PLANNING DEPARTMENT
Adam R. Kaufman, AICP Director of Planning

TOWN OF NORTH CASTLE
WESTCHESTER COUNTY
17 Bedford Road
Armonk, New York 10504-1898

Application for Site Development Plan Approval

PLANNING DEPARTMENT
Adam R. Kaufman, AICP Director of Planning

Telephone: (914) 273-3542
Fax: (914) 273-3554
www.northcastleny.com

Important General Information

- Prior to submitting an application, the "Notice to Applicants" should be reviewed.
- To appear before the Planning Board, all required application materials shall be submitted not later than 12:00 P.M., Monday, fourteen (14) days prior to the date of the Planning Board meeting at which the application is scheduled to be heard or as otherwise noted by the Planning Board Secretary. Continuing Business can be submitted 12 days prior to the Next Planning Board meeting by the close of business. Except where noted.

If all required application materials, including the pertinent application fee and escrow monies are not submitted by that deadline, the application shall be automatically removed from the agenda.

At the discretion of the Planning Board Chairman, the application may be rescheduled, if appropriate, for the next available Planning Board meeting or the application may be removed from future agendas altogether. Without prior authorization from the Planning Board, application submissions shall not be accepted at Planning Board meetings.

- At the time of submission, all required application materials shall be submitted. Piecemeal submissions shall not be accepted. Substitution of previously submitted materials shall not be permitted.
- All submissions shall be dated, with revision dates identified on new submissions.
- All submissions shall be accompanied by a cover letter describing the project and/or any changes as compared to previous submissions.
- For distribution purposes and mailing to the Planning Board Members and others (as required), multiple copies of application materials shall be collated into separate sets, each containing one copy of every submitted document. All application materials shall be submitted in a form that fits into a 12" x 17" envelope. Plans shall be folded and rubber banded as necessary.
- To be considered complete for Planning Board hearing purposes, an application package shall contain the information identified in Parts IV and V of this application form.
- For purposes of completing this application form, all responses provided shall be printed, except as otherwise specified.

Telephone: (914) 273-3542
Adam R. Kaufman, AICP
Director of Planning

Fax: (914) 273-3554
www.northcastleny.com

AT THE TIME OF SUBMISSION TO THE PLANNING DEPARTMENT PLEASE MAKE SURE THE FOLLOWING IS PROVIDED

\checkmark SUBMISSION OF A SINGLE PDF FILE (PLANS, APPLICATION FORM, OTHER PAPERWORK) ON A DISK, THUMBDRIVE OR EMAIL
\checkmark COVER LETTER DESCRIBING THE PROJECT OR CHANGES TO THE PROJECT

\checkmark ALL PLANS ARE SIGNED AND SEALED BY A LICENSED NYS PROFESSIONAL

\checkmark ALL PLANS SHALL BE COLLATED AND FOLDED INTO 8 INDIVIDUAL SETS

PLANNING DEPARTMENT
 Adam R. Kaufman, AICP Director of Planning

Telephone: (914) 273-3542
Fax: (914) 273-3554
www.northcastleny.com

NOTICE TO APPLICANTS

In the Town of North Castle, the Planning Board is responsible for the review and approval of all applications concerning site plans, subdivisions and lot line changes; some applications concerning special use permits, wetlands permits and tree removal permits; and the environmental review of those applications over which it has jurisdiction. The Planning Board may also have an advisory role in connection with some applications before the Town Board, such as those involving other categories of special use permits and zoning amendments.

The Planning Board is composed of five volunteer members - all residents of North Castle - who are appointed by the Town Board for five-year terms. As part of the review of some applications, the Planning Board is assisted on an as-needed basis by other lay boards of the Town, such as the Conservation Board (CB), the Zoning Board of Appeals (ZBA), the Open Space Committee and the Architectural Review Board (ARB). As part of the review of most applications, the Planning Board is also assisted by the Director of Planning, the Town Engineer, the Town Attorney and other special consultants when required.

FEES:

If you submit an application for Planning Board review, you will be required to reimburse the Town for the cost of professional review services, including legal and engineering services, incurred in connection with the review of your application. The charges for professional planning review services have been $\$ 120 /$ hour. If other types of professional consultant review services are required, those charges will be in accord with fees usually charged for such services and pursuant to a contractual agreement between the Town and such professional.

At the time of submission of an application, the Planning Board will require the establishment of an escrow account from which withdrawals shall be made to reimburse the Town for the cost of consultant fees and professional staff services.

ESCROW ACCOUNT:

Escrow Accounts are established for each application. Monies will be deducted from the account for professional review services rendered. Monthly escrow disbursement summaries will be mailed for your reference regarding your project. When the balance in such escrow account is reduced to one-third ($1 / 3$) of its initial amount, a letter will be mailed to the applicant and the applicant shall deposit additional funds into such account to restore its balance to the amount of the initial deposit. Additional information on these requirements is provided in the North Castle Town Code (see Sections 355-79B and 275-36.C).

TOWN OF NORTH CASTLE

WESTCHESTER COUNTY

17 Bedford Road
Armonk, New York 10504-1898

PLANNING DEPARTMENT
Adam R. Kaufman, AICP
Director of Planning

Telephone: (914) 273-3542
Fax: (914) 273-3554
www.northcastleny.com

PROCEDURE:

Prior to submitting an application to the Planning Board for review and approval, prospective applicants should schedule an appointment with the Planning Board Secretary at (914) 273-3542 for a consultation with the Town Planner and the Town Engineer. When the appointment is made, a verbal description of the proposal should be provided to the Planning Board Secretary. The Town of North Castle is providing the services of the Director of Planning and the Town Engineer for initial consultation at no cost to the applicant so that it is possible to conduct the application review as efficiently as possible for the benefit of the applicant as well as the Planning Board.

After meeting with the Town Planner and Town Engineer, prospective applicants should prepare one complete set of application documents and plans. This set will be reviewed for completeness by the Town Planner. If determined to be incomplete, the Planning Department will submit a checklist indicating which items have not been adequately addressed. If determined to be complete, the checklist will be initialed and the Applicant should submit the remainder of the required application packages.

Once the checklist has been initialed and all application packages have been submitted, the Planning Board Secretary will schedule the application for the first available opening on the Planning Board's meeting agenda. However, if the required application material packages, including the pertinent application fee are not received at the Planning Board office by 12:00 PM, Monday, 14 days prior to the date of the Planning Board meeting at which you are scheduled to appear (or otherwise scheduled by the Planning Board Secretary), your application will be automatically removed from the agenda. At the discretion of the Planning Board Chairman, your application may be rescheduled, if appropriate, for the next available Planning Board meeting or the application may be removed from future agendas altogether. Additional requirements pertinent to each type of application are provided on the individual application forms, which you should carefully review prior to submitting your application.

When an application is deemed complete and submitted for review, it will be forwarded to the Planning Board Members and its professional advisors in advance of the meeting to allow adequate time for review, preparation of written reports and site inspections as necessary. Your application may also be forwarded to other boards and staff of the Town as well as to agencies outside of the Town, if required. Compliance with State Environmental Quality Review (SEQR) procedures is also required as part of the processing of all applications.

At your first appearance before the Planning Board, the Applicant will describe the project and the Planning Board will discuss any preliminary issues. The Planning Board discussion may be continued at future meetings, or if the Planning Board review has progressed sufficiently, the Application may be scheduled for a public hearing (if one is required) The public hearing may occur at a single Planning Board meeting, or it may be adjourned and continued at another Planning Board meeting. Because the nature and complexity of each application varies

TOWN OF NORTH CASTLE

WESTCHESTER COUNTY

17 Bedford Road
Armonk, New York 10504-1898

PLANNING DEPARTMENT
Adam R. Kaufman, AICP Director of Planning

Telephone: (914) 273-3542
Fax: (914) 273-3554
www.northcastleny.com
considerably, it is not possible to predict in advance the length of time needed to secure Planning Board approval. There are certain steps that you can take, however, to expedite the review process. These include, but are not limited to, the following:

- Be thoroughly familiar with the requirements pertinent to your application. Carefully review relevant provisions of the North Castle Town Code and the application form for your particular type of application. Be sure to check on what other types of approvals may be required in addition to that of the Planning Board. Approvals by other Town boards or departments as well as agencies outside of the Town may be required before you will be allowed to proceed with your project.
- Make sure that your application materials are accurately prepared and contain all required information. The information that we initially request is required, so make sure that your submission is complete. If supplementary information is requested as the review process continues, make sure that it is submitted in a timely fashion so the Planning Board can continue to move your application along.
- Follow up to make sure that your application materials are being submitted on time, or deliver them to the Planning office yourself.
- Attend the Planning Board meeting at which your application will be discussed and be on time for the meeting. If you cannot appear personally, make sure that your representative will be there and is thoroughly familiar with your application.

If the Application is approved by the Planning Board, a resolution of approval will be adopted by the Planning Board. It is the Applicant's responsibility to address any and all conditions of approval. Permits from the Building Department cannot be issued until all conditions have been addressed and the plans have been signed by the Planning Board Chair and the Town Engineer.

ON LINE AGENDAS \& PLANNING DEPARTMENT MEMORANDA CAN BE REVIEWED AT

PLANNING DEPARTMENT
Adam R. Kaufman, AICP Director of Planning

Telephone: (914) 273-3542
Fax: (914) 273-3554
www.northcastleny.com

INFORMATION REGARDING PUBLIC HEARINGS

1. The North Castle Assessor's Office shall prepare a list of neighbors to be notified for the neighbor notifications and public hearings - A minimum of one week's notice is required. The fee is $\$ 50.00$ which includes the list of neighbors and two sets of labels for mailing. The Assessor's Office may be reached Monday - Friday from 8:30 a.m.4:30 p.m. at 273-3324. You may also e-mail your request to assessor@northcastleny.com

When requesting your list please reference the list of application types below so that you can tell the Assessor's office how many feet on all sides of the property to create the list for.

Subdivisions - All lots zoned R-10, R-5 and R-2F shall notice all neighbors within 200 feet from all sides of their property. All other zoning districts shall notice neighbors within 500 feet from all sides of their property. Public hearing notice must be published in the newspaper.

Special Use Permit for Structures over 800 sq ft. \& Accessory Apartment - All Zoning Districts shall notice all neighbors within 250 feet from all sides of their property. Public hearing notice must be published in the newspaper.

Site Plan, Non Residential - All Zoning Districts shall notice all neighbors within 250 feet from all sides of their property. Public hearing notice must be published in the newspaper.

Site Plan, Residential/ Neighbor Notification - All zoning districts R-3/4A or smaller shall notice all neighbors within 250' from all sides of their property. All zoning districts zoned R-1A or larger shall notice all neighbors within 500 ' from all sides of the property. No public hearing required, no publication in the newspaper required.

Wetlands Permit - All Zoning Districts shall notice all abutting property owners. Public hearing notice must be published in the newspaper.
2. The Director of Planning will prepare a Public Notice. The applicant and or professional will review, sign, date and return to the Planning Department Secretary. If there are any changes necessary, please edit and return for corrections. The corrections will be made and emailed back to the applicant who will forward it to the Journal Newspaper, when applicable.

If notification to the newspaper is not required, please continue to \#3.

TOWN OF NORTH CASTLE

WESTCHESTER COUNTY
17 Bedford Road
Armonk, New York 10504-1898

PLANNING DEPARTMENT

Adam R. Kaufman, AICP Director of Planning

Telephone: (914) 273-3542
Fax: (914) 273-3554
www.northcastleny.com

You may email your public notice to legals@lohud.com. Please request an affidavit of publication which must be submitted to the Planning Board secretary prior to the public hearing. The Journal News requires three days prior notice before 12 noon, not counting weekends and holidays, for ad placement. Make sure the notice placement of the ad in the Greater Westchester Area. This notice cannot be published any sooner than 20 days prior to the meeting and must be published no less than 10 days prior to the meeting.

If you have any questions regarding your publication you may call 888-516-9220: Email Address: legals@lohud.com

It is suggested that you purchase the newspaper for your records the day the notice is published.
3. Send out the Public Hearing Notice/ Neighbor Notification by First Class Mail. Notice shall be mailed by the applicant in official envelopes provided by the North Castle Planning Department; the list of noticed neighbors will be prepared by the Assessor's Office. This must be sent out no less than 10 days prior to the meeting and no more than 20 days prior to the meeting date. A Certificate of Mailing (PS Form 3817 or 3877) shall be filled out and post marked by the Post Office on the day of mailing. Neighbor Notifications - no publication in the newspaper required.
4. The Friday before the meeting or no later than $12: 00 \mathrm{p} . \mathrm{m}$. the day of the meeting the following must be submitted.

- \quad List of Neighbors prepared by the Assessor’s Office
- \quad Certificate of Mailing - PS form 3817 or 3877 post marked by the US Post Office
- Affidavit of publication from the Newspaper (only if published in the newspaper)

PLANNING DEPARTMENT
 Adam R. Kaufman, AICP
 Director of Planning

Telephone: (914) 273-3542

Fax: (914) 273-3554
www.northcastleny.com

APPLICATIONS REQUIRING PLANNING BOARD APPROVAL SCHEDULE OF APPLICATION FEES

Type of Application	Application Fee
Site Development Plan	\$200.00
Each proposed Parking Space	\$10
Special Use Permit (each)	\$200 (each)
Preliminary Subdivision Plat	$\begin{aligned} & \$ 3001^{\text {st }} \text { Lot } \\ & \$ 200 \text { (each additional lot) } \end{aligned}$
Final Subdivision Plat	$\begin{aligned} & \text { \$250 } 1^{\text {st }} \text { Lot } \\ & \$ 100 \text { (each additional lot) } \end{aligned}$
Tree Removal Permit	\$75
Wetlands Permit	\$50 (each)
Short Environmental Assessment Form	\$50
Long Environmental Assessment Form	\$100
Recreation Fee	\$10,000 Each Additional Lot
Discussion Fee Prior to submission of a sketch or prelim representative wishes to discuss a subdivis $\$ 200.00$ shall be submitted for each info	\$200.00 applicant or an applicant's ning Board, a discussion fee of e board.

Any amendment to previously approved applications requires new application forms and Fes

PLANNING BOARD SCHEDULE OF ESCROW ACCOUNT DEPOSITS

Type of Application

Deposit*

Concept Study
Site Plan Waiver for Change of Use
Site Development Plan for:
Multifamily Developments

Commercial Developments

1 or 2 Family Projects
Special Use Permit
Subdivision:
Lot Line Change resulting in no new lots
All Others

Preparation or Review of Environmental Impact
Statement

Amount of Initial Escrow Account
\$500.00
\$500.00
\$3,000.00 plus $\$ 100.00$ per proposed dwelling unit
$\$ 3,000.00$ plus $\$ 50.00$ for each required parking space
\$2,000.00
$\$ 2,000.00$ plus $\$ 50.00$ for each required parking space
\$1,500.00
\$3,000.00 plus $\$ 200.00$ per proposed new lot in excess of two (2)
\$15,000.00

* If a proposed action involves multiple approvals, a single escrow account will be established. The total amount of the initial deposit shall be the sum of the individual amounts indicated. When the balance in such escrow account is reduced to one-third $(1 / 3)$ of its initial amount, the applicant shall deposit additional funds into such account to restore its balance to the amount of the initial deposit.

