ALP Engineering
 \& Landscape Architecture, PLLC

August 5, 2021
Hon. Christopher Carthy, Chairman and Members of the Planning Board
Town of North Castle
17 Bedford Road
Armonk, NY 10504

RE: Hidden Oak Conservation Subdivision
 Hidden Oak Road
 Town of North Castle (Armonk Hamlet), New York Section 107.01, Block 1, Lot 31

Dear Chairman Carthy and Members of the Planning Board:
We are pleased to submit a pdf file of the following plans and documents in support of the application on behalf of McKenna Custom Homes of Pleasantville, N.Y. for Preliminary and Final Conservation Subdivision Approval for three single family homes:

Drawings being submitted for Preliminary and Final Subdivision Approval include the following:

Drawing No.	Drawing Title	Date
CS-1	Cover Sheet	03/20/2020
S-1	Subdivision Layout Plan	03/20/2020
S-2	Grading \& Utilities Plan	03/20/2020
S-3.1	Phase 1: Erosion and Sediment Control Plan/ Tree Removal \& Protection Plan	03/20/2020
S-3.2	Phase 2: Erosion and Sediment Control Plan/ Tree Removal \& Protection Plan	03/20/2020
S-4	Slopes Map	03/20/2020
S-5	Landscape Plan	03/20/2020
DE-1	Construction Details	03/20/2020
DE-2	Construction Details	03/20/2020
DE-3	Subdivision Road and Driveway Profiles	03/20/2020
DE-4	Erosion Control/Restoration Notes/Trees	03/20/2020
DE-5	Construction Details / Maintenance Plan	03/20/2020

In addition, to the drawings noted above, appended to the set are the following three drawings for the septic system on the three lots and the water main extension that were prepared by Campbell Engineering.

Drawing No.	Drawing Title	$\underline{\text { Date }}$
IPP-1	Integrated Plot Plan	$09 / 06 / 2016$
D-1	3 Lot Subdivision Site Plan Profiles and Details	$06 / 30 / 2016$
D-2	3 Lot Subdivision Site Plan Details	$06 / 30 / 2016$

We are pleased also to submit in pdf format the following application forms, calculation worksheets, and figures for Preliminary Subdivision Approval and Final Subdivision Approval:

- Application for Preliminary Subdivision Approval form, dated 08/05/2021;
- Application for Final Subdivision Approval form, dated 08/05/2021;
- Short Environmental Assessment Form, dated 05/05/2021.
- Hidden Oak Conservation Subdivision Tree Survey, dated 01/09/2015.
- Drawing entitled Preliminary Plat Hidden Oak Subdivision Proposed Lots 1, 2 \& 3, prepared by William J. Welsh, L.S., dated 07/15/2020.
- Letter from Mary P. Galasso, NYCDEP dated June 6, 2016 indicating approval of the application to engage in a regulated activity (i.e. approval of the SWPPP report prepared for the project).
- Letter from Mariyam Zachariah, NYCDEP, dated June 15,2020 which indicates a renewal of the Hidden Oak Subdivision SWPPP determination to expire on June 6, 2026.

The following documents are also included:

- Deed of Conservation Easement.
- Stormwater Control Facility Maintenance and Access Agreement.
- Declaration Of Covenants, Conditions, and Restrictions for Hidden Oak Subdivision.
- Deed of Road to Town of North Castle.

This property was the subject of a Conservation Subdivision application commencing about 7 years ago. The application was to create three single family lots on a 7.69 acre property at the south end of Hidden Oak Road. The Planning Board granted Preliminary Conservation Subdivision Plat Approval, as well as Steep Slope Permit and Tree Removal Permit approvals on February 9, 2015; Final Conservation Subdivision Plat Approval, Steep Slope Permit and Tree Removal Permit approvals were granted by the Planning Board on December 12, 2016. The applicant then applied back in March 2020 for both renewal of the Preliminary and Final Subdivision approvals, which were then granted by
the Planning Board on June 8, 2020 with an expiration date of December 8, 2020. Unfortunately, these approvals have lapsed.

Therefore, on behalf of McKenna Custom Homes, Inc., our office is submitting this application for both Preliminary and Final Conservation Subdivision Approval for the same three lot subdivision.

Design of the Proposed Subdivision

The proposal is for a Conservation Subdivision which will subdivide the subject 7.69 -acre property into three single family house lots. The three lots to be created are as follows: Lot 1 (1.863 acres), Lot 2 (1.920 acres), and Lot 3 (2.045 acres). The road right-of-way will encompass a total of 0.864 acres. Finally, the proposed Conservation Lands will include 0.994 acres of the property. The site plans for the property have not changed since the approvals of the project were granted back in 2016.

The project site is bounded by private residences and lands of the City of New York to the west, and lands of the City of New York to the north, south and east. The property is presently wooded with second growth trees. There are no wetlands, either Town or State regulated, on or immediately adjacent to the property. About 175 feet to the east of the property is a watercourse that eventually flows southward to the Kensico Reservoir.

Since the property contains no wetlands or watercourses, or other unique landforms, the principal lands to protect as open space are located on the project perimeter, specifically those lands within the property more directly drain to the Kensico Reservoir. These include the reservoir stem to the southeast of the site, and the lands to the south and west which are under the ownership of the New York City Department of Environmental Protection (NYCDEP). The Conservation Subdivision proposes to protect as open space virtually all of the lands within the offset from the reservoir stem, and a 50 -foot wide strip along the western boundary of the site where it abuts lands of the NYCDEP. Along the southerly boundary of the property, the Conservation Lands are 10 feet in width so as to provide a physical connection between the westerly and easterly portions of the Conservation Lands.

We look forward to discussing this with the Planning Board. Should you have any comments or questions regarding the enclosed submission, please feel free to call me on my direct line at (475) 215-5343, or my cell at (203) 710-0587.

Town of North Castle Planning Board
August 5, 2021
Page 4
Very truly yours,
ALP ENGINEERING \& LANDSCAPE ARCHITECTURE, PLLC

Alan L. Pilch, P.E., R.L.A.
Principal

cc: Kevin McKenna (w/encl.)

Hidden Oak Subdivision

Final Subdivision Approval Drawing Set

LOCATION MAP

 .

soomovana loris

Short Environmental Assessment Form Part 1 - Project Information

Instructions for Completing

Part 1 - Project Information. The applicant or project sponsor is responsible for the completion of Part 1. Responses become part of the application for approval or funding, are subject to public review, and may be subject to further verification. Complete Part 1 based on information currently available. If additional research or investigation would be needed to fully respond to any item, please answer as thoroughly as possible based on current information.

Complete all items in Part 1. You may also provide any additional information which you believe will be needed by or useful to the lead agency; attach additional pages as necessary to supplement any item.

18. Does the proposed action include construction or other activities that result in the impoundment of water or other liquids (e.g. retention pond, waste lagoon, dam)? If Yes, explain purpose and size: \qquad Stormwater detention facility for peak rate attenuation and water quality improvement. Detention facility is approximately. 120 feet x 60 feet in size.		NO	YE
19. Has the site of the proposed action or an adjoining property been the location of an active or closed solid waste management facility? If Yes, describe: \qquad		NO	YES
		\checkmark	\square
20. Has the site of the proposed action or an adjoining property been the subject of remediation (ongoing or completed) for hazardous waste? If Yes, describe: \qquad		NO	YES
		\checkmark	
I AFFIRM THAT THE INFORMATION PROVIDED ABOVE IS TRUE AND ACCURATE TO THE BEST OF MY KNOWLEDGE			
Applicant/sponsor name: Kevin McKenna (Alan L. Pilch, PE, RLLA, agent)Signature:			

PLANNING DEPARTMENT

Adam R. Kaufman, AICP
Director of Planning

TOWN OF NORTH CASTLE
WESTCHESTER COUNTY
17 Bedford Road
Armonk, New York 10504-1898

Application for Preliminary Subdivision Approval

Application Name

Hidden Oak Subdivision

I. IDENTIFICATION OF PROPERTY OWNER, APPLICANT AND PROFESSIONAL REPRESENTATIVES

Name of Property Owner: __ McKenna Custom Homes, Inc.
Mailing Address: $\quad 433$ Manville Road, Pleasantville, NY 10570
Telephone: (914) 769-1869 F
Fax: (914) 769-8575 e-mail info@mckennacustom.com
Name of Applicant (if different): \qquad not applicable
Address of Applicant: \qquad
Telephone: \qquad Fax: \qquad e-mail \qquad
Interest of Applicant, if other than Property Owner:

Is the Applicant (if different from the property owner) a Contract Vendee?

If yes, please submit affidavit sating such. If no, application cannot be reviewed by Planning Board

Name of Professional Preparing Site Plan:
Alan L. Pilch, PE, RLA, ALP Engineering \& Landscape Architecture, PLLC
Address: P.O. Box 843, Ridgefield, CT 06877
Telephone: (475) 215-5353 Fax: \qquad e-mail alan@eaec-inc.com

Name of Other Professional: Bill Welsh PE, LS, Welsh Engineering \& Land Surveying, PC
Address: 12 Campwoods Grounds, Ossining, NY 10562
Telephone: (914) 497-9981
Fax: \qquad e-mail_bwelsh@welshpc.com

Name of Attorney (if any): \qquad
Address: \qquad
Telephone: \qquad Fax: \qquad e-mail \qquad

Applicant Acknowledgement

By making this application, the undersigned Applicant agrees to permit Town officials and their designated representatives to conduct on-site inspections in connection with the review of this application.

The Applicant also agrees to pay all expenses of publication and the giving of public notice as required, and further acknowledges that he/she shall be responsible for reimbursing the Town for the cost of professional review services required for this application.

It is further acknowledged by the Applicant that all bills for the expenses of publication and the giving of public notice as well as professional consultant review services shall be mailed to the Applicant, unless the Town is notified in writing by the Applicant at the time of initial submission of the application that such mailings should be sent to a designated representative instead.

Must have both signatures

II. IDENTIFICATION OF SUBJECT PROPERTY

Property Street Address: 13 Hidden Oak Road
Location (in relation to nearest intersecting street):
1,200 feet (north, south, east or west) of Bayberry Rd - Hidden Oak Road intersection
Abutting Street(s): Hidden Oak Road
Tax Map Designation (NEW): Section_107.01 Block_1 Lot_31.2
Tax Map Designation (OLD): Section__ 2 Block_ $1 \mathrm{~K} \quad$ Lot_ 10
Zoning District: _ R-2A Total Land Area \qquad
Land Area in North Castle Only (if different) ___ not applicable
Fire District(s) \qquad School District(s) Byram Hills

Is any portion of subject property abutting or located within five hundred (500) feet of the following:
The boundary of any city, town or village?
No $\quad \mathrm{X}$ Yes (adjacent) ___ Yes (within 500 feet) \qquad
If yes, please identify name(s): \qquad
The boundary of any existing or proposed County or State park or any other recreation area?
No X Yes (adjacent) \qquad Yes (within 500 feet) \qquad
The right-of-way of any existing or proposed County or State parkway, thruway, expressway, road or highway?
No \qquad Yes (adjacent) \qquad Yes (within 500 feet) $\quad \mathrm{X}$

The existing or proposed right-of-way of any stream or drainage channel owned by the County or for which the County has established channel lines?
No $\quad \mathrm{X} \quad$ Yes (adjacent) \qquad Yes (within 500 feet) \qquad
The existing or proposed boundary of any county or State owned land on which a public building or institution is situated?
No \qquad Yes (adjacent) \qquad Yes (within 500 feet) \qquad
The boundary of a farm operation located in an agricultural district?
No X_Yes (adjacent) \qquad Yes (within 500 feet) \qquad
Does the Property Owner or Applicant have an interest in any abutting property?
No X Yes \qquad
If yes, please identify the tax map designation of that property:

III. DESCRIPTION OF PROPOSED DEVELOPMENT

Type of Subdivision proposed: Conventional __ Conservation $\quad \mathrm{X}$
Total Number of Lots Proposed on Preliminary Subdivision Plat: \qquad
Total Number of Lots Proposed in North Castle Only (if different): \qquad
Are any new streets proposed? No \qquad Yes $\quad \mathrm{X}$

Has the center line of each proposed street been staked?
No \qquad Yes $\quad \mathrm{X}$
If no, please indicate the date by which such center lines will be staked:
Have the corners of each proposed lot been identified with appropriate stakes? No \qquad Yes \qquad If no, please indicate the date by which such lot corners will be staked: \qquad
Are any waivers from the provisions of Chapter 355 (Zoning) or Chapter 275 (Subdivision of Land) of the North Castle Town Code requested? No X_ Yes \qquad
If yes, please specify type: \qquad
Earthwork Balance: Cut 2,400 C.Y. Fill 2,400 C.Y.
Will Development on the subject property involve any of the following:
Areas of special flood hazard? No \qquad Yes \qquad
(If yes, application for a Development Permit pursuant to Chapter 177 of the North Castle Town Code may also be required)

Trees with a diameter at breast height (DBH) of $8^{\prime \prime}$ or greater?
No \qquad Yes X
(If yes, application for a Tree Removal Prmit pursuant to Chapter 308 of the North Castle Town Code may also be required.)

Town-regulated wetlands? No X Yes \qquad
(If yes, application for a Town Wetlands Permit pursuant to Chapter 340 of the North Castle Town Code may also be required.)

State-regulated wetlands? No X_Yes \qquad (If yes, application for a State Wetlands Permit may also be required.)

IV. SUBMISSION REQUIREMENTS

The preliminary subdivision application package shall include all materials submitted in support of the application, including but not limited to the application form, plans, reports, letters and SEQR Environmental Assessment Form. Submission of the following shall be required:

- One (1) set of the preliminary subdivision application package (for distribution to the Town Planner for preliminary review purposes).
- Once a completed preliminary subdivision checklist has been received from the Planning Department, eight (8) additional sets of the site development plan application package (for distribution to Planning Board, Town Engineer, Town Attorney, Town Planner, Planning Board Secretary, police, fire department and ambulance corps).
- One (1) additional reduced sized set (11 " $\times 17$ ") of the preliminary subdivision application package if any portion of the subject property abuts or is located within five hundred (500) feet of the features identified in Section II of this application form (for distribution to Westchester County Planning Board).
- A check for the required application fee and a check for the required Escrow Account, both checks made payable to "Town of North Castle" in the amount specified on the "Schedule of Application Fees."
(continued next page)

V. INFORMATION TO BE INCLUDED ON PRELIMINARY SUBDIVISION PLAT

The following checklist is provided to enable the Applicant to determine if he/she has provided enough information on the preliminary subdivision plat and preliminary construction plans for the Planning Board to review his/her proposal. Applicants are advised to review Chapter 275 of the North Castle Town Code for a complete enumeration of pertinent requirements and standards prior to making application for preliminary subdivision plat approval.

The information required to be shown on the preliminary subdivision plat and the preliminary construction plans may be combined and shown on one plan to be identified as the Integrated Plot Plan. Whether this information is presented on one or two different plans, the application for preliminary subdivision plat approval will not be accepted for Planning Board review unless all items identified below are supplied and so indicated with a check mark in the blank line provided. If a particular item is not relevant to the subject property or the development proposal, the letters "NA" should be entered instead.

The information to be included on an Integrated Plot Plan shall include:

Name of the proposed subdivision or other identifying title and signature block.
Name and address of the Property Owner and the Applicant (if different).
Name, address and telephone number of the surveyor, engineer or other legally qualified professional and the seal of the professional who prepared the plan.

Names and locations of all owners of record of properties abutting and directly across any and all adjoining streets from the subject property, including the tax map designation of the subject property and abutting and adjoining properties, as shown on the latest tax records.
\checkmark Existing zoning, fire district, school district, special district and municipal boundaries.
Names of existing streets
Total acreage of the property to be developed, as well as property boundaries showing dimensions and bearings as determined by a current survey; name and width of existing streets; and lines of existing rights-of-way, reservations, easements and areas dedicated to public uses.

n.a.

Reference to the location and conditions of any covenants, easements or deed restrictions that cover all or any part of the property, as well as identification of the document where such covenants, easements or deed restrictions are legally established .
\qquad Schedule of minimum zoning requirements, as well as the proposed lots' compliance with those requirements, including lot area, frontage, lot width, lot depth, building coverage, yards and other pertinent requirements.
\checkmark Site location map, at a scale of one (1) inch equals eight hundred (800) feet, showing the Applicant's entire property in relation to surrounding properties, streets, etc. within five hundred (500) feet of the site.
\qquad North arrow, written and graphic scales, and the date of the original plan and all revisions, with notations identifying the revisions.
\checkmark Existing topographical contours with a vertical interval of two (2) feet or less.
\qquad Location of existing floodplains, wetlands, slopes of 15% or greater, wooded areas, landscaped areas, single trees with a DBH of $8^{\prime \prime}$ or greater, rock outcrops, stone walls and any other significant existing natural or cultural features.
\qquad Location of temporary stakes in the field to enable the Planning Board to find and appraise features of the preliminary plat.
\qquad Location of existing use and design of buildings and other structures.
\checkmark Location of all other existing site improvements, including pavement, walks, curbing, retaining wall and fences.

Location and sizes of existing water supply, sanitary sewage disposal, storm water drainage and other utility lines and structures within and nearby the proposed subdivision.
\qquad Location of all existing monuments.
Proposed arrangement of lots, including identifying numbers and approximate area and dimensions of each.
\checkmark Proposed layout of new streets, including sight distance at all proposed road intersections, widths and approximate curve radii, and any proposed rights-of-way, easements, deed restrictions, covenants and/or reservations.
n.a. Location, size and nature of any area proposed to be reserved for park purposes.

Proposed system for the provision of water supply and fire protection facilities, sanitary sewage disposal facilities, storm water drainage facilities and other utility services.
\qquad Proposed street profiles and cross-sections showing the approximate grade of proposed streets, the relationship of existing grades to proposed grades and the proposed vertical curvature along the center line of all new streets.
\checkmark Proposed names for new streets.
\qquad Location of proposed monuments.
n.a. Where the preliminary plat includes only a portion of the Applicant's contiguous holding, the Applicant shall also indicate on a sketch, at a scale of not less than one (1) inch equals two hundred (200) feet, the probable future street system, lot arrangement, and location of park and other reservations for the remaining portion of the tract and topographic data with vertical contour interval of not more than ten (10) feet.
n.a. For all proposed subdivision plans containing land within an area of special flood hazard, the data required to ensure compliance with Chapter 177 of the North Castle Town Code.

\checkmarkFor all proposed subdivision plans involving clearing or removal of trees with a DBH of $8^{\prime \prime}$ or greater, the data required to ensure compliance with Chapter 308 of the North Castle Town Code.
n.a. For all proposed subdivision plans involving disturbance to Town-regulated wetlands, the data required to ensure compliance with Chapter 340 of the North Castle Town Code.

F: \PLAN6.0\Application Forms \2016 Full Set\Part B - Preliminary Subdiv 2016.doc

PLANNING DEPARTMENT

Adam R. Kaufman, AICP Director of Planning

TOWN OF NORTH CASTLE
WESTCHESTER COUNTY
17 Bedford Road
Armonk, New York 10504-1898

Application for Final Subdivision Approval

Application Name

Hidden Oak Subdivision

I. IDENTIFICATION OF PROPERTY OWNER, APPLICANT AND PROFESSIONAL REPRESENTATIVES

Name of Property Owner: __ McKenna Custom Homes, Inc.
Mailing Address: $\quad 433$ Manville Road, Pleasantville, NY 10570
Telephone: (914) 769-1869 F
Fax: (914) 769-8575 e-mail info@mckennacustom.com
Name of Applicant (if different): \qquad not applicable
Address of Applicant: \qquad
Telephone: \qquad Fax: \qquad e-mail \qquad
Interest of Applicant, if other than Property Owner:

Is the Applicant (if different from the property owner) a Contract Vendee?

If yes, please submit affidavit sating such. If no, application cannot be reviewed by Planning Board

Name of Professional Preparing Site Plan:
Alan L. Pilch, PE, RLA, ALP Engineering \& Landscape Architecture, PLLC
Address: P.O. Box 843, Ridgefield, CT 06877
Telephone: (475) 215-5353 Fax: \qquad e-mail alan@eaec-inc.com

Name of Other Professional: Bill Welsh PE, LS, Welsh Engineering \& Land Surveying, PC
Address: 12 Campwoods Grounds, Ossining, NY 10562
Telephone: (914) 497-9981
Fax: \qquad e-mail_bwelsh@welshpc.com

Name of Attorney (if any): \qquad
Address: \qquad
Telephone: \qquad Fax: \qquad e-mail \qquad

Applicant Acknowledgement

By making this application, the undersigned Applicant agrees to permit Town officials and their designated representatives to conduct on-site inspections in connection with the review of this application.

The Applicant also agrees to pay all expenses of publication and the giving of public notice as required, and further acknowledges that he/she shall be responsible for reimbursing the Town for the cost of professional review services required for this application.

It is further acknowledged by the Applicant that all bills for the expenses of publication and the giving of public notice as well as professional consultant review services shall be mailed to the Applicant, unless the Town is notified in writing by the Applicant at the time of initial submission of the application that such mailings should be sent to a designated representative instead.

