Measured to DIN EN ISO 2151, figures $\pm 3 \mathrm{~dB}(A)$, with sound isolated pipework.
 Motor shaft power includes belt losses in addition to dirty filter losses of 0.6 psig (40 mbar)

[^9]: * Performance data to DIN ISO 1217, part 1, annex C
 ${ }^{* *}$ Measured to DIN EN ISO 2151, figures $\pm 3 \mathrm{~dB}(\mathrm{~A})$, with sound isolated pipework
 Motor shaft power includes belt losses in addition to dirty filter losses of 0.6 psig ($\mathbf{4 0} \mathbf{~ m b a r}$).

[^10]: Pleasese contact Enaqua for validation range,
 parameters, and other technical details

[^11]: Design consideration $65 \% \mathrm{UVT}, \sim 30 \mathrm{~mJ} / \mathrm{cm}^{2}$, Contact Enaqua for more details
 2 Max pressure for High Pressure Option: 80 psi (5.5 bar)
 ${ }^{3}$ Three-phase voltage requires neutral wire
 *4 On/off switch only