I. IDENTIFICATION OF PROPERTY OWNER, APPLICANT AND PROFESSIONAL REPRESENTATIVES

Name of Property Owner: Birenberg
Mailing Address: 16 Quaker Meeting House Rd
Telephone: \qquad Fax: \qquad e-mail \qquad

Name of Applicant (if different): Ahneman Kirby
Address of Applicant: 1171 E Putnam Ave, Riverside, CT 06878
Telephone: 203-869-7707 Fax: 203-869-4606 e-mail kaw@ahnemankirby.com

Interest of Applicant, if other than Property Owner:
Engineer

Is the Applicant (if different from the property owner) a Contract Vendee?
Yes
\square
No

If yes, please submit affidavit sating such. If no, application cannot be reviewed by Planning Board

Name of Professional Preparing Site Plan:
Ahneman Kirby
Address: 1171 E Putnam Ave, Riverside, CT 06878
Telephone: 203-869-7707
Fax: 203-869-4606 e-mail kaw@ahnemankirby.com

Name of Other Professional: \qquad
Address: \qquad
Telephone: \qquad Fax: \qquad e-mail \qquad

Name of Attorney (if any): \qquad
Address: \qquad
Telephone: \qquad Fax: \qquad e-mail \qquad

Applicant Acknowledgement

By making this application, the undersigned Applicant agrees to permit Town officials and their designated representatives to conduct on-site inspections in connection with the review of this application.

The Applicant also agrees to pay all expenses for the cost of professional review services required for this application.

It is further acknowledged by the Applicant that all bills for the professional review services shall be mailed to the Applicant, unless the Town is notified in writing by the Applicant at the time of initial submission of the application that such mailings should be sent to a designated representative instead.

MUST HAVE BOTH SIGNATURES

II. IDENTIFICATION OF SUBJECT PROPERTY

Street Address: 16 Quaker Meeting House Rd
Location (in relation to nearest intersecting street):
350 feet north, south, east or west) of Leisure Farm Dr
Abutting Street(s):
Tax Map Designation (NEW): Section 101.03
Block 4 Lot 44
Tax Map Designation (OLD): Section 2 Block 5 Lot 14-11

Zoning District: R-1A Total Land Area 1.68 Ac
Land Area in North Castle Only (if different) \qquad
Fire District(s) \qquad School District(s) \qquad
Is any portion of subject property abutting or located within five hundred (500) feet of the following:
The boundary of any city, town or village?
No \boldsymbol{V} Yes (adjacent) \square
Yes (within 500 feet) \qquad If yes, please identify name(s): \qquad
The boundary of any existing or proposed County or State park or any other recreation area? No $\boldsymbol{\checkmark}$ Yes (adjacent) \square Yes (within 500 feet) \qquad
The right-of-way of any existing or proposed County or State parkway, thruway, expressway, road or highway?
No $\boldsymbol{\checkmark}$ Yes (adjacent) \square Yes (within 500 feet) \qquad
The existing or proposed right-of-way of any stream or drainage channel owned by the County or for which the County has established channel lines?
$\mathrm{No} \boldsymbol{\boldsymbol { V }}$ Yes (adjacent) \square Yes (within 500 feet) \qquad
The existing or proposed boundary of any county or State owned land on which a public building or institution is situated?
No \boldsymbol{V} Yes (adjacent) \qquad Yes (within 500 feet) \qquad
The boundary of a farm operation located in an agricultural district?
No $\boldsymbol{\checkmark}$ Yes (adjacent) \qquad Yes (within 500 feet) \qquad
Does the Property Owner or Applicant have an interest in any abutting property?
$\mathrm{No} \boldsymbol{V}$ Yes \qquad
If yes, please identify the tax map designation of that property:

III. DESCRIPTION OF PROPOSED DEVELOPMENT

Proposed Use: Single Family Residential
Gross Floor Area: Existing \qquad S.F. Proposed \qquad S.F.

Proposed Floor Area Breakdown:
Retail \qquad S.F.; Office \qquad S.F.;

Industrial \qquad S.F.; Institutional \qquad S.F.;

Other Nonresidential \qquad S.F.; Residential \qquad S.F.;

Number of Dwelling Units: \qquad
Number of Parking Spaces: Existing \qquad Required \qquad Proposed \qquad
Number of Loading Spaces: Existing \qquad Required \qquad Proposed \qquad Earthwork Balance: Cut 150 C.Y. Fill 95 \qquad C.Y.

Will Development on the subject property involve any of the following:
Areas of special flood hazard? No x \qquad Yes \qquad
(If yes, application for a Development Permit pursuant to Chapter 177 of the North Castle Town Code may also be required)

Trees with a diameter at breast height (DBH) of 8" or greater?
$\mathrm{No} \square$ Yes \square
(If yes, application for a Tree Removal Permit pursuant to Chapter 308 of the North Castle Town Code may also be required.)

Town-regulated wetlands? No $\boldsymbol{\checkmark}$ Yes \square
(If yes, application for a Town Wetlands Permit pursuant to Chapter 340 of the North Castle Town Code may also be required.)

State-regulated wetlands? No $\boldsymbol{\sim}$ Yes \square
(If yes, application for a State Wetlands Permit may also be required.)

IV. SUBMISSION REQUIREMENTS

The site development plan application package shall include all materials submitted in support of the application, including but not limited to the application form, plans, reports, letters and SEQR Environmental Assessment Form. Submission of the following shall be required:

- One (1) set of the site development plan application package (for distribution to the Town Planner for preliminary review purposes).
- Once a completed preliminary site plan checklist has been received from the Planning Department, eight (8) additional sets of the site development plan application package (for distribution to Planning Board, Town Engineer, Town Attorney, Town Planner, Planning Board Secretary, police, fire department and ambulance corps).
- One (1) additional reduced sized set (11" x 17") of the site development plan application package if any portion of the subject property abuts or is located within five hundred (500) feet of the features identified in Section II of this application form (for distribution to Westchester County Planning Board).
- A check for the required application fee and a check for the required Escrow Account, both made payable to "Town of North Castle" in the amount specified on the "Schedule of Application Fees."
(continued next page)

V. INFORMATION TO BE INCLUDED ON SITE DEVELOPMENT PLAN

The following checklist is provided to enable the Applicant to determine if he/she has provided enough information on the site development plan for the Planning Board to review his/her proposal. Applicants are advised to review ARTICLE VIII, Site Development Plan of the North Castle Town Code for a complete enumeration of pertinent requirements and standards prior to making application for site development plan approval.

The application for site development plan approval will not be accepted for Planning Board review unless all items identified below are supplied and so indicated with a check mark in the blank line provided. If a particular item is not relevant to the subject property or the development proposal, the letters "NA" should be entered instead. In addition, the project will not be scheduled on a Planning Board agenda until the Applicant receives an initialed "site plan checklist" from the Planning Department.

The information to be included on a site development plan shall include:

Legal Data:

$\boldsymbol{\checkmark}$ Name of the application or other identifying title.
\boldsymbol{V} Name and address of the Property Owner and the Applicant, (if different).
\boldsymbol{V} Name, address and telephone number of the architect, engineer or other legally qualified professional who prepared the plan.
\boldsymbol{V} Names and locations of all owners of record of properties abutting and directly across any and all adjoining streets from the subject property, including the tax map designation of the subject property and abutting and adjoining properties, as shown on the latest tax records.
$\boldsymbol{\checkmark}$ Existing zoning, fire, school, special district and municipal boundaries.
Size of the property to be developed, as well as property boundaries showing dimensions and bearings as determined by a current survey; dimensions of yards along all property lines; name and width of existing streets; and lines of existing lots, reservations, easements and areas dedicated to public use.
$\boldsymbol{\checkmark}$ Reference to the location and conditions of any covenants, easements or deed restrictions that cover all or any part of the property, as well as identification of the document where such covenants, easements or deed restrictions are legally established.
$\boldsymbol{\checkmark}$ Schedule of minimum zoning requirements, as well as the plan's proposed compliance with those requirements, including lot area, frontage, lot width, lot depth, lot coverage, yards, off-street parking, off-street loading and other pertinent requirements.
 Locator map, at a convenient scale, showing the Applicant's entire property in relation to surrounding properties, streets, etc., within five hundred (500) feet of the site.
 North arrow, written and graphic scales, and the date of the original plan and all revisions, with notation identifying the revisions.

[^0]
Existing Conditions Data:

$\boldsymbol{\checkmark}$ Location of existing use and design of buildings, identifying first floor elevation, and other structures.
Location of existing parking and truck loading areas, with access and egress drives thereto.
Location of existing facilities for water supply, sanitary sewage disposal, storm water drainage, and gas and electric service, with pipe sizes, grades, rim and inverts, direction of flow, etc. indicated.

Location of all other existing site improvements, including pavement, walks, curbing, retaining walls and fences.

N/A Location, size and design of existing signs.
N/A Location, type, direction, power and time of use of existing outdoor lighting.
N/A Location of existing outdoor storage, if any.
\boldsymbol{V}
Existing topographical contours with a vertical interval of two (2) feet or less.
Location of existing floodplains, wetlands, slopes of 15% or greater, wooded areas, landscaped areas, single trees with a DBH of 8" or greater, rock outcrops, stone walls and any other significant existing natural or cultural features.

Proposed Development Data:

N/A Proposed location of lots, streets, and public areas, and property to be affected by proposed easements, deed restrictions and covenants.

N/A Proposed location, use and architectural design of all buildings, including proposed floor elevations and the proposed division of buildings into units of separate occupancy.

N/A Proposed means of vehicular and pedestrian access to and egress from the site onto adjacent streets.

N/A Proposed sight distance at all points of vehicular access.
N/A Proposed number of employees for which buildings are designed
N/A Proposed streets, with profiles indicating grading and cross-sections showing the width of the roadway; the location and width of sidewalks; and the location and size of utility lines.

N/A Proposed location and design of any pedestrian circulation on the site and off-street parking and loading areas, including handicapped parking and ramps, and including details of construction, surface materials, pavement markings and directional signage.

N/A Proposed location and design of facilities for water supply, sanitary sewage disposal, storm water drainage, and gas and electric service, with pipe sizes, grades, rim and inverts, direction of flow, etc. indicated.

Proposed location of all structures and other uses of land, such as walks, retaining walls, fences, designated open space and/or recreation areas and including details of design and construction.

N/A Location, size and design of all proposed signs.
N/A Location, type, direction, power and time of use of proposed outdoor lighting.
N / A Location and design of proposed outdoor garbage enclosure.
N/A Location of proposed outdoor storage, if any.
$\boldsymbol{\checkmark}$ Location of proposed landscaping and buffer screening areas, including the type (scientific and common names), size and amount of plantings.
N / A Type of power to be used for any manufacturing
N/A Type of wastes or by-products to be produced and disposal method
N/A In multi-family districts, floor plans, elevations and cross sections
N/A The proposed location, size, design and use of all temporary structures and storage areas to be used during the course of construction.
$\boldsymbol{\checkmark}$ Proposed grade elevations, clearly indicating how such grades will meet existing grades of adjacent properties or the street.
$\boldsymbol{\nearrow}$ Proposed soil erosion and sedimentation control measures.
N/A For all proposed site development plans containing land within an area of special flood hazard, the data required to ensure compliance with Chapter 177 of the North Castle Town Code.

For all proposed site development plans involving clearing or removal of trees with a DBH of 8" or greater, the data required to ensure compliance with Chapter 308 of the North Castle Town Code.

N/A For all proposed site development plans involving disturbance to Town-regulated wetlands, the data required to ensure compliance with Chapter 340 of the North Castle Town Code.

F:\PLAN6.0\Application Forms\2016 Full Set\Part B - Site Devel 2016.doc

Short Environmental Assessment Form Part 1 - Project Information

Instructions for Completing

Part 1 - Project Information. The applicant or project sponsor is responsible for the completion of Part 1. Responses become part of the application for approval or funding, are subject to public review, and may be subject to further verification. Complete Part 1 based on information currently available. If additional research or investigation would be needed to fully respond to any item, please answer as thoroughly as possible based on current information.

Complete all items in Part 1. You may also provide any additional information which you believe will be needed by or useful to the lead agency; attach additional pages as necessary to supplement any item.

Eric Birenberg
 16 Quaker Meeting House Road Armonk, NY 10504

February 10, 2021
Town of North Castle Planning Board
15 Bedford Road
Armonk, NY 10504
RE: 16 Quaker Meeting House Road - Armonk, NY 10504
To whom it may concern:
As the owner of the above referenced property, this letter is to confirm that Ahneman Kirby, LLC is duly authorized to submit plans, application forms and other relevant documents on my behalf as my agent to the North Castle Planning Board.

Very truly yours,

Eric Birenberg

Stormwater Management Report

Prepared for:
Josef Thor
16 Quaker Meeting House Rd
Armonk, NY 10504

February 19, 2021

Prepared by:

Ahneman Kirby, LLC
1171 East Putnam Avenue
Riverside, Connecticut

Project Narrative

Property of Eric Birenberg
16 Quaker Meeting House Rd, Armonk, NY 10504
February 19, 2021

A. GEOGRAPHICAL LOCATION AND DESCRIPTION

The subject parcel is located in the Northeast corner of a cul-de-sac at the North end of Quaker Meeting House Road, North of Leisure Farm Dr and has a lot area of 1.68 Acres. The topographic nature of the lot is sloped outward from the center where the existing dwelling is located. The property slopes down to the Northeast behind the existing dwelling and down to the Southwest in front of the existing dwelling. The property contains several rock outcroppings along the Southern boundary, with trees, and wooded open space. There is a driveway entrance to the property from Quaker Meeting House Road which leads uphill to the residence in the center of the parcel.

B. PURPOSE AND DESCRIPTION

This application package proposes a new swimming pool on the parcel. The pool footprint is $924 \mathrm{ft}^{2}$ (See Appendix A). The regrading keeps the topography of the site going from the Southwest to the Northeast towards the pond at a rate of approximately 8% in the rear yard with shallower slopes around the existing dwelling and proposed pool.

Drainage design was performed in accordance with the Town of North Castle Town Code Chapter 367-6, with a net zero increase in the rate of runoff. We proposed collecting runoff from the swimming pool area and treating it with North Castle's Stormwater Best Management Practices (BMP).

The area of the site being collected is in the Northwestern portion of the lot. Due to the existing topography of the site the swimming pool area needed to be leveled out with a low height retaining wall to meet the existing contours. The stormwater will be collected by a trench drain around the pool coping. From the trench drain the stormwater is then conveyed to four (4) Cultec 330XLHD Recharger basins placed underneath the lawn area behind the proposed swimming pool. The outlet from the Cultecs will then be routed to a control outlet structure to control the discharge rate. From the controlled outlet the runoff is directed to a level spreader located to the Northeast of the proposed pool (See Plans).

C. SOIL EVALUATION

The soils within the site below the surface are 63% Type B and 37% Type D per the USDA Natural Resource Conservation Service and are depicted on the soils map located in Appendix B of this report as follows:

- Charlton-Chatfield complex, 0 to 15 percent slopes, very rocky (map unit symbol CrC)
- Chatfield-Charlton complex, 15 to 35 percent slopes, very rocky (map unit symbol CsD)
- Hollis-Rock outcrop complex, 35 to 60 percent slopes (map unit symbol HrF)

Refer to Appendix C for USDA Soils Engineering Properties.
D. PRE \& POST DEVELOPMENT SITE HYDROLOGY COMPARISON

The proposed development increases the impervious coverage for the watershed but will decrease peak flows to all points of concern. The trench drain will pick up the runoff from the newly introduced impervious surfaces. The proposed grades slope towards the same location as the existing grades making for a straight forward comparison of pre and post development hydrology at a common Point of Interest.