Must have both signatures

II. IDENTIFICATION OF SUBJECT PROPERTY

Street Address: Hidden Oak Road

Location (in relation to nearest intersecting street):
$\underline{1,200}$ feet (north, south, east or west) of Bayberry Rd - Hidden Oak Rd intersection
Abutting Street(s): Hidden Oak Road
Tax Map Designation (NEW): Section 107.01 Block $1 \quad$ Lot 31.2
Tax Map Designation (OLD): Section_ $\quad 2 \quad$ Block $\quad 1 \mathrm{~K} \quad$ Lot 10
Zoning District: R-2A \qquad
Land Area in North Castle Only (if different) ___ not applicable
Fire District(s) Armonk F.D. School District(s) Byram Hills

Is any portion of subject property abutting or located within five hundred (500) feet of the following:
The boundary of any city, town or village?
No X Yes (adjacent) ___ Yes (within 500 feet) \qquad
If yes, please identify name(s): \qquad
The boundary of any existing or proposed County or State park or any other recreation area?
No X Yes (adjacent) \qquad Yes (within 500 feet) \qquad
The right-of-way of any existing or proposed County or State parkway, thruway, expressway, road or highway?
No \qquad Yes (adjacent) \qquad Yes (within 500 feet) $\quad \mathrm{X}$

The existing or proposed right-of-way of any stream or drainage channel owned by the County or for which the County has established channel lines?
No X_Yes (adjacent) \qquad Yes (within 500 feet) \qquad
The existing or proposed boundary of any county or State owned land on which a public building or institution is situated?
No \qquad Yes (adjacent) \qquad Yes (within 500 feet) \qquad
The boundary of a farm operation located in an agricultural district?
No X_Yes (adjacent) \qquad Yes (within 500 feet) \qquad
Does the Property Owner or Applicant have an interest in any abutting property?
No X Yes \qquad
If yes, please identify the tax map designation of that property:

III. DESCRIPTION OF PROPOSED DEVELOPMENT

Type of Subdivision proposed: Conventional \qquad Conservation $\quad \mathrm{X}$

Total Number of Lots Proposed on Final Subdivision Plat: \qquad 3
Total Number of Lots Proposed in North Castle Only (if different): \qquad
Is the final subdivision plat in conformance with the approved preliminary subdivision plat?
No \qquad Yes \qquad
If no, please identify any differences between the two plats \qquad
\qquad
\qquad
\qquad

Are any waivers from the provisions of Chapter 355 (Zoning) or Chapter 275 (Subdivision of Land) of the North Castle Town Code requested? No \qquad X Yes \qquad
If yes, please specify type: \qquad
Earthwork Balance: Cut 2,400_C.Y. Fill 2,400_C.Y.
Will Development on the subject property involve any of the following:
Areas of special flood hazard? No _X_Yes \qquad
(If yes, application for a Development Permit pursuant to Chapter 177 of the North Castle Town Code may also be required)

Trees with a diameter at breast height (DBH) of $8^{\prime \prime}$ or greater?
No \qquad Yes X
(If yes, application for a Tree Removal Permit pursuant to Chapter 308 of the North Castle Town Code may also be required.)

Town-regulated wetlands? No X Yes \qquad (If yes, application for a Town Wetlands Permit pursuant to Chapter 340 of the North Castle Town Code may also be required.)

State-regulated wetlands? No X Yes \qquad (If yes, application for a State Wetlands Permit may also be required.)

IV. SUBMISSION REQUIREMENTS

The final subdivision plat application package shall include all materials submitted in support of the application, including but not limited to the application form, final plat, final construction plans, Coverage Calculations Worksheet for each lot, reports, letters and SEQR Environmental Assessment Form. Submission of the following shall be required:

- One (1) set of the final subdivision application package (for distribution to the Town Planner for preliminary review purposes).
- Once a completed final subdivision checklist has been received from the Planning Department, eight (8) additional sets of the site development plan application package (for distribution to Planning Board, Town Engineer, Town Attorney, Town Planner, Planning Board Secretary, police, fire department and ambulance corps).
- One (1) additional reduced sized set ($11^{\prime \prime} \times 17$ ") of the final subdivision application package if any portion of the subject property abuts or is located within five hundred (500) feet of the features identified in Section II of this application form (for distribution to Westchester County Planning Board).
- A check for the required application fee and a check for the required Escrow Account fee, both made payable to "Town of North Castle" in the amount specified on the "Schedule of Application Fees."

During the course of review of this application, the Applicant may be requested to supply additional copies of the final subdivision plat application package for referral to other agencies as determined to be necessary by the Planning Board or its designated representatives.
(continued next page)

V. INFORMATION TO BE INCLUDED ON THE FINAL SUBDIVISION PLAT

The following checklist is provided to enable the Applicant to determine if he/she has provided enough information on the final subdivision plat and final construction plans for the Planning Board to review his/her proposal. Applicants are advised to review Chapter 275 of the North Castle Town Code for a complete enumeration of pertinent requirements and standards prior to making application for final subdivision plat approval.

The information required to be shown on the final subdivision plat and the final construction plans may be combined and shown on one plan to be identified as the Integrated Plot Plan. The application for final subdivision plat approval will not be accepted for Planning Board review unless all items identified below are supplied and so indicated with a check mark in the blank line provided. If a particular item is not relevant to the subject property or the development proposal, the letters "NA" should be entered instead.

The information to be included on the final subdivision plat shall include:

Name of the proposed subdivision or other identifying title.
Name and address of the Property Owner and the Applicant (if different).
Name, address and telephone number of the surveyor, engineer or other legally qualified professional who prepared the plan as well as the seal of the professional preparing the plan
\qquad Names and locations of all owners of record of properties abutting and directly across any and all adjoining streets from the subject property, including the tax map designation of the subject property and abutting and adjoining properties, as shown on the latest tax records.

Location and dimensions of all boundary lines of the proposed subdivision and all existing and proposed streets, lot lines, easements and rights-of-way, with sufficient data to readily determine the location, bearing and length of all such lines and to reproduce such lines upon the ground. Names of all existing and proposed streets .

Locations of all water bodies, watercourses and other wetlands.
Location of all proposed Clearing and Grading Limit Lines.
Location of all existing buildings, including identification of all buildings to be removed as a condition of approval.
\checkmark Total acreage included in the entire subdivision, and the identification number and acreage of all lots and land reservations within the proposed subdivision.

Location of all existing and proposed monuments.
Site location map, at a scale of one (1) inch equals eight hundred (800) feet, showing the Applicant's entire property in relation to surrounding properties, streets, etc. within five hundred (500) feet of the site.
\qquad North arrow, written and graphic scales, and the date of the original plan and all revisions, with notations identifying the revisions.
\checkmark Notations explaining any drainage, sight, slope, road widening, park area or other reservations or easements, including any self-imposed restrictions or covenants.
\checkmark Endorsement of approval by the Westchester County Department of Health
Signature block for Planning Board endorsement of approval.

The information to be included on the final construction plans shall include the following:

\qquad Plans and profiles showing the location and a typical cross-section of street pavements, including curbs and gutters, sidewalks, manholes and catch basins; the location of street trees, street lighting and street signs; the location, size and invert elevations of existing and proposed sanitary sewers, storm water drains and fire hydrants; the location and size of all water, gas or other underground utilities or structures; and the location and design of any other required improvements.

Profiles showing existing and proposed elevations along the center line of all streets. Where a proposed street intersects an existing street or streets, the elevation along the center line of the existing street or streets within one hundred (100) feet of the intersection shall be shown.
n.a. Where steep slopes exist and when required by the Planning Board, cross-sections showing existing and proposed elevations of all new streets every one hundred (100) feet at five (5) points on a line at right angles to the center line of the street, said elevation points to be at the center line of the street, at each property line and at points twenty-five (25) feet inside each property line.
\qquad Location, size, elevation and other appropriate description of any existing facilities which will be connected to proposed facilities and utilities within the subdivision.

Where the design of the subdivision requires regrading of land, the regraded contours shall be shown, along with estimates of the quantity of material to be added or removed and the proposed measures to be implemented by the Applicant to rehabilitate the disturbed area or areas.

Where the design of the subdivision requires blasting, the blasting areas and proposed measures to reduce impacts shall be shown as required by the Planning Board.
\qquad Where the design of the subdivision requires the regarding of land, the regarded contours shall be shown along with the estimated quantify of material to be added or removed and the proposed measures to be implemented by the subdivider to rehabilitate the disturbed area or areas
\qquad Title of all sheets; the name, address, signature and seal of the licensed professional preparing the construction plans; the date prepared, including revision dates, if any; the north arrow, written and graphic scales and consecutive numbering of each street in the series of plans.

Notation indicating intended compliance with the Town construction standards and specifications as well as with the requirements of the Planning Board resolution of approval.
\qquad Signature block for Planning Board endorsement of approval.

The application for final subdivision plat approval shall also be accompanied by the following:

\checkmark Proof of ownership by the Applicant of the premises affected by the application and certificate of title company covering all interests, liens and objections to title, if any.
\qquad Where subdivision roads and/or other improvements are involved, a statement from the
Applicant's engineer giving the estimated cost of construction, together with the quantities and unit costs used in preparing the estimate.
n.a. A list of any and all waivers of the provisions of Chapter 355 (Zoning) and Chapter 275
(Subdivision of Land) of the Town of North Castle Town Code which the Applicant requests the Planning Board to grant in this specific case, with the reasons therefor.

F:\PLAN6.0\Application Forms \2016 Full Set\Part B - Final Subdiv 2016.doc

STORMWATER POLLUTION PREVENTION PLAN REPORT

Hidden Oak Subdivision

Hidden Oak Road
Town of North Castle
Westchester County, New York

Date: March 1, 2016

Stormwater Pollution Prevention Plan Report Table of Contents

A. Narrative Report

1. Project Description.

Page 1
a. A description of the project type, including proposed facilities and structures, acreage of the entire site, the anticipated acreage of disturbance, and acreage of the site for which the imperviousness will be changed from pre-construction conditions. The acreage for which imperviousness will change should be provided in tabular form by sub-watershed to facilitate the review; (pg.1)
b. The anticipated project start and completion dates; (pg.2)
c. A description of existing site conditions including soil types, existing land use, vegetative cover, steep slopes, wetlands, watercourses, reservoirs, and reservoir stems located on or near the site; (pg.2)
d. An analysis of potential impacts that the proposed activity will have on reservoirs, reservoir stems, controlled lakes, wetlands, and watercourses; (pg.4)
e. A general description of the approaches which will be taken to control erosion and sedimentation during construction and an itemization of soil disturbance for each phase of construction; (pg.4)
f. A summary of the proposed post development stormwater management practices proposed and the discharge rate(s) of stormwater runoff following construction; (pg.5) g. If any of the erosion and sediment control practices or post construction stormwater management practices proposed do not conform with the requirements of the Watershed Regulations or General Permit-0-10-001, a discussion should be provided that includes the reason for the deviation and information demonstrating that he alternative design is equivalent to the technical standards. (pg.6)
2. Erosion and Sediment Control Description Page 10
a. A description of the temporary and permanent structural and non-structural measures that will be used to control erosion and sedimentation during each construction phase of the project; (pg.10)
b. Any measures, which will be converted to permanent stormwater management/erosion controls after construction and the techniques necessary for proper conversion; (pg.10) c. Calculations used in siting and sizing erosion controls, including sediment basins; (pg.10)
d. The construction schedule, phasing plan, and implementation schedule for temporary and permanent erosion and sediment controls; (pg.12)
e. Description of the measures that will be used to control litter, construction chemicals, and construction debris from becoming a pollutant source in stormwater discharges. (pg.22) 23
3. Post-Construction Stormwater Management Plan Description Page 23
Introduction: Six Step Design Process (pg.20)
The stormwater management measures included in the SWPPP to control the rate and volume of runoff, and to treat runoff from the site, must be detailed in a narrative report, plans, details and specifications. Primary stormwater management practices are specifically defined in the Watershed Regulations as stormwater ponds, stormwater wetlands, infiltration systems, filtering systems and open channels as listed in Section 3.3.1 of the Design Manual. Each stormwater management practice shall be designed to accommodate the quantity of runoff flowing to the practice, including runoff from off-site areas as applicable. The following information should be included as applicable to the location and design of the various stormwater management components:
a. Descriptions of the stormwater management practices including practices to treat, attenuate and convey post development stormwater runoff; (pg.27)
b. The design provisions included in the stormwater management facilities that address safety and maintenance needs; (pg.27)
c. Results of on-site soil analysis and infiltration tests, as applicable, that evaluate the suitability of the site for stormwater management facilities. An on-site determination of the elevation of bedrock and groundwater by excavation or soil borings at the proposed site of any proposed infiltration facilities; as discussed elsewhere in this Guide, on-site soil analysis should be witnessed by DEP; (pg.34)
d. A schedule for construction of the stormwater management facilities; (pg. 35)
e. Calculation of the imperviousness of tributary areas to each stormwater management practice to determine if practices in series are required; (pg.35)
f. Pre and post development drainage maps; (pg.37)
g. Hydrographs, peak discharge rates and total runoff volumes from the project area for existing conditions for the 10-year, and 100-year 24-hour storm events. The relevant variables used in this determination, including curve number and times of concentration, must be included; (pg.37)
h. The hydrographs used to evaluate post-construction volume and rate of stormwater runoff for the 1-year, 10-year, and 100-year 24-hour storm events; the relevant variables used in this determination, including curve number and times of concentration, must be included; (pg.37)
i. Calculations of the water treatment volume including a comparison of the volume of runoff generated by the 1 year - 24 hour storm event and the water quality volume generated using the 90\% rule; (pg.37)
j. Calculations of the required runoff reduction volume (based on the 1-year, 24-hour storm in the EOH watershed); (pg.37)
k. Calculations supporting design of runoff reduction techniques provided; (pg.38)
l. Designs and supporting calculations for water quality treatment facilities and the compliance with the requirements and recommendations for design of these facilities in the Design Manual; (pg.38)
m. Calculations upon which the required storage volume and surface area requirements necessary to provide flood control for runoff generated by 1-year, 10-year, and 100-year, 24-hour storm events were based; (pg.38)
n. Calculation of the necessary storage volumes, detailed descriptions of all proposed stormwater management measures, and sufficient detail of the measures to determine that the relevant design criteria will be met; (pg.38)
o. Provisions for discharge control, including peak discharge, and protection for, rates, outlet design, discharge capacity for each stage, outlet channel design, and a description of the point of discharge; (pg.39)
p. Downstream stream surveys of all watercourses that will receive stormwater discharges from the site. The surveys typically indicate channel roughness, stability, and dominant stream bank vegetation. (pg.39)
q. Pre- and post-development analyses of coliform runoff concentrations, for activities or facilities that are proposed within terminal basins; (pg.39)
r. In the EOH watershed, conformance with Chapter 10 of the Design Manual; (pg.39)
s. Assumptions and coefficients used in calculating the above comparisons, and an evaluation of the post-development impact stormwater runoff will have on any identified floodplains or designated flood hazard areas in the drainage basin; (pg.40)
t. References used in developing the stormwater management plan. (pg.40)
4. Operation \& Maintenance
a. A description of the inspection program to be conducted from the construction phase through final stabilization. Inspections of disturbed areas, areas used for storage of materials, erosion control measures, and construction entry and exit areas to ensure a performance schedule in accordance with the applicable requirements of the General Permit; (pg.40)
b. A description of post-construction stormwater facility inspection and maintenance schedules. Facility inspections should be performed at least every 30 days; (pg. 40) c. Names, addresses, and phone numbers of parties responsible for implementing the maintenance program and for submitting and retaining reports detailing the scope and dates of inspections, observations relating to the implementation of the erosion and controls and stormwater management measures, incidences of non-compliance and actions taken to remedy any unsatisfactory condition. (pg. 41)
B. Site Plans and Construction Drawings .Page 41

1. Existing Conditions

The following should be depicted on a plan, or plans, at a scale not to exceed 1 " $=50$ ', unless otherwise noted:
a. Existing conditions at the site prior to the proposed development. This plan must include a north reference. The boundaries of the proposed development site, and existing topography at two (2) foot contour intervals must be shown. Elevation data and the source of the topographic information must be provided. All existing watercourses, reservoirs, reservoir stems, controlled lakes, and wetlands on the site and within the limiting distances set forth in the Watershed Regulations must be shown; (pg.41) b. The boundary of any 100-year flood plain (from the United States Flood Emergency Management Area Maps) on the site. Site boundary information must include any available 100-year flood elevations and floodway boundaries; (pg. 42 and Appendix F)
c. Existing impervious surfaces must be depicted, as well as locations of any vehicular entry to or exit from, the site. Existing land uses and structures, types of vegetative cover, public/permanent open space, public facilities, utility lines and easements, water supply wells, and sewage treatment systems must also be depicted. A supplemental Existing Conditions Plan is preferred when extensive details on the plan create a congested drawing that is difficult to interpret. (pg.42)
d. United States Department of Agriculture ("USDA") Soil Survey boundaries on the site, soil descriptions, and tabular information detailing, by sub-watershed, the USDA Soil Conservation Service ("SCS") Hydrologic Soil Groups; (pg.42)
e. Site constraints that may affect erosion control and stormwater management facility design and operation will be identified by field survey. These constraints include steep slopes (15% and greater), soils identified as being highly erodible by the USDA Soil Survey, depth to bedrock, depth to seasonal high water, and poorly and excessively drained soils; (pg.42)
f. The location and size of on and off-site culverts and stormwater management systems that convey runoff to, through, and away from the project site. The configuration and size of the drainage area contributing to these systems must also be shown. (pg.43)
2. Proposed Conditions .Page 43

The following should be depicted on a plan, or plans, at a scale not to exceed $1^{\prime \prime}=50^{\prime}$: a. All reservoirs, reservoir stems, controlled lakes, wetlands and watercourses that affect, or may be affected by, the project, and applicable limiting distances; (pg.43)
b. Proposed lot layout and property lines, buildings, streets, and other impervious surfaces, utility lines, water supply wells, sewage treatment systems, and location and types of any easements on the project site as applicable; (pg. 43)
c. Tabular information, by sub-watershed, indicating the acres of impervious surface created by the proposed activities, and the acreage for which the imperviousness of the land will be changed from pre-construction conditions; (pg. 43)
d. The percent imperviousness of the post-construction drainage area(s) contributory to a proposed stormwater management practice(s); (pg. 43)
e. Proposed on-site topography at two (2) foot contour intervals and other areas that will be disturbed during construction; (pg. 43)
f. All proposed erosion and sediment controls and stormwater management facilities that will be implemented to control erosion and sedimentation during construction and increases in runoff and pollutants from the site after construction has been completed; (pg. 43)
g. Construction details and specifications, cross-sections, and elevations of all proposed structures; (pg. 43)
h. A soil profile to at least one foot below each stormwater management facility (three (3) feet for infiltration practices). All proposed structures and site modifications, including the final grading proposed for the site at two (2) foot contour intervals; (pg. 43)
i. Design details and specifications of proposed structural stormwater management facilities and an indication of which facilities will be used to control rates of discharge, which will be used to treat stormwater runoff from a water quality perspective, and which facilities will perform both functions; (pg. 43)
j. Plan view and cross-sectional designs of all stormwater management facilities and a description of the materials to be used for construction of each of the proposed facilities. (pg. 43)
k. As-built drawings of all stormwater conveyance and management facilities are to verify conformance with the approved/modified SWPPP. (pg. 43)
3. Temporary Erosion and Sediment Control Measures \qquad Page 44
a. All proposed erosion and sediment controls that will be implemented to control erosion and sedimentation during construction; (pg.44)
b. Any temporary erosion and sediment control facilities which will be converted to permanent stormwater management facilities; (pg. 44)
c. Construction details, specifications, cross sections, etc., for all temporary measures proposed; (pg. 44)
d. The limits of disturbance, material stockpile areas, fill areas, on or off-site borrow areas, and areas where vegetation will be cleared; (pg. 44)
e. The location of vegetation to be protected on the site; (pg. 44)
f. Provisions to prevent erosion of open sections of the stormwater conveyance system and culvert inlets and outfalls; (pg. 44)
g. Plans showing phasing and grading as needed to demonstrate the applicability of the proposed sequence; (pg. 44)
h. All construction notes and sequencing to be implemented as part of the erosion control plan during construction; (pg. 44)
i. Inspection and maintenance intervals and criteria to be used to maintain temporary erosion control measures during construction. (pg. 44)

TOWN OF NORTH CASTLE STORMWATER POLLUTION PREVENTION PLAN REPORT

A. Introduction (pg. 45)
B. Contents of stormwater pollution prevention plans (pg. 49).
(1) All SWPPPs shall provide the following background information and erosion and sediment controls:
(a) Background information about the scope of the project, including location, type and size of project (pg. 49);
(b) Site map/construction drawing(s) for the project, including a general location map. At a minimum, the site map should show the total site area; all improvements; areas of disturbance; areas that will not be disturbed; existing vegetation; on-site and adjacent off-site surface water(s); wetlands and drainage patterns that could be affected by the construction activity; existing and final slopes; locations of off-site material, waste, borrow or equipment storage areas; and location(s) of the stormwater discharges(s) (pg. 49);
(c) Description of the soil(s) present at the site (pg. 50);
(d) Construction phasing plan describing the intended sequence of construction activities, including clearing and grubbing, excavation and grading, utility and infrastructure installation and any other activity at the site that results in soil disturbance. Consistent with the New York Standards and Specifications for Erosion and Sediment Control (Erosion Control Manual), not more than five acres shall be disturbed at any one time unless a greater amount is determined necessary pursuant to an approved SWPPP (pg. 51);
(e) Description of the pollution prevention measures that will be used to control litter, construction chemicals and construction debris from becoming a pollutant source in stormwater runoff (pg. 51);
(f) Description of construction and waste materials expected to be stored on site with updates as appropriate, and a description of controls to reduce pollutants from these materials, including storage practices to minimize exposure of the materials to stormwater, and spill prevention and response (pg. 52);
(g) Temporary and permanent structural and vegetative measures to be used for soil stabilization, runoff control and sediment control for each stage of the project from initial land clearing and grubbing to project closeout (pg. 52);
(h) A site map/construction drawing(s) specifying the location(s), size(s) and length(s) of each erosion and sediment control practice (pg. 56);
(i) Dimensions, material specifications and installation details for all erosion and sediment control practices, including the siting and sizing of any temporary sediment basins (pg.56);
(j) Temporary practices that will be converted to permanent control measures (pg. 56);
(k) Implementation schedule for staging temporary erosion and sediment control practices, including the timing of initial placement and the duration that each practice should remain in place (pg. 56);
(l) Maintenance schedule to ensure continuous and effective operation of the erosion and sediment control practice (pg. 57);
(m) Name(s) of the receiving water(s) (pg. 57);
(n) Delineation of SWPPP implementation responsibilities for each part of the site (pg. 57);
(o) Description of structural practices designed to divert flows from exposed soils, store flows, or otherwise limit runoff and the discharge of pollutants from exposed areas of the site to the degree attainable (pg. 57); and
(p) Any existing data that describes the stormwater runoff at the site (pg. 54).
(q) Post-construction stormwater controls to the satisfaction of the Town Engineer for disturbances not meeting Condition A, B or C in § 173-5B(2) of the Town Code (pg. 57).
(2) Land development activities as defined in § 173-4B of the Town Code and meeting Condition A, B or C below shall also include water quantity and water quality controls (post-construction stormwater runoff controls) as set forth in § 173-5B(3) below as applicable (pg. 58):
(a) Condition A: stormwater runoff from land development activities disturbing more than one acre and discharging a pollutant of concern to either an impaired water
identified on the Department's 303(d) list of impaired waters or a total maximum daily load (TMDL) designated watershed for which pollutants in stormwater have been identified as a source of the impairment.
(b) Condition B: stormwater runoff from land development activities disturbing five or more acres.
(c) Condition C: stormwater runoff from land development activity disturbing between one acre and five acres of land during the course of the project, exclusive of the construction of single-family residences and construction activities at agricultural properties.
(3) SWPPP requirements for Conditions A, B and C (pg. 58):
(a) All information in § 173-5B(I) of the Town Code.
(b) Description of each post-construction stormwater management practice (pg. 58).
(c) Site map/construction drawing(s) showing the specific location(s) and size(s) of each post-construction stormwater management practice (pg. 58).
(d) Hydrologic and hydraulic analysis for all structural components of the stormwater management system for the applicable design storms (pg. 58);
(e) Comparison of post-development stormwater runoff conditions with predevelopment conditions (pg. 58).
(f) Dimensions, material specifications and installation details for each post-construction stormwater management practice (pg. 59).
(g) Maintenance schedule to ensure continuous and effective operation of each postconstruction stormwater management practice (pg. 59).
(h) Maintenance easements to ensure access to all stormwater management practices at the site for the purpose of inspection and repair. Easements shall be recorded on the plan and shall remain in effect with transfer of title to the property (pg. 59).
(i) Inspection and maintenance agreement binding on all subsequent landowners served by the on-site stormwater management measures in accordance with § 173-7 of the Town Code (pg. 59).
(j) For Condition A, the SWPPP shall be prepared by a landscape architect, certified professional or professional engineer and must be signed by the professional preparing the plan, who shall certify that the design of all stormwater management practices meets the requirements in this chapter (pg. 59).
C. Other environmental permits. The applicant shall assure that all other applicable environmental permits have been or will be acquired for the land development activity prior to approval of the final stormwater design plan (pg. 59).
D. Contractor certification (pg. 60).
(1) Each contractor and subcontractor identified in the SWPPP who will be involved in soil disturbance and/or stormwater management practice installation shall sign and date a copy of the following certification statement before undertaking any land development activity: "I certify under penalty of law that I understand and agree to comply with the terms and conditions of the Stormwater Pollution Prevention Plan. I
also understand that it is unlawful for any person to cause or contribute to a violation of water quality standards."
(2) The certification must include the name and title of the person providing the signature, address and telephone number of the contracting firm, the address (or other identifying description) of the site, and the date the certification is made (pg. 60).
(3) The certification statement(s) shall become part of the SWPPP for the land development activity (pg. 60).
E. A copy of the SWPPP shall be retained at the site of the land development activity during construction from the date of initiation of construction activities to the date of final stabilization (pg. 60).