Refer to Table 1 for a comparison of peak flow rates for the existing and proposed site conditions at point of interest A. The peak runoff to all points of concern has a zero increase for the $1,2,5,10$, and 25 year storms. Upon completion of the construction depicted on the proposed developments plans, there will be no drainage impacts to any of the adjoining properties.

Table 1: Comparison of Existing and Proposed Peak Flow Rates for Point of Interest A

16 Quaker Meeting House Rd, Armonk, NY - P.O.I "A"						
Existing / Proposed Stormwater Runoff Data Comparison Chart						
STORM EVENT	POINT OF INTEREST	Flow/Volume	ExISting	PROPOSED	Δ	Δ (\%)
1 YEAR	TOTAL FLOW P.O.I. A	$\mathrm{q}\left(\mathrm{ft}^{3} / \mathrm{s}\right)$	0.40	0.39	-0.01	-2.50\%
2 YEAR		$\mathrm{q}\left(\mathrm{ft}^{3} / \mathrm{s}\right)$	0.68	0.67	-0.01	-1.47\%
5 YEAR		$\mathrm{q}\left(\mathrm{ft}^{3} / \mathrm{s}\right)$	1.28	1.25	-0.03	-2.34\%
10 YEAR		$\mathrm{q}\left(\mathrm{ft}^{3} / \mathrm{s}\right)$	1.88	1.85	-0.03	-1.60\%
25 YEAR		$\mathrm{q}\left(\mathrm{ft}^{3} \mathrm{~s}\right)$	2.95	2.90	-0.05	-1.69\%

E. ALTERNATIVES CONSIDERED

The alternatives considered included drywells collecting runoff from catch basins in the driveway and a trench drain installed along the existing driveway.

The drywells were discarded due to limiting the area of disturbance to the backyard rather than removing and replacing the existing driveway.

The trench drain collection, storage, and discharge option in the existing driveway was eliminated again due to limiting the area of disturbance to the backyard where the other work will be taking place.

Appendix B USDA Soils Engineering Properties

MAP LEGEND

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:12,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.
Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: Westchester County, New York
Survey Area Data: Version 16, Jun 11, 2020
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Dec 31, 2009—Oct 16, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
CrC	Charlton-Chatfield complex, 0 to 15 percent slopes, very rocky	B	1.9	43.4%
CsD	Chatfield-Charlton complex, 15 to 35 percent slopes, very rocky	B	0.9	18.9%
HrF	Hollis-Rock outcrop complex, 35 to 60 percent slopes	D	1.7	37.5%
Ub	Udorthents, smoothed	B	0.0	
Totals for Area of Interest	$\mathbf{4 . 5}$	$\mathbf{1 0 0 . 0 \%}$		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified
Tie-break Rule: Higher

Appendix C HydroCAD Pre \& Post Development Calculations

16 Quaker Meeting House Rd Armonk NY_HydroCAD
Prepared by Microsoft
HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC
Area Listing (all nodes)

Area $(\mathrm{sq}-\mathrm{ft})$	CN	Description (subcatchment-numbers)
546	98	Existing Deck (1S, 14S)
3,690	98	Existing Dwelling (1S, 14S)
330	98	Existing Patio (1S, 14S)
924	98	Proposed Pool (15S)
100,684	65	Woods/grass comb., Fair, HSG B (1S, 14S)
$\mathbf{1 0 6 , 1 7 4}$	$\mathbf{6 7}$	TOTAL AREA

16 Quaker Meeting House Rd Armonk NY_HydroCAD Prepared by Microsoft

 HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC
Soil Listing (all nodes)

Area $(\mathrm{sq}-\mathrm{ft})$	Soil Group	Subcatchment Numbers
0	HSG A	
100,684	HSG B	$1 \mathrm{~S}, 14 \mathrm{~S}$
0	HSG C	
0	HSG D	
5,490	Other	1S, 14S, 15S
106,174		TOTAL AREA

16 Quaker Meeting House Rd Armonk NY_HydroCAD
Prepared by Microsoft
HydroCADQ 1000-24 sin 01998 © 2018 HydroCAD Software Solutions LLc
Ground Covers (all nodes)

HSG-A $(\mathrm{sq-ft})$	HSG-B $(\mathrm{sq}-\mathrm{ft})$	HSG-C $(\mathrm{sq}-\mathrm{ft})$	HSG-D $(\mathrm{sq-ft})$	Other $(\mathrm{sq}-\mathrm{ft})$	Total $(\mathrm{sq}-\mathrm{ft})$	Ground Cover
0	0	0	0	546	546	Existing Deck
0	0	0	0	3,690	3,690	Existing Dwelling
0	0	0	0	330	330	Existing Patio
0	0	0	0	924	924	Proposed Pool
0	100,684	0	0	0	100,684	Woods/grass
$\mathbf{0}$	$\mathbf{1 0 0 , 6 8 4}$	$\mathbf{0}$	$\mathbf{0}, 490$	$\mathbf{1 0 6 , 1 7 4}$	TOTAL., Fair	

Su
Nu

16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 1-Year Rainfall=2.90" Prepared by Microsoft HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC

Time span $=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 2401$ points Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
 Discarded $=0.05 \mathrm{cfs} 205$ cf Primary $=0.00$ cfs 0 cf Outflow 0.05 cfs 205 cf

Link 6L: POI A	Inflow $=0.40 \mathrm{cfs} 2,191 \mathrm{cf}$ Primary $=0.40 \mathrm{cfs} 2,191 \mathrm{cf}$
Link 13L: POI A	Inflow $=0.39 \mathrm{cfs} 2,153 \mathrm{cf}$

[^1]16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 1-Year Rainfall=2.90" Prepared by Microsing

Printed 2/19/202
HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC Page 6

Summary for Subcatchment 1S: E1

Runoff $=0.40$ cfs @ 12.26 hrs, Volume $=\quad 2,191 \mathrm{cf}$, Depth >0.50

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.90"

	Area (sf)	CN D	Description			
	50,804	65 W				
	1,845	98 E	Existing Dwelling Existing Deck			
	273	98				
*	165	98 E				
	53,087	66 W	Weighted Average 95.70\% Pervious Area 4.30\% Impervious Area			
	50,804					
	2,283					
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{gathered} \text { Capacity } \\ \text { (cfs) } \end{gathered}$	Description	
9.5	75	0.0800	0.13		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=3.40{ }^{\prime \prime}$
5.0	425	0.0800	1.41		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
14.5	500	Total				

16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 1-Year Rainfall=2.90" Prepared by Micring
HydroCAD® 10 Cos 24 s/n 01998 @ 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment 14S: PD-1

Runoff $=0.39$ cfs @ 12.26 hrs, Volume $=2,153 \mathrm{cf}$, Depth $>0.50^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 1-Year Rainfall=2.90"

16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 1-Year Rainfall=2.90" Prepared by Microst
HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment 15S: PD-2

Runoff =
0.06 cfs @ 12.07 hrs, Volume=
205 cf, Depth> 2.67"

Runoff by SCS TR-20 method UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 1-Year Rainfall=2.90"

	Area (sf)	CN Description			
*	924	98 P	Proposed P		
924		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\min) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 1-Year Rainfall=2.90" Prepared by Microsoft

Printed 2/19/202
HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC
Summary for Pond 9P: (4) Cultec 100

Inflow Area	924 sf,100.00\% Impervious, Inflow Depth > 2.67" for 1-Year event			
Inflow	0.06 cfs @	12.07 hrs , Volume=	205 cf	
Outflow	0.05 cfs @	12.12 hrs , Volume=	205 cf,	Atten= 16\%, Lag= 2.9 min
Discarded	0.05 cfs @	12.12 hrs , Volume=	205 cf	
Primary	0.00 cfs @	0.00 hrs , Volume=		

Primary $=0.00 \mathrm{cfs} @ 0.00 \mathrm{hrs}$, Volume= 0 cf
Routing by Stor-Ind method, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev= 501.02' @ 12.12 hrs Surf.Area= 146 sf Storage= 3 cf
lug-Flow detention time $=0.4 \mathrm{~min}$ calculated for 205 cf (100% of inflow $)$
Center-of-Mass det. time $=0.4 \mathrm{~min}(757.5-757.1)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	500.96'	96 cf	8.33'W x 17.50'L x 2.04 'H Field A 298 cf Overall -58 cf Embedded $=240$ cf $\times 40.0 \%$ Voids
\#2A	501.46'	58 cf	Cultec C-100HD x 4 Inside \#1 Effective Size $=32.1^{\prime \prime} \mathrm{W} \times 12.0^{\prime \prime} \mathrm{H}=>1.86 \mathrm{sf} \times 7.50^{\prime} \mathrm{L}=14.0 \mathrm{cf}$ Overall Size $=36.0^{\prime \prime} \mathrm{W} \times 12.5^{\prime \prime} \mathrm{H} \times 8.00^{\prime} \mathrm{L}$ with 0.50^{\prime} Overlap Row Length Adjustment $=+0.50$ x $1.86 \mathrm{sf} \times 2$ rows

$$
154 \text { cf Total Available Storage }
$$

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Primary	502.00^{\prime}	$6.0 "$ Vert. Outlet Pipe C= 0.600
\#2	Device 1	502.00^{\prime}	3.0" Vert. Control Outlet X 4.00 C= 0.600
\#3	Device 1	502.99^{\prime}	6.0" Horiz. Overflow C=0.600 Limited to weir flow at low heads
\#4	Discarded	500.96^{\prime}	$\mathbf{1 5 . 0 0 0}$ in/hr Exfiltration over Wetted area

[^2]6 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 1-Year Rainfall=2.90" Prepared by Microsoft

10
HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC Page 10

Pond 9P: (4) Cultec 100 - Chamber Wizard Field A

hamber Model $=$ Cultec C-100HD (Cultec Contactor®100HD)

Effective Size $=321^{\prime \prime} \mathrm{W} \times 120^{\prime \prime} \mathrm{H}=>1.86 \mathrm{sf} \times 750^{\prime} \mathrm{L}=14.0 \mathrm{cf}$
verall Size $=36.0^{\prime \prime} \mathrm{W} \times 12.5^{\prime \prime} \mathrm{H} \times 8.00^{\prime} \mathrm{L}$ with 0.50^{\prime} Overlap
Row Length Adjustment $=+0.50^{\prime} \times 1.86 \mathrm{sf} \times 2$ rows
36.0" Wide $+4.0^{\prime \prime}$ Spacing $=40.0^{\prime \prime}$ C-C Row Spacing

2 Chambers/Row $\times 7.50^{\prime}$ Long $+0.50^{\prime}$ Row Adjustment $=15.50^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=17.50$ Base Length
2 Rows $\times 36.0^{\prime \prime}$ Wide +4.0 " Spacing $\times 1+12.0$ " Side Stone $\times 2=8.33^{\prime}$ Base Width
$6.0^{\prime \prime}$ Base $+12.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=2.04$ ' Field Height
4 Chambers $\times 14.0$ cf $+0.50^{\prime}$ Row Adjustment $\times 1.86 \mathrm{sf} \times 2$ Rows $=57.7$ cf Chamber Storage
297.7 cf Field -57.7 cf Chambers $=240.0$ cf Stone $\times 40.0 \%$ Voids $=96.0$ cf Stone Storage

Chamber Storage + Stone Storage $=153.7 \mathrm{cf}=0.004$ af
Overall Storage Efficiency $=51.6 \%$
Overall System Size $=17.50^{\prime} \times 8.33^{\prime} \times 2.04$
4 Chambers
11.0 cy Field
8.9 cy Stone

16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 1-Year Rainfall=2.90" Prepared by Microsoft
Prepared by Microsoft
HydroCAD® 10.00-24 $\mathrm{s} / \mathrm{n} 01998$ © 2018 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 9P: (4) Cultec 100

$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Wetted (sq-ft)	Storage (cubic-feet)	$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Wetted (sq-ft)	Storage (cubic-feet)
500.96	146	0	502.00	200	85
500.98	147	1	502.02	201	87
501.00	148	2	502.04	202	89
501.02	149	4	502.06	203	90
501.04	150	5	502.08	204	92
501.06	151	6	502.10	205	94
501.08	152	7	502.12	206	96
501.10	153	8	502.14	207	98
501.12	154	9	502.16	208	100
501.14	155	11	502.18	209	101
501.16	156	12	502.20	210	103
501.18	157	13	502.22	211	105
501.20	158	14	502.24	212	107
501.22	159	15	502.26	213	108
501.24	160	16	502.28	214	110
501.26	161	18	502.30	215	111
501.28	162	19	502.32	216	113
501.30	163	20	502.34	217	114
501.32	164	21	502.36	218	116
501.34	165	22	502.38	219	117
501.36	166	23	502.40	220	118
501.38	168	25	502.42	221	120
501.40	169	26	502.44	222	121
501.42	170	27	502.46	223	122
501.44	171	28	502.48	224	123
501.46	172	29	502.50	225	124
501.48	173	31	502.52	226	126
501.50	174	33	502.54	227	127
501.52	175	36	502.56	229	128
501.54	176	38	502.58	230	129
501.56	177	40	502.60	231	130
501.58	178	42	502.62	232	131
501.60	179	44	502.64	233	133
501.62	180	46	502.66	234	134
501.64	181	48	502.68	235	135
501.66	182	50	502.70	236	136
501.68	183	52	502.72	237	137
501.70	184	54	502.74	238	138
501.72	185	56	502.76	239	140
501.74	186	59	502.78	240	141
501.76	187	61	502.80	241	142
501.78	188	63	502.82	242	143
501.80	189	65	502.84	243	144
501.82	190	67	502.86	244	145
501.84	191	69	502.88	245	147
501.86	192	71	502.90	246	148
501.88	193	73	502.92	247	149
501.90	194	75	502.94	248	150
501.92	195	77	502.96	249	151
501.94	196	79	502.98	250	152
501.96	198	81	503.00	251	154
501.98	199	83			

16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 1-Year Rainfall=2.90" Prepared by Microsoft

Summary for Link 6L: POI A

Inflow Area $=\quad 53,087$ sf, 4.30% Impervious, Inflow Depth >0.50 " for 1-Year event Inflow $=0.40 \mathrm{cfs} @ 12.26 \mathrm{hrs}$, Volume= $\quad 2,191 \mathrm{cf}$
$\begin{array}{llll}\text { Inflow } & = & 0.40 \mathrm{cfs} @ & 12.26 \mathrm{hrs}, \text { Volume }= \\ \text { Primary } & = & 0.40 \mathrm{cfs} @ & 12.26 \mathrm{hrs}, \text { Volume= }\end{array}$
Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 1-Year Rainfall=2.90" Prepared by Microsoft

Summary for Link 13L: POI A

2,153 cf Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

6 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 2-Year Rainfall=3.40" Prepared by Microsoft
HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC
HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC
Time span=0.00-24.00 hrs, dt=0.01 hrs, 2401 points
Time span $=0.00-24.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}, 2401$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: E1

Runoff Area=53,087 sf 4.30% Impervious Runoff Depth >0.74 Flow Length=500' Slope=0.0800 '/' Tc=14.5 min CN=66 Runoff=0.68 cfs $3,288 \mathrm{cf}$

Subcatchment14S: PD-1 Runoff Area=52,163 sf 4.38\% Impervious Runoff Depth>0.74" Subcatchment15S: PD-2 Runoff Area=924 sf 100.00% Impervious Runoff Depth $>3.16^{\prime \prime}$ Tc=5.0 min CN=98 Runoff $=0.07 \mathrm{cfs} 244 \mathrm{cf}$

Pond 9P: (4) Cultec 100
Peak Elev=501.08' Storage=7 cf Inflow=0.07 cfs 244 cf Discarded $=0.05$ cfs 244 cf Primary $=0.00$ cfs 0 cf Outflow $=0.05$ cfs 244 cf

Link 6L: POI A
Inflow=0.68 cfs $3,288 \mathrm{cf}$
Link 13L: POI A Primary $=0.68$ cfs 3,288 c

Inflow=0.67 cfs 3,231 c Primary $=0.67$ cfs 3,231 cf

Total Runoff Area $=106,174$ sf Runoff Volume $=6,762 \mathrm{cf}$ Average Runoff Depth $=0.76$ $\mathbf{9 4 . 8 3 \%}$ Pervious $=\mathbf{1 0 0 , 6 8 4}$ sf $\mathbf{5 . 1 7 \%}$ Impervious $=\mathbf{5 , 4 9 0}$ sf

16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 2-Year Rainfall=3.40" Prepared by Microsoft

Summary for Subcatchment 1S: E

Runoff $=0.68 \mathrm{cfs} @ 12.23 \mathrm{hrs}$, Volume $=\quad 3,288 \mathrm{cf}$, Depth> $0.74{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 2-Year Rainfall $=3.40^{\prime \prime}$

16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 2-Year Rainfall=3.40" Prepared by Microsoft

Summary for Subcatchment 14S: PD-1

Runoff $=0.67$ cfs @ 12.23 hrs, Volume $=\quad 3,231$ cf, Depth $>0.74{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 2-Year Rainfall=3.40"

16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 2-Year Rainfall=3.40" Prepared by Microsoft

Summary for Subcatchment 15S: PD-2

Runoff =
0.07 cfs @ 12.07 hrs, Volume=
244 cf, Depth> 3.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hr}$ Type III 24-hr $2-$ Year Rainfall $=3.40$ "

Area (sf)		CN Description			
*	924	98 P	roposed P		
	924		00.00\% Im	pervious A	rea
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 2-Year Rainfall=3.40" Prepared by Microsoft

Printed 2/19/202
HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC Page 18

Summary for Pond 9P: (4) Cultec 100

Primary $=0.00 \mathrm{cfs} @ 0.00 \mathrm{hrs}$, Volume $=0 \mathrm{cf}$
Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 501.08' @ 12.14 hrs Surf.Area= 146 sf Storage= 7 cf

Plug-Flow detention time $=0.6 \mathrm{~min}$ calculated for 244 cf (100% of inflow) Center-of-Mass det. time $=0.6 \mathrm{~min}(754.3-753.8)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	500.96'	96 cf	8.33'W x 17.50'L x 2.04 'H Field A 298 cf Overall - 58 cf Embedded $=240$ cf $\times 40.0 \%$ Voids
\#2A	501.46'	58 cf	Cultec C-100HD x 4 Inside \#1 Effective Size $=32.1^{\prime \prime} \mathrm{W} \times 12.0^{\prime \prime} \mathrm{H}=>1.86 \mathrm{sf} \times 7.50^{\prime} \mathrm{L}=14.0 \mathrm{cf}$ Overall Size $=36.0^{\prime \prime} \mathrm{W} \times 12.5^{\prime \prime} \mathrm{H} \times 8.00^{\prime} \mathrm{L}$ with 0.50^{\prime} Overlap Row Length Adjustment $=+0.50$ $1.86 \mathrm{sf} \times 2$ rows

54 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Primary	502.00	6.0" Vert. Outlet Pipe C= 0.600
$\# 2$	Device 1	502.00^{\prime}	3.0" Vert. Control Outlet X 4.00 C= 0.600
\#3	Device 1	502.99^{\prime}	6.0" Horiz. Overflow C=0.600 Limited to weir flow at low heads
\#4	Discarded	500.96^{\prime}	$\mathbf{1 5 . 0 0 0}$ in/hr Exfiltration over Wetted area

4=Exfiltration (Exfiltration Controls 0.05 cfs)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=500.96' (Free Discharge)
$1=$ Outlet Pipe (Controls 0.00 cfs)

- $2=$ Control Outlet (Controls 0.00 cfs
=Overflow (Controls 0.00 cfs)

16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 2-Year Rainfall=3.40" Prepared by Microsoft
Prepared by Microsoft 01998 © 2018 HydroCAD Software Solutions LLC

Pond 9P: (4) Cultec 100 - Chamber Wizard Field A

Chamber Model = Cultec C-100HD (Cultec Contactor®100HD)
Effective Size $=32.1^{\prime \prime} \mathrm{W} \times 12.0^{\prime \prime} \mathrm{H}=>1.86 \mathrm{sf} \times 7.50^{\prime} \mathrm{L}=14.0 \mathrm{cf}$
Overall Size $=32.0 \mathrm{~W} \times 12.5 \mathrm{H} \times 8.00 \mathrm{~L}$ with 0.50 Overlap
36.0" Wide $+4.0^{\prime \prime}$ Spacing $=40.0^{\prime \prime}$ C-C Row Spacing

2 Chambers/Row $\times 7.50^{\prime}$ Long $+0.50^{\prime}$ Row Adjustment $=15.50^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=17.50$ Base Length
2 Rows $\times 36.0^{\prime \prime}$ Wide +4.0 " Spacing $\times 1+12.0^{\prime \prime}$ Side Stone $\times 2=8.33^{\prime}$ Base Width
6.0" Base $+12.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=2.04^{\prime}$ Field Height

4 Chambers $\times 14.0$ cf $+0.50^{\prime}$ Row Adjustment $\times 1.86 \mathrm{sf} \times 2$ Rows $=57.7$ cf Chamber Storage
297.7 cf Field -57.7 cf Chambers $=240.0$ cf Stone $\times 40.0 \%$ Voids $=96.0$ cf Stone Storage

Chamber Storage + Stone Storage $=153.7 \mathrm{cf}=0.004$ af
Overall Storage Efficiency $=51.6 \%$
Overall System Size $=17.50^{\prime} \times 8.33^{\prime} \times 2.04$

4 Chambers
 11.0 cy Field
 8.9 cy Stone

16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 2-Year Rainfall=3.40" Prepared by Microsoft

Stage-Area-Storage for Pond 9P: (4) Cultec 100

Elevation (feet)	Wetted (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Wetted (sq-ft)	Storage (cubic-feet)
500.96	146	0	502.00	200	85
500.98	147	1	502.02	201	87
501.00	148	2	502.04	202	89
501.02	149	4	502.06	203	90
501.04	150	5	502.08	204	92
501.06	151	6	502.10	205	94
501.08	152	7	502.12	206	96
501.10	153	8	502.14	207	98
501.12	154	9	502.16	208	100
501.14	155	11	502.18	209	101
501.16	156	12	502.20	210	103
501.18	157	13	502.22	211	105
501.20	158	14	502.24	212	107
501.22	159	15	502.26	213	108
501.24	160	16	502.28	214	110
501.26	161	18	502.30	215	111
501.28	162	19	502.32	216	113
501.30	163	20	502.34	217	114
501.32	164	21	502.36	218	116
501.34	165	22	502.38	219	117
501.36	166	23	502.40	220	118
501.38	168	25	502.42	221	120
501.40	169	26	502.44	222	121
501.42	170	27	502.46	223	122
501.44	171	28	502.48	224	123
501.46	172	29	502.50	225	124
501.48	173	31	502.52	226	126
501.50	174	33	502.54	227	127
501.52	175	36	502.56	229	128
501.54	176	38	502.58	230	129
501.56	177	40	502.60	231	130
501.58	178	42	502.62	232	131
501.60	179	44	502.64	233	133
501.62	180	46	502.66	234	134
501.64	181	48	502.68	235	135
501.66	182	50	502.70	236	136
501.68	183	52	502.72	237	137
501.70	184	54	502.74	238	138
501.72	185	56	502.76	239	140
501.74	186	59	502.78	240	141
501.76	187	61	502.80	241	142
501.78	188	63	502.82	242	143
501.80	189	65	502.84	243	144
501.82	190	67	502.86	244	145
501.84	191	69	502.88	245	147
501.86	192	71	502.90	246	148
501.88	193	73	502.92	247	149
501.90	194	75	502.94	248	150
501.92	195	77	502.96	249	151
501.94	196	79	502.98	250	152
501.96	198	81	503.00	251	154
501.98	199	83			

16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 2-Year Rainfall=3.40" Prepared by Microsoft
Prepared by Microsoft 01998 © 2018 HydroCAD Software Solutions LLC
Summary for Link 6L: POI A
Inflow Area $=\quad 53,087$ sf, 4.30% Impervious, Inflow Depth > 0.74" for 2-Year event
nflow $=0.68 \mathrm{cfs} @ 12.23$ hrs, Volume= $\quad 3,288 \mathrm{cf}$
$\begin{array}{llll}\text { nflow } & = & 0.68 \mathrm{cfs} @ & 12.23 \mathrm{hrs}, \text { Volume= } \\ \text { Primary } & = & 0.68 \mathrm{cfs} @ 12.288 \mathrm{cf} \\ & 12.23 \mathrm{hrs}, \text { Volume= } & 3,288 \mathrm{cf} \text {, Atten= } 0 \%, \text { Lag= }=0.0 \mathrm{~min}\end{array}$
Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

6 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 2-Year Rainfall=3.40" Prepared by Microsoft
HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC Printed 2/19/2021

Summary for Link 13L: POI A

Inflow Area $=\quad 53,087$ sf, 6.04% Impervious, Inflow Depth > 0.73" for 2-Year event
nflow $=0.67 \mathrm{cfs} @ 12.23 \mathrm{hrs}$, Volume $=\quad 3.231 \mathrm{cf}$
$\begin{array}{lll}\text { Inflow } & = & 0.67 \mathrm{cfs} @ \\ \text { Primary } & = & 12.23 \mathrm{hrs} \text {, Volume= }\end{array} \quad 3,231 \mathrm{cf}$ (, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 5-Year Rainfall=4.30" Prepared by Microsoft

Time span=0.00-24.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}, 2401$ points Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Link 6L: POI A	Inflow $=1.28 \mathrm{cfs} 5,594 \mathrm{cf}$ Primary $=1.28 \mathrm{cfs} 5,594 \mathrm{cf}$
Link 13L: POI A	Inflow $=1.25 \mathrm{cfs} 5,496 \mathrm{cf}$ Primary $=1.25 \mathrm{cfs} 5,496 \mathrm{cf}$

[^3]16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 5-Year Rainfall=4.30" Prepared by Microsoft

Summary for Subcatchment 1S: E1

Runoff $=1.28$ cfs @ 12.22 hrs, Volume $=\quad 5,594$ cf, Depth> 1.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 5 -Year Rainfall=4.30"

16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 5-Year Rainfall=4.30" Prepared by Micting
HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment 14S: PD-1

Runoff $=1.25$ cfs @ 12.22 hrs, Volume $=\quad 5,496$ cf, Depth> 1.26"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 5 -Year Rainfall=4.30"

6 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 5-Year Rainfall=4.30" Prepared by Microsoft /19/202
HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment 15S: PD-2

Runoff =
0.09 cfs @ 12.07 hrs, Volume=
313 cf, Depth> 4.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 5 -Year Rainfall $=4.30$ "

16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 5-Year Rainfall=4.30" Prepared by Microsoft
Prepared by Microsoft
HydroCAD® 10.00-24 $\mathrm{s} / \mathrm{n} 01998$ © 2018 HydroCAD Software Solutions LLC
Summary for Pond 9P: (4) Cultec 100

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 501.24' @ 12.16 hrs Surf.Area= 146 sf Storage= 16 cf			
Plug-Flow detention time= 1.1 min calculated for 313 cf (100% of inflow) Center-of-Mass det. time $=1.0 \mathrm{~min}(750.3-749.2)$			
Volume	Invert	Avail.Storage	Storage Description
\#1A	500.96'	96 cf	$8.33^{\prime} \mathrm{W} \times 17.50^{\prime} \mathrm{L} \times 2.04$ 'H Field A 298 cf Overall - 58 cf Embedded $=240$ cf $\times 40.0 \%$ Voids
\#2A	501.46'	58 cf	Cultec C-100HD x 4 Inside \#1 Effective Size $=32.1^{\prime \prime} \mathrm{W} \times 12.0^{\prime \prime} \mathrm{H}=>1.86 \mathrm{sf} \times 7.50^{\prime} \mathrm{L}=14.0 \mathrm{cf}$ Overall Size $=36.0^{\prime \prime} \mathrm{W} \times 12.5^{\prime \prime} \mathrm{H} \times 8.00^{\prime} \mathrm{L}$ with 0.50^{\prime} Overlap Row Length Adjustment $=+0.50$ ' $1.86 \mathrm{sf} \times 2$ rows

154 cf Total Available Storage
Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Primary	502.00^{\prime}	$6 . \mathbf{0}^{\prime \prime}$ Vert. Outlet Pipe C= 0.600
\#2	Device 1	502.00^{\prime}	$3.0 "$ Vert. Control Outlet X 4.00 C= 0.600
\#3	Device 1	502.99^{\prime}	6.0" Horiz. Overflow C= 0.600 Limited to weir flow at low heads
\#4	Discarded	500.96^{\prime}	$\mathbf{1 5 . 0 0 0}$ in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.06 cfs @ 12.16 hrs HW=501.24' (Free Discharge) 4=Exfiltration (Exfiltration Controls 0.06 cfs)

[^4]6 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 5-Year Rainfall=4.30" Prepared by Microsoft

19/2021
Page 28

HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC

Pond 9P: (4) Cultec 100 - Chamber Wizard Field A

hamber Model $=$ Cultec C-100HD (Cultec Contactor®100HD)

Effective Size $=321^{\prime \prime} \mathrm{W} \times 120^{\prime \prime} \mathrm{H}=>1.86 \mathrm{sf} \times 750^{\prime} \mathrm{L}=14.0 \mathrm{cf}$
verall Size $=36.0^{\prime \prime} \mathrm{W} \times 12.5^{\prime \prime} \mathrm{H} \times 8.00^{\prime} \mathrm{L}$ with 0.50^{\prime} Overlap
Row Length Adjustment $=+0.50^{\prime} \times 1.86 \mathrm{sf} \times 2$ rows
36.0" Wide $+4.0^{\prime \prime}$ Spacing $=40.0^{\prime \prime}$ C-C Row Spacing

2 Chambers/Row $\times 7.50^{\prime}$ Long $+0.50^{\prime}$ Row Adjustment $=15.50^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=17.50$ Base Length
Rows x 36.0" Wide $+4.0^{\prime \prime}$ Spacing x $1+12.0^{\prime \prime}$ Side Stone $\times 2=8.33^{\prime}$ Base Width
$6.0^{\prime \prime}$ Base $+12.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=2.04$ ' Field Height
4 Chambers $\times 14.0$ cf $+0.50^{\prime}$ Row Adjustment $\times 1.86 \mathrm{sf} \times 2$ Rows $=57.7$ cf Chamber Storage
297.7 cf Field -57.7 cf Chambers $=240.0$ cf Stone $\times 40.0 \%$ Voids $=96.0$ cf Stone Storage