LIST OF DRAWINGS

Dwg No.	Drawing Title	$\underline{\text { Date }}$
CS-1	Cover Sheet	$03 / 01 / 2016$
IPP-1	Site Layout Plan	$03 / 01 / 2016$
S-2	Site Grading and Utilities Plan	$03 / 01 / 2016$
S-3.1	Erosion and Sediment Control Plan/	
	Tree Removal \& Protection Plan - Phase I	$03 / 01 / 2016$
S-3.2	Erosion and Sediment Control Plan/	
	Tree Removal \& Protection Plan - Phase 2	$03 / 01 / 2016$
S-4	Slopes Map	$07 / 24 / 2015$
S-5	Landscape Plan	$03 / 01 / 2016$
DE-1	Construction Details	$03 / 01 / 2016$
DE-2	Construction Details	$03 / 01 / 2016$
DE-3	Subdivision Road and Driveway Profiles	$03 / 01 / 2016$
DE-4	Erosion Control/Restoration Notes/Trees	$03 / 01 / 2016$
DE-5	Construction Details / Maintenance Plan	$03 / 01 / 2016$
DA-1	Existing Conditions Drainage Area Map	$04 / 09 / 2015$
DA-2	Future Conditions Drainage Area Map	$03 / 01 / 2016$
EX-1	Existing Conditions Plan	$11 / 17 / 2014$

FIGURES

Figure 1 Site Location Map
Figure 2 Soils Map
Figure 3 Existing Conditions Drainage Area Map
Figure 4 Future Conditions Drainage Area Map

TABLES

Table 1 Drainage Areas Analyzed/Imperviousness
Table 2 Hidden Oak Subdivision Slope Analysis
Table 3 Summary of Proposed Stormwater Management Practices
Table 4 Pre- and Post-Development Peak Rates of Runoff

TABLES (continued)
Table 5 Conformance with 2015 NYS Stormwater Management Design Manual
Table 6 Post-Construction Stormwater and Erosion Control Maintenance Responsibilities
Table 7 Summary of Deep Hole and Percolation Testing
Table 8 Imperviousness of Tributary Areas
Table 9 Runoff Reduction Volume Summary

APPENDICES:

Appendix A Stormwater Quality/Runoff Reduction Volume Calculations
Table 1 Existing Condition Drainage Areas
Table 2 Future Condition Drainage Areas and Water Quality Volume Calculation
Table 3 Percolation Test Results
Table 4 Soil Percolation Rate Calculations
Table 5 Stormwater Infiltration Design Calculations
Table 6 Rain Garden Design Calculations
Table 7.1 Bioretention Facility Calculations for FDA-1.1
Table 7.2 Bioretention Facility Stage-Storage Calculations for FDA-1.1
Table 8 Coliform Bacteria Loading and Discharge Calculations
Table 9 Runoff Reduction Volume (RRv) Summary
Table 10 Channel Protection Volume (Cpv) Calculation for Design Point 1
Table 11 Channel Protection Volume (Cpv) Calculation for Design Point 2
Table 12 Vegetated Channel Design Parameters
Table 13 Temporary Sediment Trap Design Parameters
Stormceptor Design Summary for FDA-1.2, FDA-2.2, FDA-L1, FDA-L2. 1 \& FDA-L2.2

Appendix B Deep Hole and Percolation Soils Testing for Stormwater Management Practices
Appendix C Stormwater Control Facility Maintenance and Access Agreement and Maintenance Schedule for Stormwater Management Facilities
Appendix D Contractor Certification
Appendix E Stormwater Management Report Hydrographs and Routings
Appendix $F \quad$ FEMA Flood Maps
Appendix G NYCDEP Application for Review and Approval of Stormwater Pollution Prevention Plans
Appendix H Notice of Intent

STORMWATER POLLUTION PREVENTION PLAN REPORT

A. INTRODUCTION

This Stormwater Pollution Prevention Plan (SWPPP) report has been prepared in accordance with the requirements of Chapter 173, Stormwater Management of the Town of North Castle. This report is also submitted in accordance with the technical standards set forth in the New York City Department of Environmental Protection Guide to Stormwater Pollution Prevention Plans and the New York State Department of Environmental Conservation's 2015 Stormwater Management Design Manual and the 2015 General Permit for Stormwater Discharges from Construction Activity. This report describes the Stormwater Pollution Prevention Plan for the proposed subdivision of land and the development of the three lots as depicted on the Integrated Plot Plan.

The property is located within the Kensico Reservoir watershed and thus lies within the New York City water supply watershed.

1. Proiect Description

a. A description of the project type, including proposed facilities and structures, acreage of the entire site, the anticipated acreage of disturbance, and acreage of the site for which the imperviousness will be changed from pre-construction conditions. The acreage for which imperviousness will change should be provided in tabular form by sub-watershed to facilitate the review;

Project type: The project is a Conservation Subdivision of a property for the construction of three single family houses. The site construction will include: three single family houses, a 24foot width road for access to the houses from Hidden Oak Road, driveways to each of the homes, and potentially swimming pools on each of the lots. Each house will obtain water from an extension of the existing public water main in Hidden Oak Road into the property; wastewater for each of the houses will be disposed of in an on-site leaching system.

Acreage of the Site: The project site is 335,016 square feet (7.691 acres) in size and is located at the south end of Hidden Oak Road, a Town road (see Figure 1, Site Location Map).

The property is irregular in shape, and is approximately 860 feet in a north-south direction and 460 feet in an east-west direction. At present the subject property is mostly wooded, although there are remnants of a small building foundation in the northern portion of the property.

Acreage of the Site for which Imperviousness will be changed: Table 1, below, summarizes the existing and future condition drainage areas analyzed, and provides the size of the drainage area and the amount of impervious surfaces in each subcatchment area.

Page 2

Table 1. Drainage Areas Analyzed/Imperviousness

Drainage Areas Analyzed	Drainage Area (in acres)	Impervious Surfaces (in acres)
Drainage Areas to Design Point 1		
Existing Drainage Area, XDA-1	4.790	0.049
Future Condition Drainage Area, FDA-1.1	0.672	0
Future Condition Drainage Area, FDA-1.2	0.446	0.292
Future Condition Drainage Area, FDA-1.3	4.076	0.233
Future Condition Drainage Area, FDA-1.4	0.157	0
Future Condition Drainage Area, FDA-L1	0.212	0.194
Future Condition Drainage Area, FDA-L2.1	0.132	0.073
Future Condition Drainage Area, FDA-L2.2	0.098	0.098
Future Condition Drainage Area, FDA-L3.1	0.261	0.052
Future Condition Drainage Area, FDA-L3.2	0.098	0.023
Drainage Areas to Design Point 2		
Existing Drainage Area, XDA-2	4.866	0.050
Future Condition Drainage Area, FDA-2.1	0.890	0
Future Condition Drainage Area, FDA-2.3	0.655	0.286
Future Condition Drainage Area, FDA-2.3	1.951	0.019
Drainage Areas to Design Point 3		
Existing Drainage Area, XDA-3	0.529	0
Future Condition Drainage Area, FDA-3	0.529	0
Drainage Areas to Design Point 4		0
Existing Drainage Area, XDA-4	0.242	0
Future Condition Drainage Area, FDA-4	0.242	

b. The anticipated project start and completion dates;

It is anticipated that the work will commence in the summer of 2016 and be completed by the end of 2017.
c. A description of existing site conditions including soil types, existing land use, vegetative cover, steep slopes, wetlands, watercourses, reservoirs, and reservoir stems located on or near the site;

A summary of the soils description from the Soils Survey of Putnam and Westchester Counties may be referenced below (see Figure 2, Soils Map).

Charlton loam (ChC) soils are very dark grayish brown (10YR 3/2) loam over dark brown (10YR 3/3) loam. They are gently sloping, very deep and well-drained soils located on hilltops and parts of hills. This soil is formed in glacial till underlain by highly fractured, folded tilted granite, schist, and gneiss bedrock.

Charlton-Chatfield Complex soils (CrC) are very dark grayish brown (10YR 3/2) loam over dark brown (10YR 3/3) loam. They are very deep to moderately deep, well-drained to somewhat excessively drained soils located on the sides and tops of glaciated hills. This soil is formed in glacial till underlain by highly fractured, folded tilted granite, schist, and gneiss bedrock. Rock outcrops make up approximately 20 percent of this soil.

Chatfield-Hollis-Rock Outcrop Complex soils (CtC) are very dark grayish brown (10YR 3/2) loam over dark brown (10YR 3/3) loam. They are rolling, moderately deep, well-drained to somewhat excessively well drained soils. Rock outcrops in this soil unit are predominately granite, gneiss, and schist. This soil is located on hilltops and narrow ridges of glaciated hills.

Existing land use: The vast majority of the property is wooded. There are remnants of a small building foundation in the northern portion of the property.

Description of vegetative cover: Second growth wooded vegetation is evident from the species distribution (white ash and black locust predominate) and size of trees (most trees are smaller than 18 " diameter at breast height).

Steep slopes: The steeper slopes are located in bands in the northern, central and southeastern portions of the property. About 90% of the property features slopes that are less than 25%. Over about one-third of the property, the slopes is than $8 \% .55 \%$ of the property has slopes which range from 8% to 25%. Table 2, Hidden Oak Subdivision Slope Analysis presents the areas and percent of the site within six slope ranges.

Table 2. Hidden Oak Subdivision Slope Analysis

Slope Range	Area (in sq feet)	Percent of Site $(\%)$
$0-3 \%$	42,660	12.8
$3-8 \%$	66,988	20.0
$8-15 \%$	114,282	34.2
$15-25 \%$	76,823	23.0
$25-35 \%$	22,743	6.8
$>35 \%$	10,773	3.2
TOTALS	334,269	100.0

Wetlands: There are no NYSDEC regulated freshwater wetlands on or adjacent to the site, and the most recent NYSDEC freshwater wetland map (see New York State Freshwater Wetlands Map, Westchester County, Map 11 of 14, Glenville Quadrangle Digital Edition, 1991) does not include any state regulated wetlands on or immediately adjacent to the subject site. Freshwater wetland G-11 is located approximately 325 feet to the southeast of the site; freshwater wetland G-12 is located 450 feet south of the site on the east side of King Street. Freshwater wetland G10 is located 250 feet west of the property on the west side of King Street, south of Nannyhagen Road. There are no watercourses on the property, nor are there any Town regulated wetlands on
or immediately adjacent to the project site (i.e. no wetland buffers from off-site wetlands or watercourses extend into the subject property).

Watercourses: There are no on-site watercourses. There is an off-site watercourse located approximately 175 feet to the east of the property. This watercourse is classified by the New York State Department of Environmental Conservation as a Class AA stream.

Reservoirs and Reservoir Stems: The Kensico Reservoir is located about 560 feet to the southwest of the subject property. The reservoir stem extends to a point to the southeast of the subject property. The 300 -foot offset from the reservoir stem extends into the southeastern corner of the property (see drawings IPP-1 and S-2 for extent of reservoir stem).
d. An analysis of potential impacts that the proposed activity will have on reservoirs, reservoir stems, controlled lakes, wetlands, and watercourses;

The subdivision of the property and the construction of new impervious surfaces (road, houses, driveways and other house related impervious surfaces) has the potential to impact the reservoir and reservoir stem. No construction is proposed within the reservoir stem. The conservation subdivision being proposed will create permanent wooded open space which will cover most of the reservoir stem on the subject property. A comprehensive stormwater management plan is proposed to be implemented to reduce and minimize any potential impacts. The description of the stormwater management measures is described fully below.

e. A general description of the approaches which will be taken to control erosion and sedimentation during construction and an itemization of soil disturbance for each phase of construction;

The Erosion and Sediment Control Plan for the project has been developed to prevent erosion during construction and prevent siltation or sedimentation on off-site lands and watercourses. The plans delineating the location, construction and installation of the proposed short and long term erosion control measures are included in this report (as well as on drawing S-3). Construction details of the Erosion and Sediment Control Plan may be referenced on drawing DE-2.

Short-term impacts resulting from proposed construction activities are minimized through the implementation of comprehensive sediment and erosion control measures. All sediment and erosion control measures used during construction will be consistent with the techniques identified in the New York State Department of Environmental Conservation publication Standards and Specifications for Erosion and Sediment Control, latest edition. Measures to be implemented include the use of silt fence, stone check dams, water bars, inlet protection, stabilized construction entrances, as well as other erosion and sediment control techniques.

The sediment and erosion control plan incorporates a variety of measures to reduce, to the maximum extent practicable, the erosion of soils from the site during and after construction. Temporary measures to be employed during construction include, but are not limited to the

Page 5
following: (1) inlet protection around proposed storm drainage inlets; (2) temporary stone check dams in the vegetated swales; (3) silt fences at the limit of disturbance; (4) water bars in the subdivision road, and (5) a stabilized construction entrance to the property.
f. A summary of the proposed post-development stormwater management practices proposed and the discharge rate(s) of stormwater runoff following construction; and

Runoff from the developed subdivision property will be managed in one stormwater management basin ("SWMB"), to be constructed as an extended detention shallow wetland, five subsurface infiltration facilities, one bioretention facility, and one rain garden (see Table 3, below).

Table 3. Summary of Proposed Stormwater Management Practices

Drainage Area	Stormwater Management Facility	Type of Facility	Contributing Area
FDA-1.1	SWMF-1.1	Bioretention Facility	Rear and side yard of Lot 1
FDA-1.2	SWMF-1.2	Infiltration (chambers)	Lower portion of subdivision road including cul-de-sac
FDA-2.2	SWMF-2.2	Infiltration (chambers)	Upper portion of subdivision road
FDA-2.3	SWMF-2.3	Vegetated swale/ Open Channel	Rear and side yard of Lot 1, on- and - off-site woods/driveway
FDA-L1	SWMF-L1	Infiltration (chambers)	House, patio and driveway of Lot 1
FDA-L2.1	SWMF-L2.1	Infiltration (chambers)	House and portion of driveway of Lot 2
FDA-L2.2	SWMF-L2.2	Infiltration (chambers)	House and portion of driveway of Lot 2
FDA-L3.1	SWMF-L3.1	Rain Garden	Portion of house roof of Lot 3
FDA-L3.2	SWMF-L3.2	Rain Garden	Portion of driveway to Lot 3
FDA-1.1, 1.2, 1.3 1.4, L1, L2.1, L2.2, L3.1, L3.2	SWMF Basin 1	Extended Detention Stormwater Wetland	Central portion of property; rear portion of house and the pool and pool deck on Lot 3

The pre- and post-development peak rates of runoff are summarized below in Table 4.

Page 6
Table 4. Pre- and Post-Development Peak Rates of Runoff
(all flows in cubic feet per second)

DRAINAGE AREA	1 year	2 year	10 year	25 year	100 year
Design Point 1					
Pre-development	0.39	0.75	2.94	4.89	8.27
Post-development	0.12	0.26	2.26	4.02	6.18
Design Point 2					
Pre-development	0.37	0.74	3.30	5.68	9.81
Post-development	0.25	0.46	2.10	3.59	6.11
Design Point 3					
Pre-development	0.04	0.09	0.45	0.77	1.33
Post-development	0.07	0.13	0.55	0.90	1.50
Design Point 4					
Pre-development	0.11	0.16	0.41	0.60	0.91
Post-development	0.11	0.16	0.41	0.60	0.91

g. If any of the erosion and sediment control practices or post-construction stormwater management practices proposed do not conform with the requirements of the Watershed Regulations or General Permit-0-10-001, a discussion should be provided that includes the reason for the deviation and information demonstrating that the alternative design is equivalent to the technical standards.

The erosion and sediment control practices and the post-construction stormwater management practices are proposed to be in conformance with the requirements of the Watershed Regulations or General Permit-0-15-002. For the latter, the stormwater management practices are designed to capture and treat the runoff from the one-year storm event, and all proposed stormwater management facilities exceed the required thresholds described in the 2015 New York State Stormwater Management Design Manual.

For the stormwater management basin, the lowest outlet is to be at elevation 126.00°. Therefore, the permanent pool in the basin will be at that elevation.

Table 5. Conformance with 2015 New York State Stormwater Management Design Manual

Requirement Elements	Project Proposal
Feasibility:	
Stormwater wetlands should not be located within existing jurisdictional wetlands.	The stormwater management basin is located in an upland area, and not within a jurisdictional wetland.

Page 7

Requirement Elements	Project Proposal
Conveyance:	
Flowpaths from the inflow points to the outflow points of stormwater wetlands shall be maximized.	Flow path from the inflow location to the outflow location has been maximized. A serpentine path for the flow through the stormwater management basin is proposed.
A minimum flowpath of $2: 1$ (length to relative width) shall be provided.	Flow path length is 185 feet. Stormwater management basin width is 60^{\prime}. Ratio of length to width $=3.0$ to 1 , in excess of the minimum $2: 1$ ratio required.
Microtopography is encouraged to enhance wetland diversity	The design of the stormwater management basin provides a variety of elevations above and below the permanent pool to encourage wetland diversity.
Treatment:	
The surface area of the entire stormwater wetland shall be at least one percent of the contributing drainage area (1.5% for shallow marsh design).	Wetland will extend to an elevation of at least 1 foot above permanent pool (elev. 126') to elev. 127'. The surface area of the stormwater wetland is therefore 4,416 s.f. which is $(4,416$ s.f. / 5.991 acres) 1.69% of the drainage area, over the 1% required.
A minimum of 35% of the total surface area [of the wetland] can have a depth of six inches or less, and at least 65% of the total surface area [of the wetland] shall be shallower than 18 inches.	Permanent pool is at elev. 126.0'. Surface area of permanent pool in main basin is 2,276 s.f. The area where the proposed water depth is $6^{\prime \prime}$ or less (i.e. between elevation 125.5' and 126.0') in the main basin is $1,190 \mathrm{~s} . \mathrm{f}$. Therefore, the area where the water depth is $6^{\prime \prime}$ or less is $(1,190$ s.f. $/ 2,351$ s.f. $=) 52 \%$, over the minimum 35% of the wetland that can have a surface area of 6 " or less. Total surface area of wetland which is shallower than $18^{\prime \prime}$ (i.e. between elevation 124.5^{\prime} and 126.0^{\prime} in the main basin) is (1,889 s.f. / 2,276 s.f.) 83%, in excess of the 65% that is required.
At least 25% of the WQv shall be in deepwater zones with a depth greater than four feet.	For SWMB, 25% of the WQv $=986$ c.f. Deepwater zone >4 feet deep in forebay ($<$ elev. 123.5') Area $=$ 210 s.f. $\mathrm{x} 4^{\prime}$ depth $=840$ cubic feet + deepwater zone in main basin (<elev. 122') $=96$ s.f. x 4' depth $=384$ cubic feet. TOTAL $=1,224$ cubic feet, over the 986 c.f. required.