Chamber Storage + Stone Storage $=153.7 \mathrm{cf}=0.004$ af
verall Storage Efficiency $=51.6 \%$
Overall System Size $=17.50^{\prime} \times 8.33^{\prime} \times 2.04$

4 Chambers
 11.0 cy Field

8.9 cy Stone

16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 5-Year Rainfall=4.30" Prepared by Microsoft HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 9P: (4) Cultec 100

$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Wetted (sq-ft)	Storage (cubic-feet)	$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Wetted (sq-ft)	Storage (cubic-feet)
500.96	146	0	502.00	200	85
500.98	147	1	502.02	201	87
501.00	148	2	502.04	202	89
501.02	149	4	502.06	203	90
501.04	150	5	502.08	204	92
501.06	151	6	502.10	205	94
501.08	152	7	502.12	206	96
501.10	153	8	502.14	207	98
501.12	154	9	502.16	208	100
501.14	155	11	502.18	209	101
501.16	156	12	502.20	210	103
501.18	157	13	502.22	211	105
501.20	158	14	502.24	212	107
501.22	159	15	502.26	213	108
501.24	160	16	502.28	214	110
501.26	161	18	502.30	215	111
501.28	162	19	502.32	216	113
501.30	163	20	502.34	217	114
501.32	164	21	502.36	218	116
501.34	165	22	502.38	219	117
501.36	166	23	502.40	220	118
501.38	168	25	502.42	221	120
501.40	169	26	502.44	222	121
501.42	170	27	502.46	223	122
501.44	171	28	502.48	224	123
501.46	172	29	502.50	225	124
501.48	173	31	502.52	226	126
501.50	174	33	502.54	227	127
501.52	175	36	502.56	229	128
501.54	176	38	502.58	230	129
501.56	177	40	502.60	231	130
501.58	178	42	502.62	232	131
501.60	179	44	502.64	233	133
501.62	180	46	502.66	234	134
501.64	181	48	502.68	235	135
501.66	182	50	502.70	236	136
501.68	183	52	502.72	237	137
501.70	184	54	502.74	238	138
501.72	185	56	502.76	239	140
501.74	186	59	502.78	240	141
501.76	187	61	502.80	241	142
501.78	188	63	502.82	242	143
501.80	189	65	502.84	243	144
501.82	190	67	502.86	244	145
501.84	191	69	502.88	245	147
501.86	192	71	502.90	246	148
501.88	193	73	502.92	247	149
501.90	194	75	502.94	248	150
501.92	195	77	502.96	249	151
501.94	196	79	502.98	250	152
501.96	198	81	503.00	251	154
501.98	199	83			

16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 5-Year Rainfall=4.30" Prepared by Microsoft

Summary for Link 6L: POI A

Inflow Area $=\quad 53,087$ sf, 4.30% Impervious, Inflow Depth > 1.26" for 5 -Year event Inflow $=\quad 1.28 \mathrm{cfs} @ 12.22 \mathrm{hrs}$, Volume $=\quad 5.594 \mathrm{cf}$
$\begin{array}{llll}\text { nflow } & =1.28 \mathrm{cfs} @ & 12.22 \mathrm{hrs}, \text { Volume }= & 5,594 \mathrm{cf} \\ \text { Primary } & = & 1.28 \mathrm{cfs} @ & 12.22 \mathrm{hrs}, \text { Volume }=\end{array} 5,594 \mathrm{cf}$, Atten= $=0 \%$, Lag= 0.0 min
Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

16 Quaker Meeting House Rd Armonk NY HydroCAD Type III 24-hr 5-Year Rainfall=4.30" Prepared by Microsoft HydroCAD® $10.00-24 \mathrm{~s} / \mathrm{n} 01998$ © 2018 HydroCAD Software Solutions LLC \quad Printed 2/9/202 31

Summary for Link 13L: POI A

5,496 cf Atten $=0 \%, L a g=0.0 \mathrm{~min}$
Primary outflow $=$ Inflow, Time Span $=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

6 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 10-Year Rainfall=5.10" Prepared by Microsoft

Time span $=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 2401$ points
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: E1

Runoff Area=53,087 sf 4.30% Impervious Runoff Depth >1.79 Flow Length=500' Slope $=0.0800$ '/' Tc=14.5 $\mathrm{min} \mathrm{CN}=66$ Runoff $=1.88 \mathrm{cfs} 7,916 \mathrm{cf}$

Subcatchment14S: PD-1 Runoff Area=52,163 sf 4.38\% Impervious Runoff Depth>1.79 Subcatchment15S: PD-2 Runoff Area=924 sf 100.00% Impervious Runoff Depth>4.86" TC=5.0 $\mathrm{min} \mathrm{CN}=98$ Runoff $=0.11 \mathrm{cfs} 374 \mathrm{cf}$

Pond 9P: (4) Cultec 100
Peak Elev=501.40' Storage=25 cf Inflow=0.11 cfs 374 cf Discarded $=0.06 \mathrm{cfs} 374 \mathrm{cf}$ Primary $=0.00 \mathrm{cfs} 0 \mathrm{cf}$ Outflow $=0.06 \mathrm{cfs} 374 \mathrm{cf}$

Link 6L: POI A
Link 13L: POI A

Inflow $=1.88 \mathrm{cfs} 7,916 \mathrm{cf}$
Primary $=1.88 \mathrm{cfs} 7,916 \mathrm{cf}$
Inflow=1.85 cfs 7,779 cf Primary $=1.85$ cfs $7,779 \mathrm{c}$

Total Runoff Area $=\mathbf{1 0 6}, 174$ sf Runoff Volume $=\mathbf{1 6 , 0 6 9}$ cf Average Runoff Depth $=1.82$ 94.83% Pervious $=100,684$ sf 5.17% Impervious $=5,490$ sf

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 10-Year Rainfall=5.10" Prepared by Microsoft
HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment 1S: E1

Runoff =
1.88 cfs @ 12.21 hrs, Volume
7.916 cf, Depth> 1.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hr Type III 24-hr 10 -Year Rainfall=5.10"

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 10-Year Rainfall=5.10" Prepared by Microsoft /19/202
HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment 14S: PD-1

Runoff $=1.85$ cfs @ 12.21 hrs, Volume $=\quad 7,779$ cf, Depth> 1.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 10 -Year Rainfall= $=5.10$ "

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 10-Year Rainfall=5.10" Prepared by Microsoft

Printed 2/19/202
HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment 15S: PD-2

Runoff =
0.11 cfs @ 12.07 hrs, Volume
374 cf, Depth> 486"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hr}$ Type III 24-hr $10-$ Year Rainfall $=5.10^{\prime \prime}$

Area (sf)		CN	Description		
*	924	98 P	roposed P		
	924		0.00\% Im	pervious A	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 10-Year Rainfall=5.10" Prepared by Microsoft

Summary for Pond 9P: (4) Cultec 100

Primary $=0.00 \mathrm{cfs} @ \quad 0.00 \mathrm{hrs}$, Volume $=\quad 0 \mathrm{cf}$
Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev=501.40' @ 12.18 hrs Surf.Area= 146 sf Storage= 25 cf

Plug-Flow detention time $=1.6 \mathrm{~min}$ calculated for 374 cf (100% of inflow) Center-of-Mass det. time= $1.6 \mathrm{~min}(747.9-746.3)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	500.96'	96 cf	8.33'W x 17.50'L x 2.04'H Field A 298 cf Overall -58 cf Embedded $=240$ cf $\times 40.0 \%$ Voids
\#2A	501.46'	58 cf	Cultec C-100HD x 4 Inside \#1 Effective Size $=32.1^{\prime \prime} \mathrm{W} \times 12.0^{\prime \prime} \mathrm{H}=>1.86 \mathrm{sf} \times 7.50^{\prime} \mathrm{L}=14.0 \mathrm{cf}$ Overall Size $=36.0^{\prime \prime} \mathrm{W} \times 12.5^{\prime \prime} \mathrm{H} \times 8.00^{\prime} \mathrm{L}$ with 0.50 ' Overlap Row Length Adjustment $=+0.50$ x $1.86 \mathrm{sf} \times 2$ rows

54 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Primary	502.00	6.0" Vert. Outlet Pipe C= 0.600
$\# 2$	Device 1	502.00^{\prime}	3.0" Vert. Control Outlet X 4.00 C= 0.600
\#3	Device 1	502.99^{\prime}	6.0" Horiz. Overflow C=0.600 Limited to weir flow at low heads
\#4	Discarded	500.96^{\prime}	$\mathbf{1 5 . 0 0 0}$ in/hr Exfiltration over Wetted area

4=Exfiltration (Exfiltration Controls 0.06 cfs)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=500.96' (Free Discharge)
$1=$ Outlet Pipe (Controls 0.00 cfs)

- $2=$ Control Outlet (Controls 0.00 cfs
=Overflow (Controls 0.00 cfs)

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 10-Year Rainfall=5.10" Prepared by Microsoft
Prepared by Microsoft 01998 © 2018 HydroCAD Software Solutions LLC

Pond 9P: (4) Cultec 100 - Chamber Wizard Field A

Chamber Model = Cultec C-100HD (Cultec Contactor®100HD)
Effective Size $=32.1^{\prime \prime W} \times 12.0^{\prime \prime} \mathrm{H}=>1.86 \mathrm{sf} \times 7.50^{\prime} \mathrm{L}=14.0 \mathrm{cf}$
Overall Size $=32 . \mathrm{N}^{\prime} \mathrm{W} \times 12 . \mathrm{A}^{\prime} \mathrm{H} \times 8.00 \mathrm{~L}$ with 0.50^{\prime} Overla
36.0" Wide $+4.0^{\prime \prime}$ Spacing $=40.0^{\prime \prime}$ C-C Row Spacing

2 Chambers/Row x 7.50' Long $+0.50^{\prime}$ Row Adjustment $=15.50^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=17.50$ Base Length
2 Rows $\times 36.0^{\prime \prime}$ Wide +4.0 " Spacing $\times 1+12.0$ " Side Stone $\times 2=8.33^{\prime}$ Base Width
$6.0^{\prime \prime}$ Base $+12.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=2.04^{\prime}$ Field Height
4 Chambers $\times 14.0$ cf $+0.50^{\prime}$ Row Adjustment $\times 1.86 \mathrm{sf} \times 2$ Rows $=57.7$ cf Chamber Storage
297.7 cf Field -57.7 cf Chambers $=240.0$ cf Stone $\times 40.0 \%$ Voids $=96.0$ cf Stone Storage

Chamber Storage + Stone Storage $=153.7 \mathrm{cf}=0.004$ af
Overall Storage Efficiency $=51.6 \%$
Overall System Size $=17.50^{\prime} \times 8.33^{\prime} \times 2.04$

4 Chambers
 11.0 cy Field
 8.9 cy Stone

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 10-Year Rainfall=5.10" Prepared by Microsoft

Prepared by Microsoft HydroCAD® $10.00-24 \mathrm{~s} / \mathrm{n} 01998$ © 2018 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 9P: (4) Cultec 100

Elevation (feet)	Wetted (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Wetted (sq-ft)	Storage (cubic-feet)
500.96	146	0	502.00	200	85
500.98	147	1	502.02	201	87
501.00	148	2	502.04	202	89
501.02	149	4	502.06	203	90
501.04	150	5	502.08	204	92
501.06	151	6	502.10	205	94
501.08	152	7	502.12	206	96
501.10	153	8	502.14	207	98
501.12	154	9	502.16	208	100
501.14	155	11	502.18	209	101
501.16	156	12	502.20	210	103
501.18	157	13	502.22	211	105
501.20	158	14	502.24	212	107
501.22	159	15	502.26	213	108
501.24	160	16	502.28	214	110
501.26	161	18	502.30	215	111
501.28	162	19	502.32	216	113
501.30	163	20	502.34	217	114
501.32	164	21	502.36	218	116
501.34	165	22	502.38	219	117
501.36	166	23	502.40	220	118
501.38	168	25	502.42	221	120
501.40	169	26	502.44	222	121
501.42	170	27	502.46	223	122
501.44	171	28	502.48	224	123
501.46	172	29	502.50	225	124
501.48	173	31	502.52	226	126
501.50	174	33	502.54	227	127
501.52	175	36	502.56	229	128
501.54	176	38	502.58	230	129
501.56	177	40	502.60	231	130
501.58	178	42	502.62	232	131
501.60	179	44	502.64	233	133
501.62	180	46	502.66	234	134
501.64	181	48	502.68	235	135
501.66	182	50	502.70	236	136
501.68	183	52	502.72	237	137
501.70	184	54	502.74	238	138
501.72	185	56	502.76	239	140
501.74	186	59	502.78	240	141
501.76	187	61	502.80	241	142
501.78	188	63	502.82	242	143
501.80	189	65	502.84	243	144
501.82	190	67	502.86	244	145
501.84	191	69	502.88	245	147
501.86	192	71	502.90	246	148
501.88	193	73	502.92	247	149
501.90	194	75	502.94	248	150
501.92	195	77	502.96	249	151
501.94	196	79	502.98	250	152
501.96	198	81	503.00	251	154
501.98	199	83			

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 10-Year Rainfall=5.10" Prepared by Microsoft
Prepared by Microsoft 01998 © 2018 HydroCAD Software Solutions LLC
Summary for Link 6L: POI A
Inflow Area $=\quad 53,087$ sf, 4.30% Impervious, Inflow Depth > 1.79" for 10-Year event nflow $=1.88$ cfs @ 12.21 hrs, Volume $=\quad 7,916 \mathrm{cf}$
Primary $=1.88 \mathrm{cfs} @ 12.21 \mathrm{hrs}$, Volume= $\quad 7,916 \mathrm{cf}$, Atten= $=0 \%$, Lag= 0.0 min
Primary outflow $=$ Inflow, Time Span $=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

6 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 10-Year Rainfall=5.10"

Prepared by Microsoft
 HydroCAD® 10 00-24 s/n 01998 © 2018 HydroCAD Software Solutions LIC

 Page 40
Summary for Link 13L: POI A

Inflow Area $=\quad 53,087$ sf, 6.04% Impervious, Inflow Depth > 1.76" for 10-Year event
nflow $=1.85 \mathrm{cfs} @ 12.21 \mathrm{hrs}$, Volume $=\quad 7.779 \mathrm{cf}$
$\begin{array}{llll}\text { Inflow } & = & 1.85 \mathrm{cfs} @ & 12.21 \mathrm{hrs} \text {, Volume= } \\ \text { Primary } & = & 1.85 \mathrm{cfs} @ & 12.21 \mathrm{hrs} \text {, Volume= }\end{array}$
Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 25-Year Rainfall=6.40" Prepared by Microsoft Prepared by Microsoft 01998 © 2018 HydroCAD Software Solutions LLC