Page 8

Requirement Elements	Project Proposal
If extended detention is used in a stormwater wetland, provide a minimum of 50% of the WQv in permanent pool; the maximum water surface elevation of WQv-ED shall not extend more than three feet above the permanent pool.	For $\mathrm{SWMB}, 1$ year storm $\mathrm{WQv}=3,944$ c.f. Therefore, 50% of $\mathrm{WQv}=1,972$ c.f. Permanent pool volume in forebay $=2,734 \mathrm{cu}$. feet + Permanent Pool Volume in Main Basin $=2,414 \mathrm{cu}$ feet, for a total of 5,148 cubic feet, in excess of the minimum 50% required and in excess of the WQv. Maximum water surface elevation attained is 128.96°, which is 2.96 feet above the permanent pool elevation, less than the 3 foot maximum.
A forebay shall be located at the inlet, and a four to six foot deep micropool that stores approximately 10% of the WQv shall be located at the outlet to protect the low flow pipe from clogging and prevent sediment resuspension	A forebay with a depth of at least 4 feet is located at the inlet of the stormwater management basin. The micropool for the SWMB is 4.5 feet in depth, within the 4 to 6 foot depth required. Micropool for SWMB holds 1,442 cubic feet, or 36% of the net WQv, or 10.6% of the WQv , not taking into account the upgradient treatment and runoff reduction of the flows prior to it being conveyed to the SWMB, in excess of the 10% required..
The bed of stormwater wetlands should be graded to create maximum internal flow path and microtopography	The bed of the proposed stormwater wetland proposed is graded to maximize the flow path and provide microtopographic variations.
Landscaping:	
A landscaping plan shall be provided that indicates the methods used to establish and maintain wetland coverage. Minimum elements of a plan include: delineation of pondscaping zones, selection of corresponding plant species, planting plan, sequence for preparing wetland bed (including soil amendments, if needed) and sources of plant material	A landscaping plan is provided that indicates the methods used to establish and maintain wetland coverage. Minimum elements of a plan that are provided include: delineation of pondscaping zones, selection of corresponding plant species, planting plan, and sequence for preparing wetland bed.
A wetland plant buffer must extend 25 feet outward from the maximum water surface elevation, with an additional 15 -foot setback to structures	Provided in both cases.
Donor soils for wetland mulch shall not be removed from natural wetlands	Noted. Included in the notes.

Compliance of Stormwater Management Practices with Design Requirements

Infiltration Facilities:

Requirement Elements	Project Proposal
Soil Infiltration Rate $>=0.5 " / \mathrm{hr}$	Soil infiltration rates were all $>0.5 " / \mathrm{hr}$
Ground Slope $<=15 \%$	Natural ground slope at all facilities $<15 \%$
Setting	Infiltration facilities not located in fill soils (see drawing S-2 for table showing elevation of natural ground surface and elevation of proposed chambers)
Separation of bottom of infiltration facility and restrictive layer	Infiltration facilities located at least 3' above restrictive layer (see table on drawing S-2)
Separation from wells	Project obtains water from public supply; not applicable.
De-water within 48 hours	Based on planting soil mix and infiltration rates for the proposed soil mix, expected to de-water within 48 hours.
Off-line is flow conveyed by pipe	Where flow is conveyed in pipe, diversion structures are proposed to ensure off-line
Pre-treatment	Pre-treatment is proposed using proprietary device for $>$ 80% TSS removals from inflow.

Rain Garden:

Maximum drainage area should be $<1,000$ sq. feet	Portion of roof of Lot 3 to be conveyed to rain garden is about 1,900 s.f.
Overflow to be conveyed to a formal drainage system	Overflow to be collected in catch basins (OCS A.4.1 and OCS A.4.2) which then drain into stormwater management basin
Location	Rain garden to be located in graded area of front yard which is proposed to be mainly lawn. Following grading for front yard and driveway, it will not be a treed area.
Contributing areas - no parking lot or road runoff	Contributing flow only from roof and driveway. No parking lot or road runoff is to be directed into the rain garden.

Rooftop Disconnection:

Runoff must be directed to properly graded and vegetated area	Lot 3 house roof runoff will be graded to a gently sloping lawn in the front yard and rear yard
Maximum contributing flow path <75 feet	Length of flow path from roof drain leader to driveway in front yard and vegetated swale in rear yard is < 75 feet
Downspouts 10^{\prime} from nearest impervious surface	Downspouts discharge to areas that will be pervious; no impervious surfaces intercept flow within 10 feet of discharge
Contributing area for each disconnection $<$ 500 s.f.	Front portion of house roof area $=910$ s.f. to be discharged to 3 downspouts (avg. $=303$ s.f.) Rear portion of house roof area $=1,700$ s.f. to be discharged to 4 downspouts (avg. $=$ 425 s.f.)
Drain to a vegetated channel, swale or filter strip	Roof drain discharges to lawn/filter strip in rear yard and swale in front yard
Average slope $<5 \%$	Average slope in front and rear yards $<5 \%$

2. Erosion and Sediment Control Plan Description

a. A description of the temporary and permanent structural and non-structural measures that will be used to control erosion and sedimentation during each construction phase of the project;

Measures to be implemented include the use of silt fences, stone check dams, inlet protection, a stabilized construction entrance, as well as other erosion and sediment control techniques.
Temporary measures to be employed during construction include: (1) inlet protection around proposed storm drainage inlets; (2) temporary stone check dams in the vegetated swales; (3) silt fences at the limit of disturbance; (4) stabilized construction entrances, and (5) rip rap aprons at the point of discharge of storm drainage pipes into stormwater management basins. Level spreaders will also be used to disperse flows discharged from stormwater management basins to the existing meadow in the wetland and wetland buffer.

Permanent measures to be employed include: (1) Stabilization of the ground surface with permanent vegetation, including trees, shrubs and ground covers following the establishment of final grades; and (2) use of stabilization fabric on steep slopes (slopes greater than 3 horizontal to 1 vertical).

b. Any measures, which will be converted to permanent stormwater management/erosion controls after construction and the techniques necessary for proper conversion;

None of the erosion and sediment control measures to be implemented during construction will be converted to permanent stormwater management facilities.
c. Calculations used in siting and sizing erosion controls, including sediment basins;

Sizing of erosion controls has been done in accordance with the publication New York Standards and Specifications for Erosion and Sediment Control, latest edition.

Inlet Protection is proposed around storm drainage inlets; the maximum drainage area to an inlet protection device is proposed to be less than one (1) acre. Filter fabric inlet protection is proposed (see detail 5 on drawing DE-2). Filter fabric shall be a minimum of $36^{\prime \prime}$ in height.

Temporary Stone Check Dams

Temporary check dams may be either stone (see detail 6 on drawing DE-2) or erosion eels (by ACF Environmental).

Specifications for Stone Check Dams:
Use a well graded stone matrix 2 to 9 inches in size (NYS - DOT Light Stone Fill meets these requirements).
Drainage Area: Maximum drainage area above the check dam shall not exceed two (2) acres. Height: Not greater than 2 feet. Center shall be maintained 9 inches lower than abutments at natural ground elevation.
Side Slopes: Shall be $2: 1$ or flatter.
Spacing: The check dams shall be spaced as necessary in the channel so that the crest of the downstream dam is at the elevation of the toe of the upstream dam. This spacing is equal to the height of the check dam divided by the channel slope.

Therefore:
$S=h / s$
Where:
$\mathrm{S}=$ spacing interval (ft.)
$\mathrm{h}=$ height of check dam (ft.)
$\mathrm{s}=$ channel slope ($\mathrm{ft} / \mathrm{ft}$)
For erosion eels, 10^{\prime} length, $20^{\prime \prime}$ diameter eel shall be used. Material specification is to be as per manufacturer.

Silt Fences

Silt fence fabric shall be a minimum of $36^{\prime \prime}$ in height (see detail 1 on drawing DE-2). All silt fences shall be placed as close to the disturbed areas as possible, but at least 10 feet from the toe of a slope to allow for maintenance and roll down. The area beyond the fence will remain undisturbed or stabilized.

The maximum allowable slope lengths contributing runoff to a silt fence placed on a slope are as follows:

Slope Maximum	Steepness Length (ft.)
$2: 1$	25
$3: 1$	50
$4: 1$	75
$5: 1$ or flatter	100

The maximum drainage area for overland flow to a silt fence shall not exceed 3 acre per 100 feet of fence, with maximum ponding depth of 1.5 feet behind the fence; and erosion would occur in the form of sheet erosion; and there is no concentration of water flowing to the barrier.

Stabilized Construction Entrance - will be constructed as per the detail shown on drawing DE-2. As shown on the detail, (1) the aggregate will be matrix of $1-1 / 2$ " to 2 " inch stone, or reclaimed or recycled concrete equivalent, (2) the thickness will not be less than six (6) inches, (3) the width will be 12 -foot minimum but not less than the full width of points where ingress or egress occurs. 24 -foot minimum if there is only one access to the site, and (4) the length will not be less than 50 feet. Finally, a geotextile fabric will be placed over the entire area to be covered with aggregate. Piping of surface water under entrance shall be provided as required. If piping is impossible, a mountable berm with $5: 1$ slopes will be used.

Grass Outlet Sediment Trap - will be constructed in accordance with detail 10 on drawing DE-2. The drainage area to the grass outlet sediment trap consists of the subdivision road from its intersection with Hidden Oak Road to about Station $6+00$. In addition, a roughly triangular shaped wooded area to the east of the road also contributes runoff to the subdivision road.

The drainage area to the grass outlet sediment trap has been calculated to be 0.746 acres. The minimum sediment trap volume is to be 3,600 cubic feet per acre. Thus, the sediment trap must have a minimum volume of (0.746 acres x 3600 cubic feet/acre) 2,684 cubic feet. As designed, the sediment trap (see Table 13 in Appendix A) will have a volume of 2,740 cubic feet, and thus will meet the minimum volume required.

d. The construction schedule, phasing plan, and implementation schedule for temporary and permanent erosion and sediment controls; and

A detailed erosion control plan has been developed to ensure that stormwater quality during site construction complies with all applicable state and county standards (see drawing S-3). Construction details for the erosion and sediment control measures may be referenced on drawing DE-2.

The sediment and erosion control plan incorporates a variety of measures to reduce, to the maximum extent practicable, the erosion of soils from the site during and after construction. Temporary measures to be employed during construction include: (1) inlet protection around proposed storm drainage inlets; (2) temporary stone check dams in the vegetated swales; (3) silt fences at the limit of disturbance; and (4) a stabilized construction entrance. A temporary riser
and anti-vortex device is to be installed if the stormwater management basin during construction of the project.

Permanent measures to be employed include: (1) Stabilization of the ground surface with permanent vegetation, including trees, shrubs and ground covers following the establishment of final grades; and (2) use of stabilization fabric on steep slopes (slopes greater than 3 horizontal to 1 vertical).

Construction and Maintenance Schedule for Erosion and Sediment Control Measures

During construction on the site, it is essential to implement and maintain erosion and sediment control measures in accordance with the construction sequence, described below. The construction and maintenance schedule noted below may be referenced on drawing DE-2.

CONSTRUCTION SEQUENCE NARRATIVE

All erosion and sedimentation control measures and procedures shall comply with the New York State Department of Environmental Conservation publication Standards and Specifications for Erosion and Sediment Control. Erosion control measures shall be installed prior to the start of construction and maintained in effective condition throughout the construction period.

Land disturbance shall be kept to a minimum. Restabilization and final stabilization of disturbed ground surfaces shall be scheduled as soon as practicable following disturbance.

Notify all appropriate authorities (i.e., Town of North Castle Planning Department - Telephone: (914-273-3542) at least 48 hours prior to the commencement of site work.

Identify Disturbance Limits - Identify in the field with flagging or markers the limits of the areas to be disturbed within the property in accordance with the drawings. The limits of disturbance may be referenced on drawing S-3.1 and S-3.2. Note that construction fence is to be placed around the perimeter of the proposed infiltration areas and septic system treatment areas (SSTA) prior to construction in order to prevent disturbance and compaction by construction vehicles.

Call Dig Safe New York - Contractor is required to verify all existing underground and overhead utilities prior to any construction activity by calling Dig Safe New York and conducting one's own due diligence.

Definition: Final Stabilization - means that all soil disturbance activities have ceased and a uniform, perennial vegetative cover with a density of eighty (80) percent over the entire pervious surface has been established; or other equivalent stabilization measures, such as permanent landscape mulches, rock rip-rap or washed/crushed stone have been applied on all disturbed areas that are not covered by permanent structures, concrete or pavement.

CONSTRUCTION SEQUENCE

There are two phases to the construction of the subdivision. Phase 1 is the construction of the subdivision road and the common stormwater management facilities. Phase 2 is the construction of the individual houses and other site improvements on the three proposed lots. The construction sequence for any of the three houses is also delineated below. The order of construction of each of the houses is independent of the other two.

PHASE 1 - SUBDIVISION ROAD AND COMMON STORMWATER MANAGEMENT FACILITIES CONSTRUCTION

Refer to drawing S-3.1 which shows the location of the erosion and sediment control measures to be installed in this portion of the work, as well as the location of the soil stockpiles, temporary parking areas for contractors, material storage areas for construction, and a sediment trap to be installed.

The existing driveway will provide temporary access into the site for the installation of the construction fencing and silt fencing around the perimeter of the disturbance area.
Step 1 - Install Erosion and Sediment Controls
All erosion and sediment control measures shall be installed prior to the commencement of any construction activity, and periodically monitored throughout all phases of construction for proper function and structural integrity in accordance with the requirements of the SPDES General Permit. Perform maintenance and repairs as necessary.

Erosion and sedimentation controls to be installed for construction of the subdivision road and the common stormwater management facilities (stormwater management basin, SWMB \#1, SWMF-1.2, and SWMF-2.2 (Field A and B) - see Drawing S-3.1 - are described below:

Step 1: Preliminary activities to be undertaken prior to any land disturbance activities:

1. Stake the limits of disturbance - Prior to the start of construction, the project surveyor shall stake and/or flag the limits of disturbance as depicted on this sheet. No site disturbance or stockpiling of construction materials is permitted beyond this line.
2. Install Construction Fencing - Contractor to install construction fence along the limit of disturbance line staked by the project surveyor, around the perimeter of all proposed infiltration facilities and septic system treatment areas at this time. This is to be done to prevent disturbance and compaction by construction vehicles until such time as these facilities are to be installed.
3. Install Stabilized Construction Entrance - In accordance with the plans, install the stabilized construction entrance as depicted on the drawings and maintain it throughout the construction period.
4. Install Silt Fence - Silt fence shall be installed as per the instructions of the manufacturer in the locations shown on this sheet and in the construction details. Silt fence shall be installed, in general, parallel to the contour. Where one length of silt fence ends and another begins, provide a minimum 10 -foot overlap. Additional silt fence may be placed in the field at the discretion of representatives of the approving authorities. Silt fence shall be maintained in operable condition and shall not be removed until disturbed areas are thoroughly stabilized.

With the completion of the above-noted erosion and sediment control measures, the land disturbance activities for PHASE 1 of the project may commence.

Step 2: Clear and grub the site.
Only trees within Phase 1 are to be cut and the stumps removed at this time - see Drawing S-3.1 for the limits of the work in this phase. Trees in Phase 2 of the work, the construction involved in the construction of the three houses (see Drawing S-3.2 which depicts Phase 2 of the work) are to remain until such time as the construction activity is proposed to commence on the particular lot.

1. Clearing and Grubbing in Phase 1 Area Only - Within Phase 1 of the work, clearing and grubbing may proceed. All limbs and brush shall be chipped and stored on site for use as mulch. Larger tree trunk sections are to be removed from site or cut for firewood. Grub the root systems of the cleared vegetation.

Contractor is to take care that the removal of trees does not impact, to maximum extent practicable, the erosion and sediment controls installed in step 1. Impacts of clearing and grubbing the site on the erosion and sediment control measures shall be repaired immediately.

Step 3 - Construct the stormwater management basin at the south end of the site.
Erosion and Sedimentation Controls to be installed in this step (see Drawing S-3.1):

- Contractor Parking Areas - to be constructed in the area of the future cul-de-sac.
- Stabilized Construction Entrance - at the entrance to the property from Hidden Oak Road.
- Soil Stockpiles - where indicated on the plans
- Silt Fence - where indicated on the plans and installed as per the construction detail.
- Construction Fencing and Tree Protection - where indicated on the plans.
- Inlet Protection - Inlet Protection shall be installed around the perimeter of catch basins immediately following their installation.
- Temporary Riser in the outlet of the stormwater management basin

Construction of the Stormwater Management Facilities - Use the cleared access route of the subdivision road to access the location of Stormwater Management Basin \#1.

1. Check Condition of Erosion Controls Installed Previously - Prior to the excavation of the stormwater management facilities (SWMP-2.2, SWMF-1.2 and Stormwater Management Basin \#1, ensure that the erosion controls downgradient of these facilities installed previously area in good working order.
2. Excavate for Stormwater Management Basin \#1 - Construction of the stormwater management basin will require the construction (rough grading and aggregate stabilization) of the driveway to the future house on Lot 3 . Therefore, rough grade the driveway to the future Lot 3 house. Once the subgrade of the driveway has been achieved, similar to the subdivision road, install an aggregate subbase over the entire length of the driveway to limit erosion of the ground surface.

In addition, grade and then install the crushed stone base for the access driveway to Stormwater Management Basin \#1. Then, while grading for the stormwater management basin, locate the contractor parking areas depicted on drawing S-3.1 which are to be used during this phase of the work. Install the outlet from the stormwater management basin and the temporary riser and anti-vortex device in the outlet of the Stormwater Management Basin \#1 in accordance with drawing S-3.1 and DE-4. Install the storm drainage piping from the lowest to highest elevation from where the storm drainage pipes will inflow into the basin up to manhole MH A.6, near the future cul-de-sac of the subdivision road.
3. Stabilize the Stormwater Management Basin and Construct the Outlet - Immediately after completion of grading for the basin, stabilize the graded berms and embankments forming the basin with temporary vegetation, or other means (such as Flexterra flexible growth medium, or approved equal) until the growing season permits the installation of permanent vegetation. Construct level spreader LS-1 which shall be installed at the time of the construction of the stormwater management basin. Stabilize the level spreader with rip rap and vegetation as per the plan and detail (see drawing DE-4). Stabilized the ground surface below the level spreader with temporary or permanent vegetation depending on the season.

Step 4 - Construct the subdivision road to provide access to the building lots.
Erosion Controls to be installed during construction of the subdivision road include:

- Stabilized Construction Entrance - shall be installed at the entry into the property, and for the temporary soil stockpile on Lot 1 .
- Silt Fence - Silt Fence shall be installed in the locations indicated on the plans.
- Soil Stockpiles - Soil material removed during construction shall be stockpiled in the locations shown on the plans. Place silt fence around perimeter of stockpiles as per the drawing.
- Grass Outlet Sediment Trap - Construct the grass outlet sediment trap to be installed on the west side of the subdivision road at about Station 6+00, storm pipes across the future road, and catch basins and manhole to convey the runoff flow from the trapezoidal swale constructed in 1, above.
- Trapezoidal Swale - Grade the trapezoidal swale to be installed on the east side of the subdivision road. Install the check dams and the temporary vegetation in the trapezoidal swale to stabilize.
- Water Bars and Check Dams - Install water bars in the subdivision road and check dams in the trapezoidal swale in the locations depicted on the erosion and sediment control plan (see drawing S-3.1).
- Inlet Protection - Inlet Protection shall be installed around the perimeter of catch basins immediately following their installation.
- Construction and Tree Protection Fencing - Fencing is to be installed to prevent entry beyond areas to be disturbed by construction.
- Temporary storm piping to divert runoff flows away from stormwater management practices installed in this phase of the work.

1. Construction of the Subdivision Road - Construct and grade the subdivision road to the required subgrade elevations and compact the ground in accordance with the specifications. While grading the subdivision road, locate the contractor parking areas depicted on drawing S-3.1 which are to be used during this phase of the work. Stockpile soil in the locations shown on drawing S-3.1. Construct the temporary sediment basin on the west side of the subdivision road when the rough grading of the adjacent subdivision road occurs. Construct the trapezoidal swale on the east side of the subdivision road when the adjacent portion of the road to the swale is constructed which is to drain into the temporary sediment basin.
2. Install Underground Utilities - At the same time as the subdivision road rough grading is taking place, trench and install the underground utilities (storm drainage pipes, water service pipe) and conduits (for electricity, telephone and cable television) that will be used to bring services to the new houses. Install the storm drainage pipes from the lowest to the highest elevations, beginning at manhole MH A. 6 (the terminus from the construction in Step 3). At each catch basin, install the inlet protection as designated on the Erosion and Sediment Control Plan and maintain the inlet protection until all disturbed areas which drain to it is stabilized.
3. Simultaneously with Rough Grading of Road Install Two Stormwater Infiltration Practices to Treat Road Runoff - Simultaneously with the rough grading of the subdivision road, the two stormwater management facilities (SWMP-2.2 and SWMF-1.2) which will serve to treat road runoff are to be installed. Therefore, excavate the area
where the stormwater management facilities on Lot 1 (Stormwater Management Facility SWMP-2.2 consisting of 28 Cultec 330XLHD chambers for runoff from the subdivision road) and Lot 3 (Stormwater Management Facility SWMF-1.2 consisting of 32 Cultec V8HD chambers are proposed.

In order to ensure that runoff is NOT conveyed to the subsurface chambers until the areas of the site which will contribute runoff to the chambers have achieved FINAL STABILIZATION, the following shall be done:

SWMP-2.2- Direct runoff from DS D. 2 to the temporary sediment basin.
SWMF-1.2 - Direct runoff in a temporary pipe adjacent to the access driveway to the house on Lot 3 .
4. Install an Aggregate Subbase within Subdivision Road - Following the installation of utilities and as soon as possible following the establishment of the subdivision road subgrade, install an aggregate subbase over the entire length of the driveway to limit erosion of the ground surface of the subdivision road.
5. Stabilize Disturbed Ground Surfaces - Stabilize disturbed ground surfaces from construction of the subdivision road as per the disturbed areas stabilization protocol below. Once final stabilization is achieved, only then may the runoff flows from the subdivision road be permitted to discharge into the infiltration facilities noted above.

Disturbed Areas Stabilization Protocol

According to the protocols of the 2010 and 2015 Stormwater Management Design Manual, during periods of relatively low to moderate subsoil moisture, the disturbed subsoils are returned to rough grade and the following Soil Restoration steps applied:
(1) Apply 3 inches of compost over subsoil; (2) Till compost into subsoil to a depth of at least 12 inches using a cat-mounted ripper, tractor-mounted disc, or tiller, mixing, and circulating air and compost into subsoils, (3) Rock-pick until uplifted stone/rock materials of four inches and larger size are cleaned off the site. (4) Apply topsoil to a depth of 6 inches. (5) Vegetate as required by approved plan.

At the end of the soil restoration procedure, an inspector should be able to push a $3 / 8$ " metal bar 12 inches into the soil just with body weight.

With the FINAL STABILIZATION of the subdivision road and the graded embankments which drain to the subdivision road, remove the temporary riser and anti-vortex device from the outlet of the stormwater management basin. Remove any accumulated sediment from the basins and dispose of the sediment either off-site or in an area of the property within the limits of disturbance. Ensure that the stormwater management basin side slopes have achieved FINAL STABILIZATION and not eroding. If erosion is noted, then topsoil and restabilize with vegetation and mulch.

PHASE 2 - CONSTRUCT THE INDIVIDUAL HOUSES

The typical sequence of construction of each of the houses is described below. Each of the three house lots is independent of the other one. The order of construction of the houses does not matter from an erosion control perspective.

Step 1: Preliminary activities to be undertaken prior to any land disturbance activities for the construction of the proposed houses:

Ensure that construction fencing is in place around the perimeter of the septic system treatment areas until such time as the work to grade and install the SSTA is to be performed. Ensure that construction fencing is in place around the perimeter of the infiltration facility on the lot prior to the commencement of construction. The work performed in Phase 1 must achieve FINAL STABILIZATION prior to the commencement of Phase 2.

Erosion and sedimentation controls to be installed for construction of any one of the three houses includes:

- Construction fencing and tree protection fencing.
- Stabilized construction entrance.
- Silt fence.
- Inlet Protection.
- Vegetative Stabilization.
- Construction Materials storage.

The sequence of construction of a house lot is as follows:

1. Identify Disturbance Limits - Identify the limits of the areas to be disturbed within the house lot in accordance with the drawings. The limits of disturbance may be referenced on drawing S-3.2. Verify all existing underground and overhead utilities prior to any construction activity by calling Dig Safe New York and conducting one's own due diligence. Construction parking and vehicular traffic is prohibited over all stormwater management facilities.
2. Install Erosion and Sediment Control and Tree Protection Measures - In accordance with the erosion and sediment control plans (see drawing S-3.2), install:

- Stabilized Construction Entrance to the lot at the dimensions depicted in the construction detail.
- Silt Fence as per the instructions of the manufacturer and as shown on the construction details. Silt fence shall be installed, in general, parallel to the contour. Where one length of silt fence ends and another begins, provide a minimum 10 -foot overlap. Additional silt fence may be placed in the field at the discretion of representatives of the approving authorities. Silt fence shall be
maintained in operable condition and shall not be removed until disturbed areas are thoroughly stabilized.
- Soil Stockpile in the location(s) shown for the lot.
- Inlet Protection to be installed around the perimeter of installed drain inlets or catch basins.
- Construction Materials storage location which shall be circumscribed with chain link fencing.
- Tree Protection Measures and construction fencing as delineated on the drawings to protect the existing vegetation to remain during construction and the SSTA from construction vehicle traffic.
- Construction fencing to protect the septic system treatment system (SSTS) as depicted on the drawings, and around the perimeter of: (i) around the perimeter of SWMF L-1 (infiltration facility), (ii) on the north and west sides of SWMF-1.1, (iii) around the perimeter of SWMF-L2.1 and L2.2, and (iv) around the perimeter of SWMF-L3.1.

All erosion control measures noted above shall be installed prior to any construction activity, and periodically monitored throughout all phases of construction for proper function and structural integrity. Perform maintenance and repairs as necessary.
3. Clearing and Grubbing on Lot Under Construction Only - Trees identified in the plans on the lot under construction to be cut shall be felled, and limbs and brush shall be chipped and stored on site for use as mulch. Larger tree trunk sections are to be removed from site or cut for firewood. Grub the root systems of the cleared vegetation.

Contractor is to take care that the removal of trees does not impact, to maximum extent practicable, the erosion and sediment controls installed in step 1. Impacts of clearing and grubbing the site on the erosion and sediment control measures shall be repaired immediately.
4. Footing, Foundation and Building Pad Preparation - Prepare the building pad area for the house. This will involve excavation for the construction of the footings and foundation, and the temporary stockpiling of soil excavated for the house. Stockpile topsoil and soil removed during excavation and protect the stockpile in the location(s) shown on the drawings and in accordance with the detail. Rock removal, if any, shall be done in accordance with State and Town requirements. Excavation for the pool and grading for the pool patio is also to be completed at this time.
5. Excavate and Grade for the Stormwater Management Practices on the Lot - During the excavation for the house, on Lots 1 and 2, excavate the areas needed for the installation of stormwater management facilities (subsurface chambers in all three instances) SWMFL. 1 (on Lot 1), and SWMF-L2.1 and -L2.2 (on Lot 2). The subsurface chambers are also to be installed in accordance with the drawings. In addition, on Lot 1, install the bioretention facility SWMF-1.1. Install also outlet control structure OCS A.8.1 and
connect the pipe from the OCS A.8.1 to MH A.8. Install inlet protection around the perimeter of OCS A.8.1 as per the plans.

For Lot 3, grade for the two proposed rain gardens to capture and treat runoff: (1) from the house and (2) from the driveway. Construct the vegetated swale to direct the runoff into Rain Garden for FDA-L3.2. Install erosion eels across the swale as per the plans. Install silt fence around the perimeter of the rain gardens and retain it until such time as the ground surface that contributes to the rain garden achieves final stabilization. Install the storm drainage pipes from OCS A4.1 to DI A. 4 and from OCS A.4.2 to connect to the storm drainage pipe from MH A. 5 to DI A.4. Install the planting soil medium to the proper thickness and prepare the practice for planting. Install inlet protection around the perimeter of the outlet control structures as per the plans and retain the erosion eels and the inlet protection until the contributing area achieves full stabilization.
6. Install Storm Drainage Piping to Stormwater Management Practices - Install the subsurface storm drainage system from the lowest to highest grade on the lot, from the stormwater chambers on Lots 1 and 2 to the house and pool, and from the rain garden to the house on Lot 3. The bioretention facility on Lot 1 will receive only surface runoff from the rear and side yard.

On Lots 1 and 2, do not permit runoff to enter the subsurface chambers until such time as the ground surface within the drainage area to the chambers has achieved FINAL STABILIZATION. For SWMF-L-1 on Lot 1, which will receive roof runoff and runoff from the pool patio, install a temporary storm drainage pipe from DI F. 3 to discharge temporarily to the bioretention facility. As each catch basin in the storm drainage piping is installed, install the inlet protection as designated on the Erosion and Sediment Control Plan and maintain the inlet protection until all disturbed areas which drain to it achieves FINAL STABILIZATION.

On Lot 2, do not install the storm drainage pipe from diversion structure DS E. 2 to the SWMF-L2.1 and from diversion structure DS C. 2 to SWMF-L2.2 until such time as the drainage areas that contribute runoff flows to the subsurface chambers have achieved final stabilization.
7. House Construction - Construct the new house in accordance with the architect's plans. Once the house foundation walls are backfilled, the other site work can proceed. Grade and install the septic system and septic system treatment area in accordance with the plans. Stabilize the ground surface above the SSTA with permanent (or temporary) vegetation. Complete the utility connections to the house under construction. Connect the roof drain leaders to the storm drainage piping as per the plans.
8. Complete the Fine Grading on the Lot and Prepare the Disturbed Area for Final Stabilization and Planting - Once the final fine grading work is completed, it is time for the FINAL STABILIZATION of the property. Clean up all residual site debris and litter and prepare all disturbed areas not to be hard surfaced for topsoiling and seeding and/or
planting. All areas not planted as trees or shrubs are to be seeded with the permanent grass seed mix noted in the specifications prepared by the project landscape architect.

The soil must be restored at each lot prior to FINAL STABILIZATION. The procedure is as noted above: (1) Apply 3 inches of compost over subsoil; (2) Till compost into subsoil to a depth of at least 12 inches using a cat-mounted ripper, tractor-mounted disc, or tiller, mixing, and circulating air and compost into subsoils, (3) Rock-pick until uplifted stone/rock materials of four inches and larger size are cleaned off the site. (4) Apply topsoil to a depth of 6 inches. (5) Vegetate as required by approved plan.

Provide straw mulch cover over seeded areas. Clean out any sediment from the stormwater management basins and storm drainage pipes.
9. Remove the erosion control measures - only after FINAL STABILIZATION has been achieved on the site.

EROSION AND SEDIMENT CONTROL MEASURES MAINTENANCE SCHEDULE

Silt Fence: Maintenance shall be performed as needed and material removed when bulges develop in the silt fence. Inspection for physical damage to the silt fence material shall be made during the weekly inspection. If filter fabric shows signs of decomposing or is damaged, it shall be repaired immediately. Typically, this entails installing a new line of silt fence adjacent to the damaged line.

Inlet Protection: The barrier should be inspected after each rain event and repairs made where needed. Remove sediment as necessary to provide for accurate storage volume for subsequent rains. Upon stabilization of contributing drainage area, remove all materials and any unstable soil and dispose of properly.

Stabilized Construction Entrance: The effective life of a stabilized construction entrance may be limited by excessive sediment deposition, unless additional aggregate is added periodically to renew the surface. Maintenance includes periodic top dressing with additional aggregate. All sediment spilled, dropped or washed into the public right-of-way must be removed immediately.

Periodic inspection of the stabilized construction entrance and nearby public rights-of-way shall be performed within 24 hours of the end of a storm event of 0.5 inches or greater and following periods of heavy use.

Tree Protection: Check on at least a weekly basis that the construction fence and/or tree protection has not been damaged by construction activities.

Soil Stockpiling: Perimeter sediment controls around each stockpile is to consist of silt fence installed in accordance with the standards delineated above. The silt fence shall be maintained as noted above. Stockpiles and fill area shall be inspected at least weekly for signs of erosion or problems with plant establishment.

Grass Outlet Sediment Trap - Sediment shall be removed and the trap restored to its original dimensions when the sediment has accumulated to one-half the design depth of the trap (which in this case is 18 "). Removed sediment shall be deposited in a suitable area and stabilized. The structure shall be inspected after each rain and repairs made as needed. The sediment trap shall be removed and the area stabilized - in this case construct the proposed level spreader in accordance with the details - when the remaining drainage area has achieved final stabilization.

e. Description of the measures that will be used to control litter, construction chemicals, and construction debris from becoming a pollutant source in stormwater discharges.

The Erosion and Sediment Control Plan incorporates a variety of measures designed to control litter, construction chemicals, and construction debris from becoming a source of pollution. The plan requires the staking of the clearing and grading limit line before the commencement of construction activity. Following the demarcation of the limits of disturbance, a variety of erosion and sediment control measures are to installed in accordance with the plans, including, but not limited to, silt fences and a stabilized construction entrance.

The contractors will be made aware that the project has a comprehensive Storm Water Pollution Prevention Plan, and that it is their responsibility to keep the site clean and to minimize the potential for litter and other potential pollutants from being conveyed into wetlands and downgradient watercourses. Construction materials will be stored in the locations shown on the erosion and sediment control plan, and will be protected by construction fencing as a containment. The locations of the fenced-in construction materials storage area may be referenced on drawing S-3.

Litter control is largely provided by having the maintenance and trash facilities placed inside this fenced-in area. This will reduce the risk of such materials from being washed by rain or blown by wind.

In addition, the construction equipment and material storage area will be located within the portion of the site that is enclosed by the proposed erosion and sediment control measures.

3. Post-Construction Stormwater Management Plan Description

Introduction: Six Step Design Process - As noted in the 2015 Stormwater Management Design Manual, stormwater management using green infrastructure is summarized in the six step process described below. Designers are required to adhere to the six step process when developing a SWPPP. This includes providing information in the SWPPP which documents compliance with the required process.

Step 1: Site Planning
Step 2: Determine Water Quality Treatment Volume (WQv)
Step 3: Apply Runoff Reduction Techniques and Standard SMPs with RRv Capacity (e.g. infiltration practices, bioretention and open channel practices) to Reduce Total WQv

Step 4: Determine the minimum RRv required
Step 5: Apply Standard Stormwater Management Practices to Address Remaining Water Quality Volume
Step 6: Apply Volume and Peak Rate Control Practices if Still Needed to Meet Requirements

Step 1: Site Planning

The existing conditions map, drawing EX-1, identifies the applicable natural resource areas on the subject site, including reservoir stem, forest cover, topography, and bedrock. The soils map in the SWPPP identifies the soils present on the subject site.

The site design has been carefully executed to avoid, to the maximum extent practical, areas of the site with construction and development constraints. This includes avoiding construction as much as possible: (i) in areas of the property with steep slopes, and (ii) in areas where the bedrock is exposed or shallow.

In addition, the areas around the perimeter of the southeastern, southern and southwestern portions of project site will be protected as Conservation Lands in order avoid impacting the reservoir stem to the east and lands of the City of New York to the south and west. The existing trees within the majority of these areas will be retained, thus providing a natural wooded buffer between the proposed development and the surrounding properties in perpetuity. There will be no impervious surfaces within the Conservation Lands. The minimal amounts of disturbed areas within the Conservation Lands will be stabilized and planted with new native trees and shrubs.

Step 2: Determine Water Quality Treatment Volume (WQv)

The calculations of the water quality treatment volume to Design Point 1 may be referenced in
Table 9 of the SWPPP report. Table 10 provides the calculations of the WQv to Design Point 2. As is required, the water quality volume is calculated using the precipitation depth of the 1 year, 24-hour storm event, as well as the 90% Rule. The calculations show that the WQv to Design Point 1 is 0.306 acre-feet; to Design Point 2, the WQv is 0.121 acre-feet.

Step 3: Apply Runoff Reduction Techniques and Standard SMPs with RRv Capacity (e.g. infiltration practices, bioretention and open channel practices) to Reduce Total WQv Several runoff reduction techniques and standard stormwater management practices are proposed in order to reduce the total water quality volume. These include: (1) Conservation of 0.994 acres of natural areas of the property, (2) Tree planting along the subdivision road, (3) Rooftop disconnection of a portion of the house on Lot 3, (4) Source control RRv treatment practices, including four subsurface chamber infiltration facilities, one bioretention facility, one rain garden, and one dry swale. Standard SMP's include one extended detention stormwater wetland. The calculations of the stormwater management practices reduction of the water quality volume may be referenced in Table 9 (for Design Point 1) and Table 10 (for Design Point 2).

Design Point 1: The calculations show that for Design Point 1, the proposed stormwater management practices will provide a reduction of 0.164 acre-feet of runoff, which is less than the 1 -year storm water quality volume of 0.306 acre-feet to the design point. The runoff reduction is, however, well above the minimum RRv of 0.090 acre-feet.

Design Point 2: The calculations show that for Design Point 2, the proposed stormwater management practices will provide a reduction of 0.053 acre-feet of runoff, which is less than the 1 -year storm water quality volume of 0.121 acre-feet to the design point. The runoff reduction is well above the minimum RRv of 0.003 acre-feet.

Rationale for Not Meeting the One Year Storm Water Quality Volume:

There are many planning and design practices which have been implemented by the project to reduce the amount of impervious surfaces and overall land disturbance in order to minimize the 1 year storm water quality volume. The subdivision is designed to minimize environmental impacts and to minimize the amount of new impervious surfaces to the maximum extent. As is noted above, the subdivision is a Conservation Subdivision which permits smaller lot sizes and less lot frontage than under the Town zoning code. This permits a shorter subdivision road than would be required under Conventional zoning. Smaller lot sizes reduce disturbance when compare to a conventional lot. The shorter subdivision road significantly reduces the amount of impervious surfaces when compared to road which would be required under the conventional zoning.

The applicant's engineer is proposing to implement several measures to reduce the volume of runoff to the greatest extent that is practical. This includes: (i) infiltration on Lot 1 and 2 to convey runoff from the house roof into subsurface chambers and into the site's soils, (ii) bioretention facility on Lot 1 for runoff from the rear yard (mostly lawn area) of Lot 1, and (iii) infiltration of a portion of the runoff from the proposed subdivision road in subsurface chambers. Other measures to reduce the volume of runoff include recognized techniques as per Section 5.2 of the 2015 New York State Stormwater Management Design Manual. These include: (i) elimination of sidewalks, and (ii) minimizing the building footprints to the maximum extent.

Site constraints also have impacted the ability of the project to achieve the full reduction of the 1 -year storm runoff volume. Specifically, these constraints include: (i) significant areas of exposed bedrock which cover 0.682 acres or about 9% of the site. There are also areas of steep slopes in excess of 25% which limits the potential for stormwater management practices to reduce the runoff volume.

Step 4: Determine the minimum $R R v$ required

The calculation of the minimum RRv that is required may be referenced in Table 9. The minimum RRv for each of the subcatchment (drainage areas) to Design Point 1 and Design Point 2 may be referenced in the table in the Minimum RRv (acre-feet) column.

Step 5: Apply Standard Stormwater Management Practices to Address Remaining Water Quality

 VolumeTable 9 summarizes for each subcatchment the green infrastructure stormwater management practices to be used. The stormwater management basin proposed at the southerly end of the site will address the remaining water quality volume for flows destined to Design Point 1

Step 6: Apply Volume and Peak Rate Control Practices if Still Needed to Meet Requirements

The calculations of the channel protection volume, overbank flood control and extreme flood control may be referenced in Table 11 (for Design Point 1) and Table 12 (for Design Point 2). The hydrographs and routings show that the peak rate attenuation is provided at the design points.

Stream Channel Protection Volume Requirements (Cpv) - In accordance with the 2015 SMDM, stream channel protection volume requirements (Cpv) are designed to protect stream channels from erosion. This goal is accomplished by providing 24 -hour extended detention of the 1 -year, 24 -hour storm event, remained from runoff reduction. Detention time may be calculated using either a center of mass method or plug flow calculation method.

As is noted above, the channel protection volume calculations may be referenced in Table 11 and Table 12.

The channel protection volume at Design Point 1 is calculated to be 3,262 cubic feet (see Table 11). The average release rate is calculated to be 0.04 cubic feet per second. The hydrographs and routings for the Stormwater Management Basin show that during the 1 year storm event, the maximum storage in the basin is 5,543 cubic feet, and that this runoff volume discharges from the basin in 48 hours. Thus, the average release rate is calculated to be 0.032 cfs. The routings also show that the basin achieves a plug flow detention time of 1,460 minutes (24.3 hours)

Overbank Flood Control Requirements:

Overbank control requires storage to attenuate the post development 10-year, 24-hour peak discharge rate (Qp) to pre-development rates. As can be seen in Table 4, above, the discharge rate for the 10 -year, 24 -hour storm to the design points following the development of the subdivision and the implementation of the stormwater management plan is reduced to a value below the pre-development rate.

Extreme Flood Control Requirements:

The 100 Year Control requires storage to attenuate the post development 100-year, 24-hour peak discharge rate (Qf) to predevelopment rates. As can be seen in Table 4, above, the postdevelopment discharge rate for the 100-year, 24 -hour storm to the design points is less than the pre-development rate.

The stormwater management measures included in the SWPPP to control the rate and volume of runoff, and to treat runoff from the site, must be detailed in a narrative report, plans, details and specifications. Primary stormwater management practices are specifically defined in the Watershed Regulations as stormwater ponds, stormwater wetlands, infiltration systems, filtering systems and open channels as listed in Section 3.3.1 of the Design Manual. Each stormwater management practice shall be designed to accommodate the quantity of runoff flowing to the practice, including runoff from off-site areas as applicable. The following information should be included as applicable to the location and design of the various stormwater management components:
a. Descriptions of the stormwater management practices including practices to treat, attenuate and convey post development stormwater runoff;

Stormwater from the majority of new impervious surfaces, consisting of, but not limited to, the subdivision road that will provide access from Hidden Oak Road, individual driveways, houses, and swimming pools will be conveyed in grassed swales, overland flow and in subsurface storm drainage pipes to stormwater management practices which are to consist of five infiltration practices and two filtering (bioretention) practices for treatment of the 1-year storm. Runoff a portion of the developed property, plus the runoff that is in excess of the 1-year storm will, after being conveyed to the stormwater management practices noted above, be conveyed via subsurface storm pipes to a surface stormwater management facility where water quality improvement and peak rate attenuation of the runoff will be achieved.

The design of the infiltration practices has been designed to be "off-line" in accordance with the Stormwater Management Design Manual. In general, the off-line diversion structure is designed as follows: (i) flow enters the diversion structure and encounters a weir consisting of a 5 " thick concrete baffle wall across the structure, (ii) the weir diverts the flow into the subsurface chambers, and (iii) the top of the baffle wall is set in most cases at the elevation of the top of the chambers, so that when the chambers are filled (by the runoff from the 1 year storm), the flow will overtop the baffle wall and discharge to the outlet.

b. The design provisions included in the stormwater management facilities that address safety and maintenance needs;

The proposed stormwater management practices have been designed to maximize the safety of the future residents. The proposed extended detention stormwater facility includes a safety bench above the permanent pool of water of at least 6 feet in width; similarly, the depth of the water in the permanent pool drops by only 6 inches over 6 feet or more horizontally into the basin from the side closest to Lot 3. Finally, it is proposed to construct a fence around the perimeter of the stormwater management basin for safety purposes.

As noted in Table 7.5 Community and Environmental Factors Matrix of the Stormwater Management Design Manual, the proposed stormwater management practices are identified as being a low safety risk.

A homeowners' association or other entity established consisting of the owners of the three lots will be responsible for the maintenance of the stormwater management practices as outlined below in Table 6.