Time span $=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 2401$ points Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: E1 Flow Length=500'	Runoff Area=53,087 sf 4.30\% Impervious Runoff Depth >2.73 "
	Slope $=0.0800$ '/' Tc=14.5 min CN=66 Runoff=2.95 cfs 12,083 cf
Subcatchment14S: PD-1 Flow Length=500'	Runoff Area=52,163 sf 4.38\% Impervious Runoff Depth>2.73"
	Slope $=0.0800$ '/' Tc=14.5 min CN=66 Runoff=2.90 cfs 11,873 cf
Subcatchment15S: PD-2	Runoff Area=924 sf 100.00% Impervious Runoff Depth $>6.16 "$ Tc $=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.14 \mathrm{cfs} 474 \mathrm{cf}$
Pond 9P: (4) Cultec 100 Discarded	Peak Elev=501.60' Storage=44 cf Inflow=0.14 cfs 474 cf $\mathrm{d}=0.06 \mathrm{cfs} 474 \mathrm{cf}$ Primary $=0.00 \mathrm{cfs} 0 \mathrm{cf}$ Outflow=$=0.06 \mathrm{cfs} 474 \mathrm{cf}$
Link 6L: POI A	$\begin{array}{r} \text { Inflow }=2.95 \mathrm{cfs} \quad 12,083 \mathrm{cf} \\ \text { Primary }=2.95 \mathrm{cfs} \quad 12,083 \mathrm{cf} \end{array}$
Link 13L: POI A	$\begin{array}{r} \text { Inflow=2.90 cfs } 11,873 \mathrm{cf} \\ \text { Primary=2.90 cfs } 11,873 \mathrm{cf} \end{array}$
Total Runoff Area $=106,174$	sf Runoff Volume $=\mathbf{2 4 , 4 3 0}$ cf Average Runoff Depth $=2.76$ " $\mathbf{9 4 . 8 3 \%}$ Pervious $=\mathbf{1 0 0 , 6 8 4}$ sf $\quad 5.17 \%$ Impervious $=5,490$ sf

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 25-Year Rainfall=6.40" Prepared by Microsoft

Summary for Subcatchment 1S: E1

Runoff $=\quad 2.95$ cfs @ 12.20 hrs, Volume $=\quad 12,083$ cf, Depth> 2.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 25 -Year Rainfall= $=6.40$

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 25-Year Rainfall=6.40" Prepared by Microsoft

Printed 2/19/202
Prepared by Microsoft
HydroCAD® $10.00-24 \mathrm{~s} / \mathrm{n} 01998$ © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment 14S: PD-1

Runoff =
290 cfs @ $12.20 \mathrm{hrs}, V o l u m e=$
11,873 cf, Depth> 2.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hr Type III 24-hr 25 -Year Rainfall $=6.40^{\prime \prime}$

6 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 25-Year Rainfall=6.40" Prepared by Microsoft
HydroCAD® $10.00-24 \mathrm{~s} / \mathrm{n} 01998$ © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment 15S: PD-2

Runoff =
0.14 cfs @ 12.07 hrs, Volume=
474 cf, Depth> 6.16"

Runoff by SCS TR-20 method UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 25 -Year Rainfall= $=6.40$ "

	Area (sf)	CN Description			
*	924	98 P	Proposed P		
924		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\min) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 25-Year Rainfall=6.40" Prepared by Microsoft

Printed 2/19/202
HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC
Summary for Pond 9P: (4) Cultec 100

Primary $=\quad 0.00 \mathrm{cfs} @ 0.00 \mathrm{hrs}$, Volume= 0 cf
Routing by Stor-Ind method, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs
Peak Elev= $501.60^{\prime} @ 12.22 \mathrm{hrs}$ Surf.Area $=146 \mathrm{sf}$ Storage $=44 \mathrm{cf}$
Plug-Flow detention time $=2.8 \mathrm{~min}$ calculated for $474 \mathrm{cf}(100 \%$ of inflow)
Center-of-Mass det. time $=2.7 \mathrm{~min}(745.5-742.8)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	500.96'	96 cf	$8.33^{\prime} \mathrm{W} \times 17.50^{\prime} \mathrm{L} \times 2.04$ 'H Field A 298 cf Overall - 58 cf Embedded $=240$ cf $\times 40.0 \%$ Voids
\#2A	501.46'	58 cf	Cultec C-100HD x 4 Inside \#1 Effective Size $=32.1^{\prime \prime} \mathrm{W} \times 12.0^{\prime \prime} \mathrm{H}=>1.86 \mathrm{sf} \times 7.50^{\prime} \mathrm{L}=14.0 \mathrm{cf}$ Overall Size $=36.0^{\prime \prime} \mathrm{W} \times 12.5^{\prime \prime} \mathrm{H} \times 8.00^{\prime} \mathrm{L}$ with 0.50^{\prime} Overlap Row Length Adjustment $=+0.50$ $1.86 \mathrm{sf} \times 2$ rows

154 cf Total Available Storage
Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Primary	502.00^{\prime}	$6.0 "$ Vert. Outlet Pipe C= 0.600
\#2	Device 1	502.00^{\prime}	3.0" Vert. Control Outlet X 4.00 C= 0.600
\#3	Device 1	502.99^{\prime}	6.0" Horiz. Overflow C=0.600 Limited to weir flow at low heads
\#4	Discarded	500.96^{\prime}	$\mathbf{1 5 . 0 0 0}$ in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.06 cfs @ 12.22 hrs HW=501.60' (Free Discharge) 4=Exfiltration (Exfiltration Controls 0.06 cfs)

[^5]16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 25-Year Rainfall=6.40" Prepared by Microsoft

Page 46
HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC

Pond 9P: (4) Cultec 100 - Chamber Wizard Field A

Chamber Model $=$ Cultec C-100HD (Cultec Contactor®100HD)
ffective Size $=32.1^{\prime \prime} \mathrm{W} \times 12.0^{\prime \prime} \mathrm{H}=>1.86 \mathrm{sf} \times 7.50^{\prime} \mathrm{L}=14.0 \mathrm{ff}$
Overall Size $=36.0^{\prime \prime} \mathrm{W} \times 12.5^{\prime \prime} \mathrm{H} \times 8.00^{\prime} \mathrm{L}$ with 0.50^{\prime} Overlap
Row Length Adjustment $=+0.50^{\prime} \times 1.86 \mathrm{sf} \times 2$ rows
36.0" Wide $+4.0^{\prime \prime}$ Spacing $=40.0$ " C-C Row Spacing

2 Chambers/Row $\times 7.50^{\prime}$ Long $+0.50^{\prime}$ Row Adjustment $=15.50^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=17.50$ Base Length
2 Rows $\times 36.0^{\prime \prime}$ Wide $+4.0^{\prime \prime}$ Spacing $\times 1+12.0$ " Side Stone $\times 2=8.33^{\prime}$ Base Width
$6.0^{\prime \prime}$ Base $+12.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=2.04^{\prime}$ Field Height
4 Chambers $\times 14.0$ cf $+0.50^{\prime}$ Row Adjustment $\times 1.86 \mathrm{sf} \times 2$ Rows $=57.7$ cf Chamber Storage
297.7 cf Field -57.7 cf Chambers $=240.0$ cf Stone $\times 40.0 \%$ Voids $=96.0$ cf Stone Storage

Chamber Storage + Stone Storage $=153.7 \mathrm{cf}=0.004$ af
Overall Storage Efficiency $=51.6 \%$
Overall System Size $=17.50^{\prime} \times 8.33^{\prime} \times 2.04$

4 Chambers
 11.0 cy Field
 8.9 cy Stone

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 25-Year Rainfall=6.40" Prepared by Microsoft Prepared by Microsoft
HydroCAD® 10.00-24 $\mathrm{s} / \mathrm{n} 01998$ © 2018 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 9P: (4) Cultec 100

$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Wetted (sq-ft)	Storage (cubic-feet)	$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Wetted (sq-ft)	Storage (cubic-feet)
500.96	146	0	502.00	200	85
500.98	147	1	502.02	201	87
501.00	148	2	502.04	202	89
501.02	149	4	502.06	203	90
501.04	150	5	502.08	204	92
501.06	151	6	502.10	205	94
501.08	152	7	502.12	206	96
501.10	153	8	502.14	207	98
501.12	154	9	502.16	208	100
501.14	155	11	502.18	209	101
501.16	156	12	502.20	210	103
501.18	157	13	502.22	211	105
501.20	158	14	502.24	212	107
501.22	159	15	502.26	213	108
501.24	160	16	502.28	214	110
501.26	161	18	502.30	215	111
501.28	162	19	502.32	216	113
501.30	163	20	502.34	217	114
501.32	164	21	502.36	218	116
501.34	165	22	502.38	219	117
501.36	166	23	502.40	220	118
501.38	168	25	502.42	221	120
501.40	169	26	502.44	222	121
501.42	170	27	502.46	223	122
501.44	171	28	502.48	224	123
501.46	172	29	502.50	225	124
501.48	173	31	502.52	226	126
501.50	174	33	502.54	227	127
501.52	175	36	502.56	229	128
501.54	176	38	502.58	230	129
501.56	177	40	502.60	231	130
501.58	178	42	502.62	232	131
501.60	179	44	502.64	233	133
501.62	180	46	502.66	234	134
501.64	181	48	502.68	235	135
501.66	182	50	502.70	236	136
501.68	183	52	502.72	237	137
501.70	184	54	502.74	238	138
501.72	185	56	502.76	239	140
501.74	186	59	502.78	240	141
501.76	187	61	502.80	241	142
501.78	188	63	502.82	242	143
501.80	189	65	502.84	243	144
501.82	190	67	502.86	244	145
501.84	191	69	502.88	245	147
501.86	192	71	502.90	246	148
501.88	193	73	502.92	247	149
501.90	194	75	502.94	248	150
501.92	195	77	502.96	249	151
501.94	196	79	502.98	250	152
501.96	198	81	503.00	251	154
501.98	199	83			

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 25-Year Rainfall=6.40" Prepared by Microsoft

Summary for Link 6L: POI A

Inflow Area $=\quad 53,087$ sf, 4.30% Impervious, Inflow Depth > 2.73" for 25-Year event Inflow $=\quad 2.95 \mathrm{cfs}$ @ 12.20 hrs, Volume= $\quad 12,083 \mathrm{cf}$
$\begin{array}{lll}\text { Inflow } & = & 2.95 \mathrm{cfs} @ 12.20 \mathrm{hrs} \text {, Volume }= \\ \text { Primary } & =12,083 \mathrm{cf} \\ & & 2.95 \mathrm{cfs} @ 12.20 \mathrm{hrs} \text {, Volume }= \\ 12,083 \mathrm{cf}, \text { Atten }=0 \%, \text { Lag= } & 0.0 \mathrm{~min}\end{array}$
Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 25-Year Rainfall=6.40" Prepared by Microsoft Printed 2/19/202 Prepared by Microsoft 0198 © 2018 HydroCAD Software Solutions LLC

Summary for Link 13L: POI A

$\begin{array}{llll}\text { Inflow Area }= & 53,087 \mathrm{sf}, & 6.04 \% \text { Impervious, } & \text { Inflow Depth > } 2.68 \mathrm{ln} \text { for } 25 \text {-Year event } \\ \text { Inflow } & = & 2.90 \mathrm{cs} \mathrm{@} & 12.20 \mathrm{hrs} \text {, Volume= } \\ \text { Primary } & = & 2.90 \mathrm{cfs} @ & 12.20 \mathrm{hrs} \text {, Volume= }\end{array}$
Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 50-Year Rainfall=7.60" Prepared by Microsoft

Printed 2/19/202
Prepared by Microsoft
HydroCAD® $10.00-24 \mathrm{~s} / \mathrm{n} 01998$ © 2018 HydroCAD Software Solutions LLC Page 50

Time span $=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 2401$ points
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: E1

Flow Length=500'
Runoff Area=53,087 sf 4.30% Impervious Runoff Depth>3.67

Subcatchment14S: PD-1 Runoff Area=52,163 sf 4.38\% Impervious Runoff Depth >3.67 Flow Length=500' Slope $=0.0800$ '/' Tc=14.5 $\mathrm{min} \quad \mathrm{CN}=66$ Runoff $=3.94 \mathrm{cfs} 15,956 \mathrm{c}$
Subcatchment15S: PD-2 Runoff Area=924 sf 100.00\% Impervious Runoff Depth>7.36" Tc=5.0 min CN=98 Runoff $=0.16 \mathrm{cfs} 566 \mathrm{cf}$

Pond 9P: (4) Cultec 100
Peak Elev=501.79' Storage=64 cf Inflow=0.16 cfs 566 c Discarded $=0.07 \mathrm{cfs} 566 \mathrm{cf}$ Primary $=0.00 \mathrm{cfs} 0 \mathrm{cf}$ Outflow $=0.07 \mathrm{cfs} 566 \mathrm{cf}$

Link 6L: POI A
16,239 cf Primary=4.01 cfs $16,239 \mathrm{cf}$

Inflow=3.94 cfs 15,956 cf Primary $=3.94$ cfs 15,956 c

Total Runoff Area $=106,174$ sf Runoff Volume $=32,761$ cf Average Runoff Depth $=3.70$ 94.83% Pervious $=\mathbf{1 0 0 , 6 8 4}$ sf $\quad \mathbf{5 . 1 7 \%}$ Impervious $=5,490$ sf

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 50-Year Rainfall=7.60" Prepared by Microsoft
HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment 1S: E1

Runoff =
4.01 cfs @ 12.20 hrs, Volume=
16,239 cf, Depth> 3.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 50 -Year Rainfall=7.60"

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 50-Year Rainfall=7.60" Prepared by Microsoft
HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment 14S: PD-1

Runoff $=\quad 3.94$ cfs @ 12.20 hrs, Volume $=15,956$ cf, Depth> 3.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 50 -Year Rainfall= $=7.60$ "

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 50-Year Rainfall=7.60" Prepared by Microsoft

Printed 2/19/202
HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment 15S: PD-2

Runoff =
0.16 cfs @ 12.07 hrs, Volume=
566 cf, Depth> 7.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hr}$ Type III 24-hr 50 -Year Rainfall=7.60"

Area (sf) CN Description					
*	924		roposed P		
	924		100.00\% Im	pervious A	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope ($\mathrm{ft} / \mathrm{ft}$)	Velocity (ft/sec)	Capacity (cfs)	Description

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 50-Year Rainfall=7.60" Prepared by Microsoft

Printed 2/19/2021
HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC \quad Printed $2 /$ Page 5

Summary for Pond 9P: (4) Cultec 100

Primary $=0.00 \mathrm{cfs} @ \quad 0.00 \mathrm{hrs}$, Volume $=0 \mathrm{cf}$

有

Plug-Flow detention time $=4.1$ min calculated for 566 cf (100% of inflow) Center-of-Mass det. time $=4.0 \mathrm{~min}(744.5-740.5)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	500.96'	96 cf	8.33'W x 17.50'L x 2.04 'H Field A 298 cf Overall -58 cf Embedded $=240$ cf $\times 40.0 \%$ Voids
\#2A	501.46'	58 cf	Cultec C-100HD x 4 Inside \#1 Effective Size $=32.1^{\prime \prime} \mathrm{W} \times 12.0^{\prime \prime} \mathrm{H}=>1.86 \mathrm{sf} \times 7.50^{\prime} \mathrm{L}=14.0 \mathrm{cf}$ Overall Size $=36.0^{\prime \prime} \mathrm{W} \times 12.5^{\prime \prime} \mathrm{H} \times 8.00^{\prime} \mathrm{L}$ with 0.50^{\prime} Overlap Row Length Adjustment $=+0.50$ x $1.86 \mathrm{sf} \times 2$ rows

54 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Primary	502.00	6.0" Vert. Outlet Pipe C= 0.600
$\# 2$	Device 1	502.00^{\prime}	3.0" Vert. Control Outlet X 4.00 C= 0.600
\#3	Device 1	502.99^{\prime}	6.0" Horiz. Overflow C=0.600 Limited to weir flow at low heads
\#4	Discarded	500.96^{\prime}	$\mathbf{1 5 . 0 0 0}$ in/hr Exfiltration over Wetted area