Table 6 summarizes the anticipated responsibilities for maintenance of the proposed stormwater management facilities and the contributing areas to the facilities.

Table 6. Post-Construction Stormwater and Erosion Control Maintenance Responsibilities
$\left.\begin{array}{|l|l|}\hline \text { Maintenance Item } & \begin{array}{l}\text { Entity Responsible for Maintenance Following } \\ \text { Construction and Sale of Lots }\end{array} \\ \hline \text { Stormwater Management Facilities } & \begin{array}{l}\text { Legal agreement between the three future homeowners: } \\ \text { SWMF-1.1 (bioretention facility), SWMF-1.2 (infiltration } \\ \text { facility), SWMF-1.3 (stormwater management basin), and } \\ \text { SWMF-2.2 (infiltration facility). } \\ \text { The responsibility for the maintenance of the following } \\ \text { stormwater management facilities are by the future } \\ \text { individual lot owners: Lot 1, SWMF-L1 (infiltration } \\ \text { facility); Lot 2, SWMF-L2.1 (infiltration facility) and } \\ \text { SWMF-L2.2 (infiltration facility); and Lot 3, Rain Gardens } \\ \text { \#1 and \#2. }\end{array} \\ \hline \begin{array}{l}\text { Stormwater Collection and Conveyance } \\ \text { System }\end{array} & \begin{array}{l}\text { Town of North Castle for the storm drainage facilities within } \\ \text { the right-of-way in the subdivision road, including the } \\ \text { vegetated swales. } \\ \text { Storm drainage facilities (catch basin, manholes and outlet } \\ \text { control structures outside of the right-of-way which convey }\end{array} \\ \text { runoff to SWMF-1.3 (stormwater management basin) will } \\ \text { be the responsibility under a legal agreement between the } \\ \text { three future homeowners. } \\ \text { Storm drainage facilities (catch basin, manholes and outlet }\end{array}\right\}$

MAINTENANCE OF STORMWATER FACILITIES

Maintenance of stormwater management facilities is described below for each stormwater management practice and component of the stormwater collection and conveyance system:

STORMWATER MANAGEMENT BASIN:

1. Description: The stormwater management basin is used to control the rate of discharge from the property, and to improve the quality of the runoff.
2. Maintenance measures include:
(i) Periodically remove debris and litter from basin.
(ii) Clean trash rack when trash or debris has accumulated.
(iii) Mow side slopes, embankments, emergency spillway and access road at least once a year, preferably after August. Woody growth on the side slopes into the basin and on the berm outside of the basin should be discouraged.
(iv) Remove sediment from forebay every five to six years or when depth has reached 6 " measured on the sediment stick; from main portion of the basin if depth of sediment has reached 6" or long flow path of water is hindered. Some replacement wetland planting may be necessary following removal of sediment.
(v) Stabilize eroding soils of stormwater management basin side slopes, embankment, and emergency spillway by placing topsoil as may be needed, then seeding and mulching with straw or other appropriate means.
(vi) Repair or replace structural elements such as inlet and outlet structures as necessary.
(vii) Remove larger borrowing animals, such as muskrats, from structural features. Trapping may be necessary.
(viii) Rock/riprap pads have not migrated, but are placed as per the design, and that vegetation, especially woody plants, are not growing within these areas.
3. Inspect for:
(i) Erosion, cracking, embankment subsidence, tree growth, burrowing animals.
(ii) Sediment and clogging in the outlet control facility, stormwater inlets, emergency spillway and drain (if present).
(iii) Sediment in forebay.
(iv) Adequacy of channel erosion controls at the outlet.
(v) Adequacy of plant coverage in shallow marsh (vegetated wetland) areas.
(vi) Proper functioning of structural elements.
(vii) Sources of erosion in the contributory drainage area.
4. Erosion in Stormwater Management Basin:
(i) In the event the Owner and/or the Homeowners Association observes bare soils exceeding 20 square feet within the stormwater management basin, it shall seed those areas with a quick germination rye seed mix as soon as possible, or as directed by the landscape architect or civil engineer.
(ii) In the event the Owner and/or the Homeowners Association observes gully erosion more than $3^{\prime \prime}$ deep within the stormwater management basin or in vegetated or grassed swales, it shall fill the same immediately and seed the area with a quick germination rye seed, or as directed by the landscape architect or civil engineer.
(iii) Any debris accumulation, litter, and/or fallen trees or brush within Drainage Easement Areas shall be removed and disposed of off-site.
5. Sediment Deposits in Stormwater Management Basin:
(i) Sediment deposits obstructing more than one-third of the inlet or outlet structures or pipes associated with the basin shall be removed therefrom by the Owner and/or the

Homeowners Association and be placed in a suitable upland area of the property or removed from the property and properly disposed of.
(ii) Sediment deposits that exceed one inch in depth within the vegetated areas of any detention basin or infiltration basin encompassing more than 20 square feet shall be removed by the Owner and/or the Homeowners Association and be placed in a suitable upland area of the property or removed from the property and properly disposed. Any plants affected by the removal process shall be dug out or replanted.
(iii) Sediment deposits in the forebay and micropool shall not exceed six (6) inches in depth. All sediment removed shall be deposited and stabilized in a location that is not likely to erode.

INFILTRATION FACILITIES:

1. Description: Infiltration facilities are used to improve the quality of the runoff, provide for a reduction in the volume of runoff, and in some cases, reduce the peak rate of runoff. Maintenance of infiltration facilities is essential to ensure their continued effectiveness. Principally, this involves preventing suspended solids from being discharged to the infiltration facilities. These may have the effect of filling the void spaces thereby clogging the soil. A log shall be maintained for each infiltration facility.
2. Maintenance Measures Include:
(i) Observation of the depth of sediment, if any, through inspection via the installed observation port on each row of the chambers during the first 2 to 3 months of operation, and thereafter on an annual basis.
(ii) Remove sediment from pre-treatment facility when the depth of sediment reaches 50% of capacity of the facility.
(iii) Remove sediment from chambers when the depth of sediment is 3 " in depth.
(iv) The manufacturer of the chambers recommends cleaning of the stormwater management chambers every 9 years after installation and every 9 years thereafter.
(v) The manufacturer also recommends that 45 years after installation, the chambers be inspected using closed circuit television (CCTV) or other comparable technique to determine the condition of the interior of the chambers, and rehabilitate or replace as may be necessary.
(vi) Ensuring that the meadow vegetation to be established above the infiltration facilities, where it is proposed, achieves good growth and final stabilization of the ground surface above the chambers. Periodic mowing of the meadow, once in the spring (midApril and once in autumn (late October) is needed to ensure that woody vegetation does not become established in the meadow.
3. Inspect for:
(i) Depth of sediment, if any, through inspection via the installed observation port on each row of the chambers during the first 2 to 3 months of operation, and thereafter on an annual basis.
(ii) The rate of dewatering of the infiltration facility following a precipitation event. The chambers should fully dewater within 48 hours of the end of the precipitation event.

CATCH BASINS, MANHOLES AND STORM DRAINAGE PIPES

Catch basins, drain inlets and manholes located within the right of way of the subdivision road will be maintained by the Town of North Castle. If these structures are located on private property, their maintenance shall be carried out by the Owner and/or the Homeowners Association.

1. Description: Catch basins have sumps to allow sediment and debris to drop out before the water exits this drainage junction. Storm pipes normally need no maintenance.
2. Maintenance Measures Include:
(i) Clean out and dispose of sediment and debris from sump, if there is less than 12" between top of sediment and invert of pipe.
(ii) Trash or debris which is located immediately in front of the catch basin opening or is blocking inletting capacity of the basin by more than 10%.
3. Inspection:
(i) Annual visual check for sediment accumulation is usually sufficient.
(ii) Recommend using tool to open cover, flashlight and dipstick for inspection of deep water quality catch basins.
(iii) Check that the grate is sitting flush on the structure, and that there are no holes or cracks in the pavement or ground adjacent to the catch basin.

LEVEL SPREADER

1. Description: Level spreader serves to dissipate the flow of water over a broad area to reduce the potential for erosion.
2. Maintenance:
(i) Periodically remove debris and litter.
(ii) Mow at least twice per year the meadow vegetation to be established. Mowing is to be done in spring (mid-May) and in autumn (mid-October).
(iii) Periodically remove sediment in order to maintain original design depth.
(iv) Stabilize eroding soils by seeding and mulching or other appropriate means.
3. Inspection:
(i) Annual visual check for erosion, sediment accumulation and debris is usually sufficient.
(ii) Ensure that lip over which flow is directed is level, stable and well-vegetated, and is not eroding.
(iii) Ensuring that the vegetation to be established at the level spreader achieves good growth and final stabilization of the ground surface above the chambers.

DIVERSION STRUCTURES

1. Description: Diversion structures, also known as flow splitters, are used as required where runoff is conveyed to infiltration facilities by a storm pipe in order to divert the WQv to the filtering practice, and allow larger flows to bypass the practice.
2. Maintenance:
(i) Clean sediment out annually or when sediment has reached a depth of 6 inches using a vactor truck or clamshell scoop. Use similar procedures to cleaning underground tanks, and catch basins.
(ii) Remove trash and debris.
3. Inspection:
(i) Annual visual check for sediment accumulation is usually sufficient.

BIORETENTION FACILITY AND RAIN GARDEN

1. Description: Bioretention facilities and rain gardens are similar stormwater management practices intended to manage and treat small volumes of stormwater runoff from impervious surfaces using a conditioned planting soil bed and planting materials to filter runoff stored within a shallow depression.

2. Maintenance:

(i) Routine maintenance may include the occasional replacement of plants, mulching, weeding and thinning to maintain the desired appearance.
(ii) Weeding and watering are essential the first year, and can be minimized with the use of a weed-free mulch layer. Re-mulch bioretention facilities annually.
(iii) Homeowners and landscapers must be educated regarding the purpose and maintenance requirements of the bioretention facility and/or rain garden, so the desirable aspects of ponded water are recognized and maintained.
(iv) Keep plants pruned if they start to get "leggy" and floppy. Cut off old flower heads after a plant is done blooming.
(v) Inspect for sediment accumulations or heavy organic matter where runoff enters the bioretention facility and/or rain garden and remove as necessary. The top few inches of planting soil mix should be removed and replaced when water ponds for more than 48 hours. Re-mulch following such removal.
(vi) If the overflow device is an earthen berm or lip, check for erosion and repair as soon as possible. If this continues, a harder armoring of stone may be necessary.
(vii) Make sure all appropriate elevations have been maintained, no settlement has occurred and no low spots have been created.
(viii) Mow the grass filter strip between the bioretention facility and the level spreader weekly during the growing season or as per the adjacent lawn areas. Maintenance of level spreader as per noted above.

Page 33
Maintenance Schedule for Permanent Stormwater Management Practices and Stormwater Infrastructure

Page 34

c. Results of on-site soil analysis and infiltration tests, as applicable, that evaluate the suitability of the site for stormwater management facilities. An on-site determination of the elevation of bedrock and groundwater by excavation or soil borings at the proposed site of any proposed infiltration facilities; as discussed elsewhere in this Guide, on-site soil analysis should be witnessed by DEP;

Soil testing has been performed in the locations of the proposed stormwater management facilities. Appendix B provides the results of the soils testing, and Table 7, below, summarizes the results of the testing.

Table 7. Summary of Deep Hole and Percolation Testing

Stormwater Management Facility	Type of Facility	Results of Deep Hole Testing	Results of Percolation Testing
SWMF-1.1	Bioretention Facility	Sandy loam soils; rock at 5'-6" (DH-4)	Not required
SWMF-1.2	Infiltration (chambers)	Sandy loam soils; rock at 6 feet below grade (DH-5)	$2.5 \mathrm{~min} / \mathrm{inch}$ nearby (P-5)
SWMF-2.2	Infiltration (chambers)	Sandy loam soils; seep at 6' below grade	3.7 min/inch (P-1)
SWMF-L1	Infiltration (chambers)	Sandy loam soils; seep at 5 feet below grade (DH-2)	5 min/inch (P-2)
SWMF-L2.1	Infiltration (chambers)	Sandy loam, silt loam soils; rock at 5'-6" below grade (DH-1)	2.9 min/inch (P-3)
SWMF-L2.2	Infiltration (chambers)	Sandy loam, silt loam soils; rock at 6' below grade	3.2 min/inch (P-4)
SWMF-L3.1	Rain Garden for FDA-L3.1	Sandy loam soils, rock at 4'-6"	Not required
SWMF-L3.2	Rain Garden for FDA-L3.2	Sandy loam soils, rock at 4'-6" nearby	Not required
SWMF Basin 1	Extended Detention Stormwater Wetland	Sandy loam and fine sandy loam, rock at $5^{\prime}-6^{\prime \prime} ;$ sandy loam and weathered rock to 5'-6"	Not required

In summary, the deep hole tests showed that: (1) For the soils within the footprint of the stormwater management basins ($\mathrm{DH} \# 9$ and $\mathrm{DH} \# 10$) the weathered rock and/or bedrock is about $5^{\prime}-6$ " feet below grade, and (2) in other locations, rock ranged from $4^{\prime}-6^{\prime \prime}$ to 6^{\prime} below grade.
d. A schedule for construction of the stormwater management facilities;

The schedule for the construction of the proposed stormwater management facilities is detailed in Section 2 above.
e. Calculation of the imperviousness of tributary areas to each stormwater management practice to determine if practices in series are required;

In accordance with the Watershed Regulations, post-development drainage areas that will result in impervious surfaces covering twenty percent (20%) or more of the drainage area for which a stormwater management practice is designed must employ two dissimilar stormwater
management practices. The calculations show that the impervious surfaces to the two stormwater management practices will cover less than 20% of the drainage areas and therefore would not be subject to this requirement. Table 8, below lists the stormwater management practices being proposed, and provides information on the drainage area to those facilities.

As can be seen Table 8, only future condition drainage areas FDA-1.2, FDA-2.2, FDA-L1, FDA-L2.1, FDA-L2.2 and FDA-L3 have an imperviousness greater than 20\%. For all of these subcatchment areas (except FDA-L3), the runoff will be conveyed into an infiltration facility. The runoff from FDA-L3 (portion of Lot 3 house, driveway and its front yard) will be treated in a bioretention facility (a filtering practice), followed by the stormwater management basin, an extended detention stormwater wetland, two clearly dissimilar stormwater management practices. The project thus conforms to the requirements of the Watershed Regulations.

Table 8. Imperviousness of Tributary Areas

Drainage Areas	Drainage Area (in acres)	Impervious Surfaces (in acres)	\% Impervious	Stormwater Management Practice Proposed
Drainage Areas to Design Point 1				
FDA-1.1	0.679	0	0%	bioretention
FDA-1.2	0.446	0.292	65.5%	infiltration
FDA-1.3	4.076	0.233	5.7%	stormwater basin
FDA-1.4	0.157	0	0%	none
FDA-L1	0.212	0.194	91.5%	infiltration
FDA-L2.1	0.132	0.073	55.5%	infiltration
FDA-L2.2	0.098	0.098	100%	infiltration
FDA-L3.1	0.261	0.052	20%	Rooftop disconnection to rain garden followed by stormwater management basin
FDA-L3.2	0.098	0.023	23.7%	Vegetated swale to rain garden followed by stormwater management basin
Overall*	6.080	0.932	15.3%	stormwater management basin
Drainage Areas to Design Point 2				
FDA-2.1	0.890	0	0	none
FDA-2.2	0.655	0.286	43.7%	infiltration
FDA-2.3	1.951	0.019	1.0%	vegetated swale
Drainage Areas to Design Point 3				
FDA-3	0.529	0	0%	none
Drainage Areas to Design Point 4				
FDA-4	0.242	0	0%	none

[^0]Pre- and post-development drainage area maps may be referenced at the end of the Project Narrative section of this SWPPP report (see Figures 3 and 4, and full-size drawings DA-1 and DA-2).
g. Hydrographs, peak discharge rates and total runoff volumes from the project area for existing conditions for the 10-year, and 100-year 24-hour storm events. The relevant variables used in this determination, including curve number and times of concentration, must be included;

Hydrographs, peak discharge rates and total runoff volumes from the project area in the existing conditions for the 10-year and 100-year storm events may be referenced in Appendix E.
h. The hydrographs used to evaluate post-construction volume and rate of stormwater runoff for the 1-year, 10-year, and 100-year 24-hour storm events; the relevant variables used in this determination, including curve number and times of concentration, must be included;

The hydrographs used to evaluate post-construction volume and rate of stormwater runoff for the 1-year, 10-year, and 100-year 24-hour storm events may be referenced in Appendix E.
i. Calculations of the water treatment volume including a comparison of the volume of runoff generated by the 1 year - 24 hour storm event and the water quality volume generated using the 90% rule;

Calculations of the water treatment volume including a comparison of the volume of runoff generated by the 1 year, 24 hour storm event (3.1 inches of precipitation) and the water quality volume generated using the 90% rule, which for this area corresponds to 1.5 " of precipitation. These calculations may be referenced in Table 1 in Appendix A.

In Appendix \mathbf{E} are found the hydrographs and routings of the proposed stormwater management facilities being proposed for the project.
j. Calculations of the required runoff reduction volume (based on the 1-year, 24-hour storm in the EOH watershed);

The calculations of the required runoff reduction volume may be referenced in Appendix A of the SWPPP report. Table 9.1 in Appendix A provides a summary of the following for each drainage area to the four design points: (i) drainage area in square feet, (ii) impervious surfaces within the specified drainage area, (iii) the calculated specified reduction factor based on the hydrologic soils group(s) with the drainage area, (iv) the calculated Minimum Runoff Reduction Volume, (v) the HydroCAD calculated Water Quality Volume - volume of runoff generated in the drainage area - for the 1 year storm event in cubic feet, (vi) the HydroCAD calculated WQv in acre-feet, (vii) the green infrastructure and/or stormwater management practice proposed,
(viii) the calculated Runoff Reduction Volume achieved in the stormwater management practice, and (ix) whether the RRv provided exceeds the minimum RRv required. Table 9.2 in Appendix A provides a summary for drainage areas FDA-1.3, FDA-L3.1 and FDA-L3.2

As can be seen in the tables, for all but one of the drainage areas the Runoff Reduction Volume that is to be provided exceeds the minimum Runoff Reduction Volume. (The one drainage area that does not achieve the minimum goal is FDA-2.3 which has minimal impervious surfaces - all of which are off-site - and drains to the trapezoidal swale along the Lot 1 frontage).

Tables 9.1 and 9.2 shows that the Runoff Reduction Volume exceeds the minimum RRv for all drainage areas (with the exception of the one identified above).

k. Calculations supporting design of runoff reduction techniques provided;

As is noted above, the supporting calculations for the runoff reduction techniques employed by the project may be referenced in Appendix A. The runoff reduction volumes have been calculated in accordance with the 2015 New York State Stormwater Management Design Manual.

1. Designs and supporting calculations for water quality treatment facilities and the compliance with the requirements and recommendations for design of these facilities in the Design Manual;

The supporting calculations for the water quality treatment facilities and the compliance with the requirements and recommendations for design of these facilities employed by the project may be referenced in Appendix A.
m. Calculations upon which the required storage volume and surface area requirements necessary to provide flood control for runoff generated by 1-year, 10-year, and 100-year, 24-hour storm events were based;

The required storage volume and surface area requirements that are necessary to provide flood control and to attenuate the peak rate of runoff for the 1,10 and 100 year, 24 hour storms may be referenced in Appendix \mathbf{E} of this report. The calculations show that there will be a reduction in the peak rate of runoff at all design points for all of the modeled storm events.
n. Calculation of the necessary storage volumes, detailed descriptions of all proposed stormwater management measures, and sufficient detail of the measures to determine that the relevant design criteria will be met;

Full hydrographs and routings of the modeled subcatchment areas which demonstrate that the project will accomplish the required peak rate attenuation of runoff from the developed site may be referenced in Appendix E.
o. Provisions for discharge control, including peak discharge, and protection for, rates, outlet design, discharge capacity for each stage, outlet channel design, and a description of the point of discharge;

The detailed information on the provisions for discharge control, including peak discharge, outlet design, and the discharge capacity for each stage of the stormwater management measures may be referenced in the hydrographs and routings presented in Appendix E.

The stormwater runoff from the stormwater management basin (Design Point 1) will, following its conveyance to a level spreader, will be conveyed to an upland wooded area to the south of the property. Flows to Design Point 2, also will discharge to existing upland woods following conveyance into a level spreader. Runoff to Design Point 2 will also be conveyed by overland flow to existing upland woods. Runoff to Design Points 3 and 4 in the future condition will be similar to the existing condition; there is no concentration of runoff to these design points, which will discharge to upland woods.
p. Downstream stream surveys of all watercourses that will receive stormwater discharges from the site. The surveys typically indicate channel roughness, stability, and dominant stream bank vegetation.

South and east of the project site is the only watercourse that would receive runoff from the project site. The watercourse follows essentially a north-south route; it is located approximately 175 feet to the east of the eastern property line of the project site. The watercourse is would best be described as clean, straight banks, a few deeper pools, some weeds and a generally stony bottom.
q. Pre- and post-development analyses of coliform runoff concentrations, for activities or facilities that are proposed within terminal basins;

The project site is located in the watershed of a terminal basin, the Kensico Reservoir. An analysis of pre- and post-development coliform runoff concentrations is provided in Appendix A of the SWPPP report. Table 8 in Appendix A shows that there would be an overall decrease in bacteria loading from the property. Changes in the loading at the four design points are provided in the table.

r. In the EOH watershed, conformance with Chapter 10 of the Design Manual;

Conformance with Chapter 10 of the SMDM is accomplished by the following: (1) Stormwater management facilities have been designed to capture the estimated runoff resulting from the 1year, 24-hour design storm over the post-development subcatchment areas. Thus, the 3.1" depth rainfall is used to determine the treatment volume for the stormwater management measures. (2) Green infrastructure practices have been implemented, including disconnection of rooftop runoff, use of vegetated swales, and infiltration of runoff into the ground.
s. Assumptions and coefficients used in calculating the above comparisons, and an evaluation of the post-development impact stormwater runoff will have on any identified floodplains or designated flood hazard areas in the drainage basin; and

The Federal Emergency Management Agency has mapped the area of the property (see panels 36119 C 0163 F and 36119 C 0276 F in Appendix F). In addition, the mapping from the Mapping Westchester County web site is also provided. As can be seen in the figures, the entire property is located in Zone X and is thus not subject to flood.

t. References used in developing the stormwater management plan.

1. New York State Stormwater Management Design Manual, New York State Department of Environmental Conservation, Albany, New York, January 2015.
2. Applicant's Guide to Stormwater Pollution Prevention Plans, New York City Department of Environmental Protection, September 2010.
3. Rules and Regulations for the Protection from Contamination, Degradation and Pollution of the New York City Water Supply and Its Sources, New York City Department of Environmental Protection, as amended April 4, 2010.
4. New York State Standards and Specifications for Erosion and Sediment Control, New York State Department of Environmental Conservation, Albany, New York, August 2005.
5. Urban Hydrology for Small Watersheds, TR-55, Natural Resources Conservation Service, June 1986.
6. Chapter 173, Stormwater Management of the Town of North Castle.

4. Operation \& Maintenance

a. A description of the inspection program to be conducted from the construction phase through final stabilization. Inspections of disturbed areas, areas used for storage of materials, erosion control measures, and construction entry and exit areas to ensure a performance schedule in accordance with the applicable requirements of the General Permit;

The inspection program during construction will follow the protocols of the SPDES General Permit, which state that for construction sites where soil disturbance activities are on-going, the qualified inspector shall conduct a site inspection at least once every seven (7) calendar days. A report of the inspection will be forwarded to the owner, site contractor, Town of North Castle, and the New York City Department of Environmental Protection within 2 business days of the site inspection.

For construction sites where soil disturbance activities are on-going and the owner or operator has received authorization in accordance with Part II.C. 3 to disturb greater than five (5) acres of soil at any one time, the qualified inspector shall conduct at least two (2) site inspections every seven (7) calendar days. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.

Hidden Oak Subdivision Stormwater Pollution Prevention Plan Report
March 1, 2016
Page 41
For construction sites where soil disturbance activities have been temporarily suspended (e.g. winter shutdown) and temporary stabilization measures have been applied to all disturbed areas, the qualified inspector shall conduct a site inspection at least once every thirty (30) calendar days. The owner or operator shall notify the DOW Water (SPDES) Program contact at the Regional Office (see contact information in Appendix F of the General Permit) or, in areas under the jurisdiction of a regulated, traditional land use control MS4, the regulated, traditional land use control MS4 (provided the regulated, traditional land use control MS4 is not the owner or operator of the construction activity) in writing prior to reducing the frequency of inspections.

For construction sites that directly discharge to one of the 303(d) segments listed in Appendix E or is located in one of the watersheds listed in Appendix C, the qualified inspector shall conduct at least two (2) site inspections every seven (7) calendar days. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.
b. A description of post-construction stormwater facility inspection and maintenance schedules. Facility inspections should be performed at least every 30 days; and

The complete post-construction stormwater facility inspection and maintenance schedule may be referenced beginning on page 18 , above.
c. Names, addresses, and phone numbers of parties responsible for implementing the maintenance program and for submitting and retaining reports detailing the scope and dates of inspections, observations relating to the implementation of the erosion and controls and stormwater management measures, incidences of non-compliance and actions taken to remedy any unsatisfactory condition.

The responsible party for the construction and maintenance of the proposed stormwater management facilities and erosion and sediment control measures to be implemented at the site shall be owner's representative, Mr. Kevin McKenna.

Mr. Kevin McKenna
McKenna Custom Homes
343 Manville Road
Pleasantville, NY 10701
Tel: 914-769-1869
Fax: 914-769-8575

B. Site Plans and Construction Drawings

1. Existing Conditions

The following should be depicted on a plan, or plans, at a scale not to exceed $1^{\prime \prime}=50^{\prime}$, unless otherwise noted:
a. Existing conditions at the site prior to the proposed development. This plan must include a north reference. The boundaries of the proposed development site, and existing topography at
two (2) feet contour intervals must be shown. Elevation data and the source of the topographic information must be provided. All existing watercourses, reservoirs, reservoir stems, controlled lakes, and wetlands on the site and within the limiting distances set forth in the Watershed Regulations must be shown;

The existing conditions drawing may be referenced in the site plan set (see drawing EX-1). The drawing shows the boundaries of the development site, with the topography depicted at a 2 -foot contour interval. The topographic information was obtained from a survey by Campbell Engineering. As is noted above, there are no State regulated wetlands within or in the immediate vicinity of the subject property. The location of the reservoir stem and the restrictive distances resulting are shown on the plans.
b. The boundary of any 100-year flood plain (from the United States Flood Emergency Management Area Maps) on the site. Site boundary information must include any available 100-year flood elevations and floodway boundaries;

As is noted above and as shown in Appendix F, there are no 100-year flood plains mapped on the subject property.
c. Existing impervious surfaces must be depicted, as well as locations of any vehicular entry to or exit from, the site. Existing land uses and structures, types of vegetative cover, public/permanent open space, public facilities, utility lines and easements, water supply wells, and sewage treatment systems must also be depicted. A supplemental Existing Conditions Plan is preferred when extensive details on the plan create a congested drawing that is difficult to interpret;

Existing and future condition impervious surfaces may be referenced on drawings EX-1 and S-1, respectively. Existing land uses and structures, types of vegetative cover, public/permanent open space, public facilities, utility lines and easements, water lines and septic system locations are depicted on the plans (see drawings $\mathrm{S}-1$ and $\mathrm{S}-2$).
d. United States Department of Agriculture ("USDA") Soil Survey boundaries on the site, soil descriptions, and tabular information detailing, by sub-watershed, the USDA Soil Conservation Service ("SCS") Hydrologic Soil Groups;

Soils on the project site may be referenced in Figure 2 of the Figures section of this SWPPP report.
e. Site constraints that may affect erosion control and stormwater management facility design and operation will be identified by field survey. These constraints include steep slopes (15% and greater), soils identified as being highly erodible by the USDA Soil Survey, depth to bedrock, depth to seasonal high water, and poorly and excessively drained soils.

Constraints are identified in Section A.1.c of this SWPPP report, and are summarized in Table 2 Soil Characteristics/Constraints Related to Suitability for Development and in Table 3, Period and Extent of Flooding, Saturation, or High Water Table, above.
f. The location and size of on and off-site culverts and stormwater management systems that convey runoff to, through, and away from the project site. The configuration and size of the drainage area contributing to these systems must also be shown.

This is noted in the text above.

2. Proposed Conditions

The following should be depicted on a plan, or plans, at a scale not to exceed $1^{\prime \prime}=50^{\prime}$:
a. All reservoirs, reservoir stems, controlled lakes, wetlands and watercourses that affect, or may
be affected by, the project, and applicable limiting distances; (see drawing IPP-1)
b. Proposed lot layout and property lines, buildings, streets, and other impervious surfaces, utility lines, water supply wells, sewage treatment systems, and location and types of any easements on the project site as applicable; (see drawing IPP-1 and S-2)
c. Tabular information, by sub-watershed, indicating the acres of impervious surface created by the proposed activities, and the acreage for which the imperviousness of the land will be changed from pre-construction conditions; (see drawing IPP-1)
d. The percent imperviousness of the post-construction drainage area(s) contributory to a proposed stormwater management practice(s); (see drawing IPP-1)
e. Proposed on-site topography at two (2) foot contour intervals and other areas that will be disturbed during construction; (see drawing S-2)
f. All proposed erosion and sediment controls and stormwater management facilities that will be implemented to control erosion and sedimentation during construction and increases in runoff and pollutants from the site after construction has been completed; (see drawing S-3)
g. Construction details and specifications, cross-sections, and elevations of all proposed structures; (see drawing DE-1. DE-2 and DE-3)
h. A soil profile to at least one foot below each stormwater management facility (three (3) feet for infiltration practices). All proposed structures and site modifications, including the final grading proposed for the site at two (2) foot contour intervals; (see Appendix B SWPPP report) i. Design details and specifications of proposed structural stormwater management facilities and an indication of which facilities will be used to control rates of discharge, which will be used to treat stormwater runoff from a water quality perspective, and which facilities will perform both functions; and (see drawing DE-1. DE-2 and DE-3)
j. Plan view and cross-sectional designs of all stormwater management facilities and a description of the materials to be used for construction of each of the proposed facilities. (see drawing S-2)
k. As-built drawings of all stormwater conveyance and management facilities are to verify conformance with the approved/modified SWPPP. (to be done following construction)

The items noted above (a. through k.) may be referenced on the drawings and in Appendix \mathbf{A}; soil profiles may be found in Appendix D.

3. Temporary Erosion and Sediment Control Measures

a. All proposed erosion and sediment controls that will be implemented to control erosion and sedimentation during construction;
b. Any temporary erosion and sediment control facilities which will be converted to permanent stormwater management facilities;
c. Construction details, specifications, cross sections, etc., for all temporary measures proposed;
d. The limits of disturbance, material stockpile areas, fill areas, on or off-site borrow areas, and areas where vegetation will be cleared;
e. The location of vegetation to be protected on the site;
f. Provisions to prevent erosion of open sections of the stormwater conveyance system and culvert inlets and outfalls;
g. Plans showing phasing and grading as needed to demonstrate the applicability of the proposed sequence;
h. All construction notes and sequencing to be implemented as part of the erosion control plan during construction; and
i. Inspection and maintenance intervals and criteria to be used to maintain temporary erosion control measures during construction.

The items noted above (a. through i. may be referenced on the drawings noted below:
a. All proposed erosion and sediment controls that will be implemented to control erosion and sedimentation during construction; (see drawing S-3)
b. Any temporary erosion and sediment control facilities which will be converted to permanent stormwater management facilities; (none proposed)
c. Construction details, specifications, cross sections, etc., for all temporary measures proposed; (see drawing DE-1)
d. The limits of disturbance, material stockpile areas, fill areas, on or off-site borrow areas, and areas where vegetation will be cleared; (see drawing S-3)
e. The location of vegetation to be protected on the site; (see drawing S-3)
f. Provisions to prevent erosion of open sections of the stormwater conveyance system and culvert inlets and outfalls; (see drawing S-3)
g. Plans showing phasing and grading as needed to demonstrate the applicability of the proposed sequence; (see drawing S-3)
h. All construction notes and sequencing to be implemented as part of the erosion control plan during construction; (see drawing S-3);
i. Inspection and maintenance intervals and criteria to be used to maintain temporary erosion control measures during construction. (see drawing S-3);

TOWN OF NORTH CASTLE STORMWATER POLLUTION PREVENTION PLAN REPORT

A. INTRODUCTION

This Stormwater Pollution Prevention Plan report has been prepared in accordance with the requirements of Chapter 173, Stormwater Management of the Town of North Castle.

This report describes the Stormwater Pollution Prevention Plan for the proposed subdivision of land and the development of the three lots as depicted on the Integrated Plot Plan. The project site is 335,016 square feet (7.691 acres) in size and is located at the south end of Hidden Oak Road, a Town road. The property is irregular in shape, and is approximately 860 feet in a northsouth direction and 460 feet in an east-west direction. At present the subject property is mostly wooded, although there are remnants of a small building foundation in the northern portion of the property.

The site construction will include: three single family houses, a 24 -foot width road for access to the houses from Hidden Oak Road. Each house will obtain water from an extension of the existing water main in Hidden Oak Road into the property; wastewater for each lot will be disposed of in an on-site leaching system.

The property is located within the Kensico Reservoir watershed and thus lies within the New York City water supply watershed. As a result, approval of the Stormwater Pollution Prevention Plan and stormwater management plan by the New York City Department of Environmental Protection will also be required.

Description of the Stormwater Management Plan: Stormwater from the new impervious surfaces, consisting of, but not limited to, the subdivision road that will provide access from Hidden Oak Road, individual driveways, houses, and pools will be conveyed in grassed swales, overland flow and in subsurface storm drainage pipes to infiltration facilities and filtering practices for treatment of the 1-year storm. Runoff in excess of the 1 -year storm will, after being conveyed to the infiltration facilities, be conveyed via subsurface storm pipes to a stormwater management facility where the peak rate attenuation of the runoff will be achieved. Additional water quality improvement will also occur in the stormwater management facility.

In order to meet the requirements of Section 173 of the Code of the Town of North Castle, the Watershed Regulations of the City of New York and the New York State SPDES General Permit for Stormwater Discharges Associated with Construction Activities, a comprehensive stormwater management plan has been developed for the three lot subdivision which includes the construction of new stormwater management facilities.

Four design points were established in order to analyze the runoff from the property. Design Point 1 is located along the southern property line (see Drawings DA-1 and DA-2). Runoff from the central portion of the property drains to this design point. Design Point 2 is located along the western property line. Runoff from the northwestern portion of the property is conveyed to Design Point 2. Design Points 3 and 4 are located along the eastern boundary of the property.

The contributing areas to these latter two design points are very small; no changes and therefore no impacts to the drainage area to Design Point 4 are proposed; only a portion of the septic system leaching area of Lot 2 is proposed within the drainage area to Design Point 3.

In the existing condition, a total of four drainage areas were defined which drain to the four above noted design points (see Figure 4, Existing Conditions Drainage Area Map). In the future condition, a total of 14 drainage areas were defined (see Figure 5, Future Conditions Drainage Area Map). The existing and future condition drainage areas are described below:

Existing Condition Drainage Areas

Existing Condition Drainage Area \#1 (XDA-1) is 4.797 acres in size and consists of the east central portion of the subject property, as well as existing lands to the north of the property. Runoff from this drainage area is conveyed to Design Point 1 at a low point along the southern property line.

Existing Condition Drainage Area \#2 (XDA-2) is 4.962 acres in size and consists of the western portion of the subject property, as well as existing lands to the north of the property. Runoff from this drainage area is conveyed to Design Point 2 at a low point along the western property line.

Existing Condition Drainage Area \#3 (XDA-3) is 0.529 acres in size and consists of the northeastern portion of the subject property. Runoff from this drainage area is conveyed to Design Point 3 along the eastern property line.

Existing Condition Drainage Area \#4 (XDA-4) is 0.242 acres in size and consists of the southeastern portion of the subject property. Runoff from this drainage area is conveyed to Design Point 4 at the southeastern property corner.

Future Condition Drainage Areas to Design Point 1

Future Condition Drainage Area \#1.1 (FDA-1.1) is 0.672 acres in size and is to consist of the rear and side yard of Lot 1 . The runoff from this drainage area will be conveyed to a bioretention facility to be located on Lot 1 to the south of the driveway. Excess runoff above the 1 -year storm will be conveyed from the bioretention facility to the stormwater management facility basin in the southernmost portion of the property.

Future Condition Drainage Area \#1.2 (FDA-1.2) is 0.446 acres in size and is to consist of lands in the southern portion of the subdivision road and small portions of future lots 2 and 3 which will drain toward the cul-de-sac. The runoff from this drainage area will be conveyed to a subsurface storm drainage facility (SWMF-1.2) to be located on Lot 3 to the west of the driveway to Lot 3 . Excess runoff above the 1-year storm will be conveyed from the subsurface storm drainage facility to the stormwater management facility basin in the southernmost portion of the property.

Future Condition Drainage Area \#1.3 (FDA-1.3) is 4.076 acres in size and is to consist of lands in the central portion of the property. This drainage area includes front, side and rear yard areas of the proposed house on Lot 2 and the rear yard on Lot 3, as well as the pool and a portion of the house on Lot 3. The runoff from the roof of the house on Lot 3 will discharge to the ground surface (disconnection); runoff from this drainage area will be conveyed the stormwater management facility basin in the southernmost portion of the property.

Future Condition Drainage Area \#1.4 (FDA-1.4) is 0.157 acres in size and is to consist of lands in the southern portion of the property to the south and east of the proposed stormwater management basin. The runoff from this drainage area, which will be mostly wooded, will be conveyed by sheet flow to the southern property line.

Future Condition Drainage Area L1 (FDA-L1) is 0.212 acres in size and is to consist of the house, patio/terrace and pool on Lot 1 , as well as the upper portion of the driveway on Lot 1 . The runoff from this drainage area will be conveyed to a subsurface storm drainage facility in the front yard of the house on Lot 1.

Future Condition Drainage Area L2.1 (FDA-L2.1) is 0.132 acres in size and is to consist of a portion of the house and driveway on Lot 2. The runoff from this drainage area will be conveyed to a subsurface storm drainage facility to the north of the house on Lot 2.

Future Condition Drainage Area L2.2 (FDA-L2.2) is 0.098 acres in size and is to consist of a portion of the house and the pool on Lot 2. The runoff from this drainage area will be conveyed to a subsurface storm drainage facility to the south of the house on Lot 2 .

Future Condition Drainage Area L3.1 (FDA-L3.1) is 0.261 acres in size and is to consist of the front half of the house on Lot 3. The runoff from this drainage area will be conveyed to a rain garden to the west of the house on Lot 3 by rooftop disconnection.

Future Condition Drainage Area L3.2 (FDA-L3.2) is 0.098 acres in size and is to consist of a portion of the Lot 3 driveway. The runoff from this drainage area will be conveyed in a vegetated swale to a rain garden. Excess runoff to the rain garden will be conveyed to the stormwater management basin.

Future Condition Drainage Areas to Design Point 2

Future Condition Drainage Area \#2.1 (FDA-2.1) is 0.890 acres in size and is to consist of lands to the west of the proposed subdivision road. The runoff from this drainage area, which will consist of portions of the proposed Conservation Lands along the western property line, will be conveyed by sheet flow to lands of the City of New York.

Future Condition Drainage Area \#2.2 (FDA-2.2) is 0.655 acres in size and is to consist of the upper portion of the subdivision road and off-site lands to the east of the proposed subdivision road. The runoff from this drainage area, which discharges to Design Point 2, will be conveyed to a subsurface stormwater management facility to be located on the portion of Lot 1 to the west
of the subdivision road. The runoff from this drainage area will eventually be conveyed to a level spreader for discharge to lands of the City of New York.

Future Condition Drainage Area \#2.3 (FDA-2.3) is 1.951 acres in size and is to consist of lands to the lawn and wooded areas to the north of the proposed house on Lot 1. The runoff from this drainage area will be conveyed a vegetated swale on the east side of the subdivision road along the Lot 1 frontage, and eventually to a level spreader for discharge to the lands of the City of New York.

Future Condition Drainage Areas to Design Point 3

Future Condition Drainage Area \#3 (FDA-3) is 0.529 acres in size and is to consist of lands in the northeastern portion of the property of Lot 2 . A portion of the septic system of Lot 2 will be in this drainage area; thus, the drainage area will consist of both woods and lawn. The runoff from this drainage area will be conveyed by sheet flow to Design Point 3 .

Future Condition Drainage Areas to Design Point 4

Future Condition Drainage Area \#4 (FDA-4) is 0.242 acres in size and consists of the southeastern portion of the subject property. There are no proposed changes to the land cover in this drainage area. Runoff from this drainage area is conveyed to Design Point 4 at the southeastern property corner.

Stormwater Management Practices Proposed: The stormwater management practices that will treat the runoff and attenuate the peak rate of runoff from the development area include: (1) five infiltration facilities (to consist of subsurface high density polyethylene chambers), (2) one bioretention facility, (3) two rain gardens, (4) two dry vegetated swales, and (5) one stormwater management/detention facility. The infiltration facilities (subsurface chambers) have been sized to capture and treat the runoff from the 1-year storm event (3.1" of precipitation) in accordance with the Watershed Regulations, Chapter 173, Stormwater Management of the Code of the Town of North Castle, and the 2015 New York State Stormwater Management Design Manual, and reduce the peak rate of runoff via infiltration into the soils. The majority of the peak rate attenuation will be accomplished in the stormwater management/detention facility. In addition to the practices noted above, other low impact development techniques such as the use of vegetated swales and the disconnection of house roof runoff are being proposed.

To confirm that the soils on the subject property are suitable for the proposed stormwater management practices, deep hole tests in 10 locations were performed in May 2014. The testing was witnessed by the reviewing engineer from the New York City Department of Environmental Protection. The results of the testing are indicated on drawing S-2; the compliance of the stormwater management practices with the subsurface conditions are also detailed on that drawing. An additional two deep hole tests were conducted on November 12, 2014. Percolation testing was also conducted on November 12 as required. The latter tests were witnessed by the NYCDEP and the engineering consultant to the Town. Percolation testing showed rates ranging from 2 to 5 minutes per inch.

Existing and future condition drainage area maps are attached to this report. The drawings show the extent of the drainage areas used in the analysis of the pre- and post-development conditions. In addition, reference may also be made to Hidden Oak Subdivision drawings IPP-1 and S-2 for the location, sizes and details on the proposed post-construction stormwater management practices.

The post-development stormwater management practices for each of the future condition drainage areas may be referenced in Table 3, above.

In addition to capturing and treating the runoff from the 1-year storm, the project stormwater management plan will also provide peak rate attenuation for the 1 -year through 100-year storm recurrence intervals at all design points, with the exception of Design Point 3. This is shown in Table 4, above. It should be noted that at Design Point 3, the very small increase in runoff flows is due to the conversion of a portion of a wooded area to a mown lawn for the purposes of creating a septic system disposal area for Lot 2. The increase in runoff flows to Design Point 3 is very small; no impact is anticipated to off-site properties as a result of this minor increase.

An important aspect of any stormwater management plan is the continued maintenance of the stormwater management practices being proposed. Table 6, above summarizes the anticipated responsibilities for maintenance of the proposed stormwater management facilities and the contributing areas to the facilities.