4=Exfiltration (Exfiltration Controls 0.07 cfs)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=500.96' (Free Discharge)
$1=$ Outlet Pipe (Controls 0.00 cfs)
-2=Control Outlet (Controls 0.00 cfs
=Overflow (Controls 0.00 cfs)

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 50-Year Rainfall=7.60" Prepared by Microsoft
Prepared by Microsoft 01998 © 2018 HydroCAD Software Solutions LLC

Pond 9P: (4) Cultec 100 - Chamber Wizard Field A

Chamber Model = Cultec C-100HD (Cultec Contactor®100HD)
Effective Size $=32.1^{\prime \prime W} \times 12.0^{\prime \prime} \mathrm{H}=>1.86 \mathrm{sf} \times 7.50^{\prime} \mathrm{L}=14.0 \mathrm{cf}$
Overall Size $=32 . \mathrm{N}^{\prime} \times 12 . \mathrm{N}^{\prime} \mathrm{H} \times 8.00 \mathrm{~L}$ with 0.50^{\prime} Overla
36.0" Wide $+4.0^{\prime \prime}$ Spacing $=40.0^{\prime \prime}$ C-C Row Spacing

2 Chambers/Row x 7.50' Long $+0.50^{\prime}$ Row Adjustment $=15.50^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=17.50$ Base Length
2 Rows $\times 36.0^{\prime \prime}$ Wide +4.0 " Spacing $\times 1+12.0$ " Side Stone $\times 2=8.33^{\prime}$ Base Width
$6.0^{\prime \prime}$ Base $+12.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=2.04^{\prime}$ Field Height
4 Chambers $\times 14.0$ cf $+0.50^{\prime}$ Row Adjustment $\times 1.86 \mathrm{sf} \times 2$ Rows $=57.7$ cf Chamber Storage
297.7 cf Field -57.7 cf Chambers $=240.0$ cf Stone $\times 40.0 \%$ Voids $=96.0$ cf Stone Storage

Chamber Storage + Stone Storage $=153.7 \mathrm{cf}=0.004$ af
Overall Storage Efficiency $=51.6 \%$
Overall System Size $=17.50^{\prime} \times 8.33^{\prime} \times 2.04$

4 Chambers
 11.0 cy Field
 8.9 cy Stone

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 50-Year Rainfall=7.60" Prepared by Microsoft

Stage-Area-Storage for Pond 9P: (4) Cultec 100

Elevation (feet)	Wetted (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Wetted (sq-ft)	Storage (cubic-feet)
500.96	146	0	502.00	200	85
500.98	147	1	502.02	201	87
501.00	148	2	502.04	202	89
501.02	149	4	502.06	203	90
501.04	150	5	502.08	204	92
501.06	151	6	502.10	205	94
501.08	152	7	502.12	206	96
501.10	153	8	502.14	207	98
501.12	154	9	502.16	208	100
501.14	155	11	502.18	209	101
501.16	156	12	502.20	210	103
501.18	157	13	502.22	211	105
501.20	158	14	502.24	212	107
501.22	159	15	502.26	213	108
501.24	160	16	502.28	214	110
501.26	161	18	502.30	215	111
501.28	162	19	502.32	216	113
501.30	163	20	502.34	217	114
501.32	164	21	502.36	218	116
501.34	165	22	502.38	219	117
501.36	166	23	502.40	220	118
501.38	168	25	502.42	221	120
501.40	169	26	502.44	222	121
501.42	170	27	502.46	223	122
501.44	171	28	502.48	224	123
501.46	172	29	502.50	225	124
501.48	173	31	502.52	226	126
501.50	174	33	502.54	227	127
501.52	175	36	502.56	229	128
501.54	176	38	502.58	230	129
501.56	177	40	502.60	231	130
501.58	178	42	502.62	232	131
501.60	179	44	502.64	233	133
501.62	180	46	502.66	234	134
501.64	181	48	502.68	235	135
501.66	182	50	502.70	236	136
501.68	183	52	502.72	237	137
501.70	184	54	502.74	238	138
501.72	185	56	502.76	239	140
501.74	186	59	502.78	240	141
501.76	187	61	502.80	241	142
501.78	188	63	502.82	242	143
501.80	189	65	502.84	243	144
501.82	190	67	502.86	244	145
501.84	191	69	502.88	245	147
501.86	192	71	502.90	246	148
501.88	193	73	502.92	247	149
501.90	194	75	502.94	248	150
501.92	195	77	502.96	249	151
501.94	196	79	502.98	250	152
501.96	198	81	503.00	251	154
501.98	199	83			

16 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 50-Year Rainfall=7.60" Prepared by Microsoft
Prepared by Microsoft 01998 © 2018 HydroCAD Software Solutions LLC
Summary for Link 6L: POI A
Inflow Area $=\quad 53,087$ sf, 4.30% Impervious, Inflow Depth > 3.67" for $50-$ Year event Inflow $=\quad 4.01 \mathrm{cfs} @ 12.20 \mathrm{hrs}$, Volume $=\quad 16,239 \mathrm{cf}$
$\begin{array}{lll}\text { Inflow } & = & 4.01 \mathrm{cfs} @ 12.20 \mathrm{hrs} \text {, Volume }= \\ \text { Primary } & =16,239 \mathrm{cf} \\ & 4.01 \mathrm{cfs} @ 12.20 \mathrm{hrs} \text {, Volume }= & 16,239 \mathrm{cf} \text {, Atten }=0 \%, \text { Lag }=0.0 \mathrm{~min}\end{array}$
Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

6 Quaker Meeting House Rd Armonk NY HydroCADType III 24-hr 50-Year Rainfall=7.60" Prepared by Microsoft HydroCAD® $10.00-24 \mathrm{~s} / \mathrm{n} 01998$ © 2018 HydroCAD Software Solutions LLC Printed 2/19/202

Summary for Link 13L: POI A

Inflow Area $=\quad 53,087$ sf, 6.04% Impervious, Inflow Depth > 3.61" for 50-Year event nflow $=\quad 3.94 \mathrm{cfs}$ @ 12.20 hrs , Volume $=\quad 15.956 \mathrm{cf}$
$\begin{array}{lll}\text { Inflow } & = & 3.94 \mathrm{cfs} @ \\ \text { Primary } & = & 12.20 \mathrm{hrs} \text {, Volume= } \\ & 12.20 \mathrm{hrs} \text {, Volume }= & 15,956 \mathrm{cf} \\ & 15,956 \mathrm{cf} \text {, Atten }=0 \%, \text { Lag }=0.0 \mathrm{~min}\end{array}$
Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

16 Quaker Meeting House Rd Armonk NY HydroCADype III 24-hr 100-Year Rainfall=9.10" Prepared by Microsoft Prepared by Microsoft 01998 © 2018 HydroCAD Software Solutions LLC

Time span $=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 2401$ points Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: E1	Runoff Area $=53,087$ sf 4.30% Impervious Runoff Depth >4.91 "
Flow Length=500'	Slope $=0.0800$ '/' Tc=14.5 min CN=66 Runoff $=5.40 \mathrm{cfs} 21,725 \mathrm{cf}$
Subcatchment14S: PD-1	Runoff Area=52,163 sf 4.38% Impervious Runoff Depth>4.91"
Flow Length=500'	Slope=0.0800 '/' Tc=14.5 min CN=66 Runoff=5.30 cfs 21,347 cf
Subcatchment15S: PD-2	Runoff Area $=924 \mathrm{sf} 100.00 \%$ Impervious Runoff Depth $>8.85^{\prime \prime}$ Tc $=5.0 \mathrm{~min} \quad \mathrm{CN}=98$ Runoff $=0.20 \mathrm{cfs} 682 \mathrm{cf}$
Pond 9P: (4) Cultec 100	Peak Elev=502.06' Storage=90 cf Inflow=0.20 cfs 682 cf

Link 6L: POIA
Inflow $=5.40$ cfs 21,725 c Primary $=5.40 \mathrm{cfs} 21,725 \mathrm{cf}$ $=5.31$ cfs $21,351 \mathrm{cf}$

[^6]16 Quaker Meeting House Rd Armonk NY HydroCADype III 24-hr 100-Year Rainfall=9.10" Prepared by Microsoft

Summary for Subcatchment 1S: E1

Runoff =
5.40 cfs @ 12.20 hrs, Volume
21,725 cf, Depth> 4.91"

Runoff by SCS TR-20 method UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall $=9.10^{\prime \prime}$

	Area (sf)	CN D	Description			
	50,804	65				
	1,845	98	Existing Dwelling Existing Deck			
	273					
*	165	98 E	Existing Deck Existing Patio			
	53,087	66 W	Weighted Average 95.70\% Pervious Area 4.30\% Impervious Area			
	50,804					
	2,283					
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	$\begin{array}{r} \text { Velocity } \\ (\mathrm{ft} / \mathrm{sec}) \end{array}$	$\begin{gathered} \text { Capacity } \\ \text { (cfs) } \end{gathered}$	Description	
9.5	75	0.0800	0.13		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=3.40$
5.0	425	0.0800	1.41		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
14.5	500	Total				

16 Quaker Meeting House Rd Armonk NY HydroCADype III 24-hr 100-Year Rainfall=9.10" Prepared by Microsoft
Prepared by Microsoft
HydroCAD® $10.00-24 \mathrm{~s} / \mathrm{n} 01998$ © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment 14S: PD-1

Runoff $=5.30$ cfs @ 12.20 hrs, Volume $=21,347$ cf, Depth> 4.91"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hr}$ Type III 24-hr 100-Year Rainfall=9.10"

6 Quaker Meeting House Rd Armonk NY HydroCADype III 24-hr 100-Year Rainfall=9.10" Prepared by Microsoft

Summary for Subcatchment 15S: PD-2

Runoff =
0.20 cfs @ 12.07 hrs, Volume=
682 cf, Depth> 8.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=9.10"

	rea (sf)	CN Description			
	924	98	roposed P		
	924		00.00\% Im	pervious A	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

16 Quaker Meeting House Rd Armonk NY HydroCADype III 24-hr 100-Year Rainfall=9.10" Prepared by Microsoft

Summary for Pond 9P: (4) Cultec 100

Primary $=0.01 \mathrm{cfs} @ 12.25$ hrs, Volume= 5 cf
Routing by Stor-Ind method, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Plug-Flow detention time $=5.6 \mathrm{~min}$ calculated for $681 \mathrm{cf}(100 \%$ of inflow) Center-of-Mass det. time $=5.5 \mathrm{~min}(743.8-738.3)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	500.96'	96 cf	8.33'W x $17.50^{\prime} \mathrm{L} \times 2.04$ 'H Field A 298 cf Overall - 58 cf Embedded $=240$ cf $\times 40.0 \%$ Voids
\#2A	501.46'	58 cf	Cultec C-100HD x 4 Inside \#1 Effective Size $=32.1^{\prime \prime} \mathrm{W} \times 12.0^{\prime \prime} \mathrm{H}=>1.86 \mathrm{sf} \times 7.50^{\prime} \mathrm{L}=14.0 \mathrm{cf}$ Overall Size $=36.0^{\prime \prime} \mathrm{W} \times 12.5^{\prime \prime} \mathrm{H} \times 8.00^{\prime} \mathrm{L}$ with 0.50^{\prime} Overlap Row Length Adjustment $=+0.50$ $1.86 \mathrm{sf} \times 2$ rows

$$
154 \text { cf } \quad \text { Total Available Storage }
$$

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Primary	502.00^{\prime}	$6 . \mathbf{0}^{\prime \prime}$ Vert. Outlet Pipe C= 0.600
\#2	Device 1	502.00^{\prime}	$3.0 "$ Vert. Control Outlet X 4.00 C= 0.600
\#3	Device 1	502.99^{\prime}	6.0" Horiz. Overflow C= 0.600 Limited to weir flow at low heads
\#4	Discarded	500.96^{\prime}	$\mathbf{1 5 . 0 0 0}$ in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.07 cfs @ 12.25 hrs HW=502.06' (Free Discharge) 4=Exfiltration (Exfiltration Controls 0.07 cfs)

Primary OutFlow Max=0.01 cfs @ 12.25 hrs HW=502.06' (Free Discharge)

- $1=$ Outlet Pipe (Orifice Controls $0.01 \mathrm{cfs} @ 0.80 \mathrm{fps}$)
-2=Control Outlet (Passes 0.01 cfs of 0.03 cfs potential flow)
- $3=$ Overflow (Controls 0.00 cfs)

16 Quaker Meeting House Rd Armonk NY HydroCADype III 24-hr 100-Year Rainfall=9.10" Prepared by Microsoft

19/202
HydroCAD® 10.00-24 s/n 01998 © 2018 HydroCAD Software Solutions LLC Page 64

Pond 9P: (4) Cultec 100 - Chamber Wizard Field A

Chamber Model $=$ Cultec C-100HD (Cultec Contactor®100HD)
Effective Size $=32.1^{\prime \prime} \mathrm{W} \times 12.0 \mathrm{H} \mathrm{H}=>1.86 \mathrm{sf} \times 7.50^{\prime} \mathrm{L}=14.0 \mathrm{cf}$
Overall Size $=36.0^{\prime \prime} \mathrm{W} \times 12.5^{\prime \prime} \mathrm{H} \times 8.00^{\prime} \mathrm{L}$ with 0.50^{\prime} Overlap
Row Length Adjustment $=+0.50^{\prime} \times 1.86 \mathrm{sf} \times 2$ rows
36.0" Wide $+4.0^{\prime \prime}$ Spacing $=40.0^{\prime \prime}$ C-C Row Spacing

2 Chambers/Row $\times 7.50^{\prime}$ Long $+0.50^{\prime}$ Row Adjustment $=15.50^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=17.50$ Base Length
2 Rows x 36.0" Wide $+4.0^{\prime \prime}$ Spacing x $1+12.0^{\prime \prime}$ Side Stone x $2=8.33^{\prime}$ Base Width
$6.0^{\prime \prime}$ Base $+12.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=2.04$ ' Field Height
4 Chambers $\times 14.0$ cf $+0.50^{\prime}$ Row Adjustment $\times 1.86 \mathrm{sf} \times 2$ Rows $=57.7$ cf Chamber Storage
297.7 cf Field -57.7 cf Chambers $=240.0$ cf Stone $\times 40.0 \%$ Voids $=96.0$ cf Stone Storage

Chamber Storage + Stone Storage $=153.7 \mathrm{cf}=0.004$ af
Overall Storage Efficiency $=51.6 \%$
Overall System Size $=17.50^{\prime} \times 8.33^{\prime} \times 2.04$

4 Chambers
 11.0 cy Field
 8.9 cy Stone

16 Quaker Meeting House Rd Armonk NY HydroCADype III 24-hr 100-Year Rainfall=9.10" Prepared by Microsoft Prepared by Microsoft
HydroCAD® $10.00-24 \mathrm{~s} / \mathrm{n} 01998$ © 2018 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 9P: (4) Cultec 100

$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Wetted (sq-ft)	Storage (cubic-feet)	$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Wetted (sq-ft)	Storage (cubic-feet)
500.96	146	0	502.00	200	85
500.98	147	1	502.02	201	87
501.00	148	2	502.04	202	89
501.02	149	4	502.06	203	90
501.04	150	5	502.08	204	92
501.06	151	6	502.10	205	94
501.08	152	7	502.12	206	96
501.10	153	8	502.14	207	98
501.12	154	9	502.16	208	100
501.14	155	11	502.18	209	101
501.16	156	12	502.20	210	103
501.18	157	13	502.22	211	105
501.20	158	14	502.24	212	107
501.22	159	15	502.26	213	108
501.24	160	16	502.28	214	110
501.26	161	18	502.30	215	111
501.28	162	19	502.32	216	113
501.30	163	20	502.34	217	114
501.32	164	21	502.36	218	116
501.34	165	22	502.38	219	117
501.36	166	23	502.40	220	118
501.38	168	25	502.42	221	120
501.40	169	26	502.44	222	121
501.42	170	27	502.46	223	122
501.44	171	28	502.48	224	123
501.46	172	29	502.50	225	124
501.48	173	31	502.52	226	126
501.50	174	33	502.54	227	127
501.52	175	36	502.56	229	128
501.54	176	38	502.58	230	129
501.56	177	40	502.60	231	130
501.58	178	42	502.62	232	131
501.60	179	44	502.64	233	133
501.62	180	46	502.66	234	134
501.64	181	48	502.68	235	135
501.66	182	50	502.70	236	136
501.68	183	52	502.72	237	137
501.70	184	54	502.74	238	138
501.72	185	56	502.76	239	140
501.74	186	59	502.78	240	141
501.76	187	61	502.80	241	142
501.78	188	63	502.82	242	143
501.80	189	65	502.84	243	144
501.82	190	67	502.86	244	145
501.84	191	69	502.88	245	147
501.86	192	71	502.90	246	148
501.88	193	73	502.92	247	149
501.90	194	75	502.94	248	150
501.92	195	77	502.96	249	151
501.94	196	79	502.98	250	152
501.96	198	81	503.00	251	154
501.98	199	83			

16 Quaker Meeting House Rd Armonk NY HydroCADype III 24-hr 100-Year Rainfall=9.10" Prepared by Microsoft
Prepared by Microsoft
HydroCAD® 10.00-24 $\mathrm{s} / \mathrm{n} 01998$ © 2018 HydroCAD Software Solutions LLC

Summary for Link 6L: POI A

Inflow Area $=\quad 53,087$ sf, 4.30% Impervious, Inflow Depth > 4.91" for 100-Year event Inflow $=5.40 \mathrm{cfs} @ 12.20 \mathrm{hrs}$, Volume $=\quad 21,725 \mathrm{cf}$
$\begin{array}{llll}\text { Inflow } & =5.40 \mathrm{cfs} @ & 12.20 \mathrm{hrs}, \text { Volume }= & 21,725 \mathrm{cf} \\ \text { Primary } & = & 5.40 \mathrm{cfs} @ & 12.20 \mathrm{hrs}, \text { Volume }=\end{array} \quad 21,725 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

16 Quaker Meeting House Rd Armonk NY_HydroCADype III 24-hr 100-Year Rainfall=9.10" Prepared by Microsoft

Summary for Link 13L: POI A

Inflow Area $=\quad 53,087$ sf, 6.04% Impervious, Inflow Depth >4.83 " for 100-Year event Inflow $=5.31$ cfs @ 12.20 hrs , Volume= $\quad 21,351 \mathrm{cf}$
$\begin{array}{lll}\text { Inflow } & = & 5.31 \mathrm{cfs} @ 12.20 \mathrm{hrs}, \text { Volume }= \\ \text { Primary } & = & 21,351 \mathrm{cf} \\ & 21,351 \mathrm{cf} \text {, Atten }=0 \%, \text { Lag }=0.0 \mathrm{~min}\end{array}$
Primary outflow $=$ Inflow, Time Span $=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

PLANNING DEPARTMENT
Adam R. Kaufman, AICP
Director of Planning

Telephone: (914) 273-3542
Fax: (914) 273-3554
www.northcastleny.com

GROSS LAND COVERAGE CALCULATIONS WORKSHEET

Application Name or Identifying Title:
JT Construction

Date: $11 / 17 / 2$
Tax Map Designation or Proposed Lot No.: 101.03-4-44
Gross Lot Coverage

1. Total lot Area (Net Lot Area for Lots Created After 12/13/06):
2. Maximum permitted gross land coverage (per Section 355-26.C(1)(b)):

72966
12086
3. BONUS maximum gross land cover (per Section 355-26.C(1)(b)):

Distance principal home is beyond minimum front yard setback
$2.32 \times 10=$
23.2
4. TOTAL Maximum Permitted gross land coverage $=$ Sum of lines 2 and 3
5. Amount of lot area covered by principal building:

3506 existing $+\underline{0}$ proposed = 3506
6. Amount of lot area covered by accessory buildings:
\qquad existing $+\underline{0}$ proposed =

0
12109
7. Amount of lot area covered by decks:
\qquad existing $+\underline{0}$ proposed $=$ 267
8. Amount of lot area covered by porches:
\qquad existing $+\underline{0}$ proposed $=$
9. Amount of lot area covered by driveway, parking areas and walkways: 3329 existing $+\underline{0}$ proposed =

3329
10. Amount of lot area covered by terraces:
\qquad existing $+\underline{0}$ proposed $=$ 164
11. Amount of lot area covered by tennis court, pool and mechanical equip: 0 existing +1052 proposed $=$ 1052
12. Amount of lot area covered by all other structures:
\qquad existing $+\underline{0}$ proposed $=$
13. Proposed
gross land coverage: Total of Lines 5-12=

0
8318

If Line 13 is less than or eq ual to Line 4, your proposal complies with the Town's maximum gross land coverage regulations and the project may proceed to the Residential Project Review Committee for review. If Line 13 is greater than Line 4 your proposal does not comply with the Town's regulations.

Signature and Seal of Professional Preparing Worksheet

12/9/20
Date

PLANNING DEPARTMENT
Telephone: (914) 273-3542
Adam R. Kaufman, AICP
Director of Planning

GROSS LAND COVERAGE WORKSHEET

The following format is to be used for all applications for the purpose of demonstrating the gross land coverage of a property as necessary to show compliance with gross land coverage limitations of the Town Code.

1. Scaled worksheets are to be prepared based upon a site plan which represents existing or proposed conditions as applicable to the particular circumstances of the approval being sought. All site plans and worksheets are required to be prepared by a licensed or registered professional in the State of New York.
2. Each component of the gross land coverage is to be divided into simple polygons (squares, rectangles, etc.) each being drawn on the plan. The area of each polygon is to be shown by providing the dimensions and resulting area measurement. Each polygon is to be assigned an identifying label for reference purposes.
3. A summary table for each component is to be completed. The area of each polygon is to be listed by reference label then added, resulting in the gross land coverage for the entire site.
4. Any exception of land coverage from the gross land coverage must be identified on the floor plans and summary tables. The rationale for any exception must accompany the floor area worksheets.
5. A schematic illustration of the format is shown below

$1 \mathrm{~A}=$ House $2 \mathrm{~A}=$ Drive

1 A
2 A $\overline{\text { GROSS LAND COVERAGE }}$

LOT AREA, NET - Lot area m inus seve nty five (75) percent of the area of any wetlands, waterbodies and, watercourses, but excluding any adjacent areas, all as defined in C hapter 209 Wetlands and Drai nage, of the Tow n Code, a nd the area of any steep slopes, as defined Chapter 213, except that in the case of one-fam ily lots, the deduct ion for steep slopes shall be only fifty (50) percent.

Lot Size	Maximum Permitted Gross Land Coverage for One-Family Dwelling Lots				
(square feet)		$	$	Less than 5,000 square feet	50% of the lot area
:---	:---				
5,000 to 9,999 square feet	2,500 plus 30% of the lot area in excess of 5,000 square feet				
10,000 to 14,999 square feet	4,000 plus 24% of the lot area in excess of 10,000 square feet				
15,000 square feet to 0.499 acres	5,200 plus 18% of the lot area in excess of 15,000 square feet				
0.5 to 0.749 acres	6,420 plus 15% of the lot area in excess of 0.5 acres				
0.75 to 0.999 acres	8,050 plus 12% of the lot area in excess of 0.75 acres				
1.0 to 1.999 acres	9,350 plus 9% of the lot area in excess of 1.0 acres				
2.0 acres or more	13,270 plus 7.5% of the lot area in excess of 2.0 acres				

*Permitted g ross land co verage lim itations for two -family dwelling l ots in the $\mathrm{R}-2 \mathrm{~F}$ District sh all be t wenty five (25) percent greater than that permitted for one-family dwelling lots.

NOTWITHSTANDING ABOVE LIMITATIONS, AN ADDITIONAL 10 SQUA RE FEET O F G ROSS LA ND COVERAGE SHALL BE P ERMITTED FOR EACH ONE F OOT OF FRONT YARD SETBACK OF THE PRINCIPAL DWELLING IN EXCESS OF THE MINIMUM FRONT YARD SETBACK REQUIRED.

Town of North Castle Building Department

17 Bedford Road

Armonk, New York 10504-1898
Telephone: (914) 273-3000 ext. 44 Fax: (914) 273-3554 www.northcastleny.com

Town of North Castle Tree Removal Application Permit WHEN A PERMIT IS REQUIRED

The Town of North Castle finds and declares that the preservation of Trees is necessary to protect the health, safety and general welfare of the Town of North Castle because trees provide shade, impede soil erosion, aid water absorption and retention, inhibit excess runoff and flooding, enhance air quality, offer a natural barrier to noise, provide a natural habitat for wildlife, provide screening, enhance property values and add to the aesthetic quality of the community.

A tree removal permit is required under the following circumstances:

1. Removal of a tree within a property's regulated setback zone or landscape buffer zone (All trees

8" or greater DBH - Diameter at Breast Height).
The regulated setback zone refers to the area of vegetative screening or landscaping measured from each property line of a residentially zoned property toward the interior of such property.

R-4A One-Family Residence District: 25 feet.
R-2A One-Family Residence District: 15 feet.
R-1.5A One-Family Residence District: 12 feet.
R-1A One-Family Residence District: 10 feet.
All other residential districts: 5 feet
2. Removal of a Significant Tree that's 24 inches or greater DBH at 4 feet.
3. Removal of any tree in wetlands, within clearing lines, or Conservation Easements.
3. Any cutting of more than 5 trees of 8 inches in diameter or more in any one quarter-acre area, within a 12 month period with such area being measured as a square with each side measuring 104 feet.
4. Removal of any street tree within the Right of Way.
5. Removal in any calendar year of more than ten (10) trees on any lot.

Town of North Castle Building Department
17 Bedford Road
Armonk, New York 10504-1898
Telephone: (914) 273-3000 ext. 44 Fax: (914) 273-3554 www.northcastleny.com
\section*{Tree Removal Application}

NOTE: TWO (2) SETS OF ALL REQUIRED DOCUMENTS MUST BE SUBMITTED WITH THIS APPLICATION
Section I- PROJECT ADDRESS: 16 Quaker Meeting House Rd
DATE: 02/11/2021
Section II- CONTACT INFORMATION: (Please print clearly. All information must be current)
APPLICANT: Ahneman Kirby
ADDRESS: 1171 E Putnam Ave, Riverside, CT 06878
PHONE: (203) 869-7707
MOBILE: (914) 819-3113
EMAIL: kaw@ahnemankirby.com
PROPERTY OWNER: Eric Birenberg
ADDRESS: 16 Quaker Meeting House Road, Armonk, NY 10504

PHONE: \qquad MOBILE: \qquad EMAIL: ebirenberg@me.com

Tree Company:

ADRESS: \qquad

PHONE: \qquad MOBILE: \qquad EMAIL:

Section III- REGULATED ACTIVITY: (Check all that apply)
\qquad Removal of a tree within a property's regulated setback zone or landscaped buffer zone. Removal of a significant tree.

\squareRemoval of any tree in the wetlands, within clearing lines, or conservation easements. Clearing/Thinning.
\qquad Removal of any tree within the right of way.
\qquad Removal in any calendar year of more than ten (10) trees on any lot.

Section IV- DESCRIPTION OF WORK: (Please include how many trees will be removed)
Removal of 2 trees to permit construction of an in ground swimming pool

Section V- FUTURE PLANS:

Do you have any intention of tearing down the house to build a new house within the next six (6) months.

Town of North Castle Building Department

Section V- FUTURE PLANS: (Continued)
Do you have any intention to expand the house over 1500 square feet within the next six (6) months? \square

Section VI- RESTRICTION:

Is there any conservation easements on your deed? Yes \square No

Section VII- PERMIT FEES: (\$50 application fee and a $\$ 25$ Certificate of Compliance fee)

Section VIII- APPLICANT CERTIFICATION

I hereby certify that I have read the instructions \& examined this application and know the same to be true \& correct. All provisions of laws \& ordinances covering this type of work will be complied with whether specified herein or not. The granting of a permit does not presume to give authority to violate or cancel the provisions of any other state or local law regulating construction or land use or the performance of construction.

STATE OF NEW YORK \}
COUNTY OF WESTCHESTER \} SS:
The applicant
Ahneman Kirby has proper consent from said owner to make this application as submitted and said owner agrees to all terms and conditions placed upon same.
Owner's Name (PRINT) Eric Birenberg
Owner's Signature
Sworn to before me this \qquad day of \qquad 20 \qquad

OFFICE USE ONLY - DO NOT WRITE BELOW THIS LINE

\qquad
Zone:
Section:
Block:
Lot:

Building Department Checklist:

Does this permit require RPRC approval?
 Yes \square No

Has a plan delineating all improvements, site grading and disturbance proposed on the subject property. \square Yes \square No
GC License Work. Comp. Liability. Ins. Disability Two sets of documents

Permit Fee $\$ 75.00$ Payment type: Check \#: \quad Cash
Name on check: \qquad Received By: \qquad Date: \qquad
Reviewed By: \qquad Date: \qquad
Building Inspector Approval: \qquad Date: \qquad
Conditions: \qquad

[^0]: A signature block for Planning Board endorsement of approval.

[^1]: Total Runoff Area $=106,174 \mathrm{sf}$ Runoff Volume $=4,550 \mathrm{cf}$ Average Runoff Depth $=0.51$ 94.83% Pervious $=100,684$ sf 5.17% Impervious $=\mathbf{5 , 4 9 0}$ sf

[^2]: Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=500.96' (Free Discharge)
 $1=$ Outlet Pipe (Controls 0.00 cfs)

 - $2=$ Control Outlet (Controls 0.00 cfs
 -3=Overflow (Controls 0.00 cfs)

[^3]: Total Runoff Area $=106,174$ sf Runoff Volume $=11,403$ cf Average Runoff Depth $=1.29$ 94.83% Pervious $=100,684$ sf 5.17% Impervious $=5,490$ sf

[^4]: Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=500.96' (Free Discharge)
 $1=$ Outlet Pipe (Controls 0.00 cfs)

 - $2=$ Control Outlet (Controls 0.00 cfs
 -3=Overflow (Controls 0.00 cfs)

[^5]: Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=500.96' (Free Discharge)
 $1=$ Outlet Pipe (Controls 0.00 cfs)

 - $2=$ Control Outlet (Controls 0.00 cfs
 -3=Overflow (Controls 0.00 cfs)

[^6]: Total Runoff Area $=106,174$ sf Runoff Volume $=43,753$ cf Average Runoff Depth $=4.95$ 94.83% Pervious $=\mathbf{1 0 0 , 6 8 4}$ sf $\quad 5.17 \%$ Impervious $=5,490$ sf