The following describes the stormwater pollution prevention plan for the property in accordance with the requirements of Chapter 173 of the Town Code.
B. Contents of stormwater pollution prevention plans.
(1) All SWPPPs shall provide the following background information and erosion and sediment controls:
(a) Background information about the scope of the project, including location, type and size of project;

The project is a single family residential subdivision. The site construction will include: three single family houses, a 24 -foot wide public road which will terminate in a cul-de-sac for access to the houses from Hidden Oak Road. The total length of the road will be 826.44 feet. Each house will obtain water from an extension of the existing water main in Hidden Oak Road into the property; wastewater for each lot will be disposed of in an on-site leaching system.
(b) Site map/construction drawing(s) for the project, including a general location map. At a minimum, the site map should show the total site area; all improvements; areas of disturbance; areas that will not be disturbed; existing vegetation; on-site and adjacent offsite surface water(s); wetlands and drainage patterns that could be affected by the
construction activity; existing and final slopes; locations of off-site material, waste, borrow or equipment storage areas; and location(s) of the stormwater discharges(s);

The site map/construction drawings for the project may be referenced on the following drawings listed below.

Dwg No.	Drawing Title	$\underline{\text { Date }}$
CS-1	Cover Sheet	$03 / 01 / 2016$
IPP-1	Site Layout Plan	$03 / 01 / 2016$
S-2	Site Grading and Utilities Plan	$03 / 01 / 2016$
S-3.1	Erosion and Sediment Control Plan/ Tree Removal \& Protection Plan - Phase 1	
S-3.2	Erosion and Sediment Control Plan/	$03 / 01 / 2016$
	Tree Removal \& Protection Plan - Phase 2	
S-4	Slopes Map	$03 / 01 / 2016$
S-5	Landscape Plan	$07 / 24 / 2015$
DE-1	Construction Details	$03 / 01 / 2016$
DE-2	Construction Details	$03 / 01 / 2016$
DE-3	Subdivision Road and Driveway Profiles	$03 / 01 / 2016$
DE-4	Erosion Control/Restoration Notes/Trees	$03 / 01 / 2016$
DE-5	Construction Details / Maintenance Plan	$03 / 01 / 2016$
DA-1	Existing Conditions Drainage Area Map	$03 / 01 / 2016$
DA-2	Future Conditions Drainage Area Map	$04 / 09 / 2015$
EX-1	Existing Conditions Plan	$03 / 01 / 2016$
		$11 / 17 / 2014$

The location of all improvements may be referenced on drawings IPP-1 and S-2. Areas of disturbance may be found on drawing S-3. Existing vegetation (and areas that will not be disturbed) may be found on drawing S-3. Off-site surface waters are located to the east of the project site; there are no on-site wetlands or watercourses. Existing and final slopes may be referenced on drawings S-2 and S-4. No off-site material, waste, borrow or equipment storage areas are proposed. The location of the project stormwater discharges may be referenced on drawing S-2.
(c) Description of the soil(s) present at the site;

A summary of the soils description from the Soils Survey of Putnam and Westchester Counties may be referenced below (see Figure 3).

Charlton loam (ChC) soils are very dark grayish brown (10YR 3/2) loam over dark brown (10YR 3/3) loam. They are gently sloping, very deep and well-drained soils located on hilltops and parts of hills. This soil is formed in glacial till underlain by highly fractured, folded tilted granite, schist, and gneiss bedrock.

Charlton-Chatfield Complex soils (CrC) are very dark grayish brown (10YR 3/2) loam over dark brown (10YR 3/3) loam. They are very deep to moderately deep, well-drained to somewhat
excessively drained soils located on the sides and tops of glaciated hills. This soil is formed in glacial till underlain by highly fractured, folded tilted granite, schist, and gneiss bedrock. Rock outcrops make up approximately 20 percent of this soil.

Chatfield-Hollis-Rock Outcrop Complex soils (CtC) are very dark grayish brown (10YR 3/2) loam over dark brown (10YR 3/3) loam. They are rolling, moderately deep, well-drained to somewhat excessively well drained soils. Rock outcrops in this soil unit are predominately granite, gneiss, and schist. This soil is located on hilltops and narrow ridges of glaciated hills.
(d) Construction phasing plan describing the intended sequence of construction activities, including clearing and grubbing, excavation and grading, utility and infrastructure installation and any other activity at the site that results in soil disturbance. Consistent with the New York Standards and Specifications for Erosion and Sediment Control (Erosion Control Manual), not more than five acres shall be disturbed at any one time unless a greater amount is determined necessary pursuant to an approved SWPPP;

The detailed construction phasing plan may be referenced on drawing S-3. The area of disturbance for Phase 1 of the project has been calculated to be 1.802 acres. For Phase 2, the construction of the three lots, the area of disturbance has been calculated to be 3.192 acres. The total disturbance for both Phase 1 and Phase 2 has been calculated to be 4.994 acres.
(e) Description of the pollution prevention measures that will be used to control litter, construction chemicals and construction debris from becoming a pollutant source in stormwater runoff;

The Erosion and Sediment Control Plan incorporates a variety of measures designed to control litter, construction chemicals, and construction debris from becoming a source of pollution. The plan requires the staking of the clearing and grading limit line before the commencement of construction activity. Following the demarcation of the limits of disturbance, a variety of erosion and sediment control measures are to installed in accordance with the plans, including, but not limited to, silt fences and a stabilized construction entrance.

The contractors will be signatories to the SWPPP and thus they will be made quite aware that the project has a comprehensive Storm Water Pollution Prevention Plan, and that it is their responsibility to keep the site clean and to minimize the potential for litter and other potential pollutants from being conveyed off-site and into downgradient watercourses and waterbodies. Construction materials will be stored in the locations shown on the erosion and sediment control plan, and will be protected by construction fencing as a containment.

Litter control is largely provided by having the maintenance and trash facilities placed inside a fenced-in area. This will reduce the risk of such materials from being washed by rain or blown by wind into the storm drainage system or downgradient from the property.

In addition, the construction equipment and material storage area will be located within the portion of the site that is enclosed by the proposed erosion and sediment control measures.
(f) Description of construction and waste materials expected to be stored on site with updates as appropriate, and a description of controls to reduce pollutants from these materials, including storage practices to minimize exposure of the materials to stormwater, and spill prevention and response;

Construction materials expected to be stored temporarily on site include, but are not limited to, soil stockpiles, aggregate, and sod and/or seed to establish lawn for the houses, wood for the house structure (walls, floors and beams), wood roof trusses, roofing materials, and paving materials, such as stone or brick for terraces and walkways. These items are not sources of pollution in the short term.
(g) Temporary and permanent structural and vegetative measures to be used for soil stabilization, runoff control and sediment control for each stage of the project from initial land clearing and grubbing to project closeout;

Permanent vegetative measures to be used for soil stabilization may be referenced on drawing DE-2. In the event that site work for the construction of the house sites are completed at a time of the year that the installation of permanent plantings is not feasible (i.e. late fall, winter and early spring, essentially corresponding to December 1 through April 15), temporary measures are to be installed to prevent erosion, as detailed on drawing S-3 and DE-2. The stormwater management basin will be constructed in Phase 1 of the project, and a temporary riser and antivortex device will be installed at the outlet from the stormwater management basin. However, erosion controls and stabilization practices will be in place for the areas that drain to the basin. The basin will not be used as a temporary sediment trap.

Temporary Critical Area Plantings, in the event that permanent vegetation cannot be established due to the time of year (i.e. December 1 through April 15), then the seed mixes so noted on drawing S-3 are to be used to stabilize the ground surface until such time as permanent stabilization can be achieved.

Soil Restoration/Disturbed Areas Stabilization Protocol

As is noted above, soil restoration is a required practice applied across areas of a development site where soils have been disturbed and will be vegetated in order to recover the original properties and porosity of the soil. Soil restoration is applied in the cleanup, restoration, and landscaping phase of construction followed by the permanent establishment of an appropriate, deep-rooted groundcover to help maintain the restored soil structure.

According to the protocols of the 2010 and 2015 Stormwater Management Design Manual, during periods of relatively low to moderate subsoil moisture, the disturbed subsoils are returned to rough grade and the following Soil Restoration steps applied:

1) Apply 3 inches of compost over subsoil
2) Till compost into subsoil to a depth of at least 12 inches using a cat-mounted ripper, tractor-mounted disc, or tiller, mixing, and circulating air and compost into subsoils.
3) Rock-pick until uplifted stone/rock materials of four inches and larger size are cleaned off the site.
4) Apply topsoil to a depth of 6 inches.
5) Vegetate as required by approved plan.

At the end of the soil restoration procedure, an inspector should be able to push a 3/8" metal bar 12 inches into the soil just with body weight.

Temporary Critical Area Plantings (Temporary Seeding)

When to Apply - Temporary seeding may be necessary on construction sites to protect an area, or section, where final grading is complete, when preparing for winter work shutdown, or to provide cover when permanent seedings are likely to fail due to mid-summer heat and drought. The intent is to provide temporary protective cover during temporary shutdown of construction and/or while waiting for optimal planting time.

Water management practices must be installed as appropriate for site conditions. The area must be rough graded and slopes physically stable. Large debris and rocks are usually removed. Seedbed must be seeded within 24 hours of disturbance or scarification of the soil surface will be necessary prior to seeding. Fertilizer and lime are not typically used for temporary seedings.

If it is spring, summer or early fall, then seed the area with ryegrass (annual or perennial) at 30 lb per acre (Approximately $0.7 \mathrm{lb} / 1000 \mathrm{sq}$. ft. or use $1 \mathrm{lb} / 1000 \mathrm{sq}$. ft.).

If is late fall or early winter, then seed with Certified 'Aroostook' winter rye (cereal rye) at 100 lb per acre ($2.5 \mathrm{lb} / 1000 \mathrm{sq}$. ft.).

Any seeding method may be used that will provide uniform application of seed to the area and result in relatively good soil to seed contact.

Mulch the seeded area with hay or straw at 2 tons/acre (approx. $90 \mathrm{lb} / 1000 \mathrm{sq} . \mathrm{ft}$. or 2 bales). Quality of hay or straw mulch allowable will be determined based on long term use and visual concerns. Mulch anchoring will be required where wind or areas of concentrated water are of concern. Wood fiber hydromulch or other sprayable products approved for erosion control (nylon web or mesh) may be used if applied according to manufacturers' specification. Caution is advised when using nylon or other synthetic products. They may be difficult to remove prior to final seeding.

Permanent Lawn Areas

NOTE REGARDING USE OF FERTILIZER ON THE PROPERTY
In accordance with Article XXVI, Restrictions on the Application and Sale of Lawn Fertilizer within the County of Westchester, Section 863.1302 Regulation of the Use and Application of Lawn Fertilizer, no person shall apply any lawn fertilizer within the County that is labeled as containing more than 0\% phosphorus or other compound containing phosphorus, such as
phosphate, except for newly established turf or lawn areas during their first growing season. The lawn fertilizer application shall not contain an amount of phosphorus exceeding the amount and rate of application recommended in the soil test evaluation. In subsequent years, no person shall apply any lawn fertilizer within the County that is labeled as containing more than 0\% phosphorus or other compound containing phosphorus, such as phosphate, nor apply lawn fertilizer between December 1st and April 1st, nor apply lawn fertilizer to any impervious surface. If such application occurs, the fertilizer must be immediately contained and either legally applied to turf or placed in an appropriate container. Finally, no person shall apply lawn fertilizer to any turf or lawn area within twenty (20) feet of any surface water, except that this restriction shall not apply where a continuous natural vegetative buffer, at least ten (10) feet wide, separates a turf or lawn area and surface water.

Time of Planting Lawns - Fall planting is preferred. Seed after August 15. In the spring, plant until May 15. If seeding is done between May 15 and August 15, irrigation may be necessary to ensure a successful seeding.

Site Preparation - Disturbed soil areas are to be restored to the procedures of the Soil Restoration/Disturbed Areas Stabilization Protocol above.

Lawn Planting and Installation - Use a cultipacker type seeder if possible. Seed to a depth of $1 / 8$ to $1 / 4$ inch. If seed is to be broadcast, cultipack or roll after seeding. If hydroseeded, lime and fertilizer may be applied through the seeder, and rolling is not practical.

Mulching - Mulch all seedings in accordance with Standard and Specifications for Mulching. Small grain straw is the best material. The following are the recommended seed mixes from Section 3, Vegetative Measures for Erosion and Sediment Control from the New York State Standards and Specifications for Erosion and Sediment Control, latest edition.

Seed Mixes for Sunny sites (well, moderately well, and somewhat poorly drained soils)
a. Athletic fields and similar areas $\quad \underline{\mathrm{b}} / 1000 \mathrm{sf} \quad \underline{\mathrm{lb} / \text { acre }}$
80% Kentucky bluegrass blend
2.4-3.2 105-138
20% perennial ryegrass

$0.6-0.8$	$25-37$
$3.0-4.0$	$130-175$

OR
(for southern and eastern NY) $\quad 1 \mathrm{~b} / 1000 \mathrm{sf} \quad \mathrm{lb} / \mathrm{acre}$
50% Kentucky bluegrass
1.5-2.0 65-88
50% perennial ryegrass

$1.5-2.0$	$65-87$
$3.0-4.0$	$130-175$

OR
100% Tall fescue, Turf-type, fine leaf 3.4-4.6 150-200
Shady dry sites (well to somewhat poorly drained soils) $1 \mathrm{~b} / 1000 \mathrm{sf} \quad \mathrm{bb} / \mathrm{acre}$
65% fine fescue $\quad 2.6-3.3 \quad 114-143$
15% perennial ryegrass $\quad 0.6-0.7 \quad 26-33$

$0.8-1.0$	$35-44$
$4.0-5.0$	$174-220$

OR

80% blend of shade-tolerant Kentucky bluegrass
20% perennial ryegrass
OR
100% Tall fescue, Turf-type, fine leaf

$0.8-0-5.0$	$174-220$
$2.4-3.2$	$105-138$
$0.6-0.8$	$25-37$
$3.0-4.0$	$130-175$

Fertilizer Application in the First Year - Apply fertilizer as indicated by the soil test three to four weeks after germination (spring seedlings). If test results have not been obtained, apply 1 pound nitrogen $/ 1,000$ square feet using a fertilizer. Summer and early fall seedings, apply as above unless air temperatures are above $85^{\circ} \mathrm{F}$ for an extended period. Wait for cooler temperatures to fertilize. Late fall/winter seedings, fertilize in spring.

Stabilization Outside of Growing Season - If grading is performed outside of the growing season, ground stabilization is still required. Apply Flexterra FGM (Flexible Growth Medium) or approved equal to the area to be stabilized in accordance with the manufacturer's specifications. The application guide for Flexterra is as follows:
A. Strictly comply with equipment Manufacturer's installation instructions and recommendations. Use approved hydro-spraying machines with fantype nozzle (50-degree tip) whenever possible to achieve best soil coverage. Apply from opposing directions to assure 100% soil surface coverage. Slope interruption devices or water diversion techniques are recommended according to the slope interruption limits table on the back. B. To ensure proper application rates, measure and stake area. For maximum performance, apply in a two-step process*: 1. Apply specified prescriptive agronomic formulations along with 50% of seed with a small amount of SMM, BFM, FGM or ET-FGM for visual metering. 2. Mix balance of seed and apply SMM, BFM, FGM or ET-FGM at a rate of 50 pounds per 125 gallons (see mixing section on the back for details) of water over freshly seeded surfaces. See loading chart on the back and confirm loading rates with equipment manufacturer. Do not leave seeded surfaces unprotected, especially if precipitation is imminent. C. Fill $1 / 3$ of mechanically agitated hydroseeder with water. Turn pump on for 15 seconds and purge and pre-wet lines. Turn pump off. D. Turn agitator on and load low density materials first (i.e. seed) ${ }^{* *}$ E. Continue slowly filling tank with water while loading fiber matrix into tank. F. Consult loading chart on the back to determine the number of bags to be added for desired area and application rate. G. SMM, BFM, FGM or ET-FGM should be completely loaded before water level reaches 75% of the top of tank. H. Top off with water and mix until all fiber is fully broken apart and hydrated (minimum of 10 minutes - increase mixing time when applying in cold conditions). This is very important to fully activate the bonding additives and to obtain proper viscosity. I. Add fertilizer. J. Shut off recirculation valve to minimize potential for air entrainment within the slurry. K. Slow down agitator and start applying with a 50 -degree fan tip nozzle. L. Spray in opposing directions for maximum soil coverage.

* Depending on site conditions, SMM, BFM, FGM or ET-FGM may be applied in a one-step process where all components may be mixed together in single tank loads. Consult with Manufacturer for further details.
**Do not add tackifiers or polymers.

Seed Mixes

New England Wetmix

As per New England Wetland Plants, Inc., if planted during the fall months, the seed mix will germinate the following spring. The wetland seeds in this mix can be sown by hand, with a handheld spreader, or hydro-seeded on large or hard to reach sites. Lightly rake to insure good seed-to-soil contact. Seeding can take place on frozen soil, as the freezing and thawing weather of late fall and late winter will work the seed into the soil. If spring conditions are drier than usual watering may be required. If sowing during the summer months supplemental watering will likely be required until germination. A light mulch of clean, weed free straw is recommended.

New England Erosion Control/Restoration Mix for Detention Basins and Moist Sites

As per New England Wetland Plants, Inc., the mix may be applied by hand, by mechanical spreader, or by hydro-seeder. After sowing, lightly rake, roll or cultipack to insure good seed-tosoil contact. Best results are obtained with a Spring or late Summer seeding. Late Fall and Winter dormant seeding requires an increase in the application rate. A light mulching of clean, weed-free straw is recommended.

New England Conservation/Wildlife Mix

The mix may be applied by hand, by mechanical spreader, or by hydro-seeder. After sowing, lightly rake, roll or cultipack to insure good seed-to-soil contact. A light mulching of clean, weed-free straw is recommended.
(h) A site map/construction drawing(s) specifying the location(s), size(s) and length(s) of each erosion and sediment control practice;

Drawing S-3 along with drawing DE-2 depicts the location, size and length of each erosion and sediment control measure to be implemented during construction.
(i) Dimensions, material specifications and installation details for all erosion and sediment control practices, including the siting and sizing of any temporary sediment basins;

Drawing DE-2 depicts the dimensions, material specifications and installation details of the proposed erosion and sediment control practices.

(j) Temporary practices that will be converted to permanent control measures;

There are no temporary erosion and sediment control practices which will be converted to permanent control measures. Following site stabilization, as described in the Construction Sequence narrative on drawing $\mathrm{S}-3$, the erosion control practices will be removed.
(k) Implementation schedule for staging temporary erosion and sediment control practices, including the timing of initial placement and the duration that each practice should remain in place;

The schedule for the implementation of the temporary erosion and sediment control practices, including the timing of the initial placement and the duration that each practice will be in place may be referenced in the Erosion and Sediment Control Plan Narrative on drawing DE-1.
(l) Maintenance schedule to ensure continuous and effective operation of the erosion and sediment control practice;

A maintenance schedule has been prepared for the erosion and sediment control measures that are proposed. The schedule may be referenced on drawing S-3 and in the appendix to this SWPPP report.

(m) Name(s) of the receiving water(s);

Runoff from the project site is presently and will continue in the future to be conveyed toward the Kensico Reservoir.
(n) Delineation of SWPPP implementation responsibilities for each part of the site;

Implementation of the SWPPP erosion control measures will be the responsibility of the property owner.
(o) Description of structural practices designed to divert flows from exposed soils, store flows, or otherwise limit runoff and the discharge of pollutants from exposed areas of the site to the degree attainable; and

A stormwater management plan has been developed for the property that quantifies the existing and future condition site runoff. No other existing data is available which quantifies the flows from the property.
(p) Any existing data that describes the stormwater runoff at the site.

There is no existing data that describes the stormwater runoff at the site.
According to the NYSDEC Environmental Resource Mapper, Pleasantville Cove of the Kensico Reservoir is classified as AA. The unnamed watercourse to the east of the project site and the Bronx River to the west of NY State Route 120, both of which drain to the Kensico Reservoir, are both classified A.
(q) Post-construction stormwater controls to the satisfaction of the Town Engineer for disturbances not meeting Condition A, B or C in § 173-5B(2) of the Town Code.
(2) Land development activities as defined in § 173-4B of the Town Code and meeting Condition A, B or C below shall also include water quantity and water quality controls (post-construction stormwater runoff controls) as set forth in § 173-5B (3) below as applicable:
(a) Condition A: stormwater runoff from land development activities disturbing more than one acre and discharging a pollutant of concern to either an impaired water identified on the Department's 303 (d) list of impaired waters or a total maximum daily load (TMDL) designated watershed for which pollutants in stormwater have been identified as a source of the impairment. (b) Condition B: stormwater runoff from land development activities disturbing five or more acres.
(c) Condition C: stormwater runoff from land development activity disturbing between one acre and five acres of land during the course of the project, exclusive of the construction of single family residences and construction activities at agricultural properties.

The Kensico Reservoir is not listed by the NYSDEC in the Department's Section 303(d) list, nor is it listed as a TMDL designated watershed. Therefore, it appears that only Condition C would apply to the Hidden Oak Subdivision project.
(3) SWPPP requirements for Conditions A, B and C :
(a) All information in § 173-5B (1) of the Town Code.

See below.
(a) All information in § 173-5B (1) of the Town Code.

The information required in Section 173-5B (1) of the Town Code may be referenced above in Section B of this report.
(b) Description of each post-construction stormwater management practice.

A summary and description of each may be found in Table 2 above.
(c) Site map/construction drawing(s) showing the specific location(s) and size(s) of each postconstruction stormwater management practice.

Drawing S-3 shows the location and size of each post-construction stormwater management practice.
(d) Hydrologic and hydraulic analysis for all structural components of the stormwater management system for the applicable design storms;

The hydrologic analysis for the modeled storm events (1 year, 2 year, 10 year, 25 year and 100 year recurrence interval) may be referenced in Appendix C of this report.
(e) Comparison of post-development stormwater runoff conditions with predevelopment conditions.

Table 2, above, provides a comparison of the pre-development and post-development peak rates of runoff to the design points. As can be seen in the table, the project stormwater management
plan, once constructed, will result in a peak rate of runoff that is less than or equal to the existing peak rates of runoff for all of the modeled storm events at Design Points 1, 2 and 4. At design point 3, a small increase is predicted as a result of the conversion of a portion of the drainage area from woods to lawn for the construction of the septic system on Lot 2. The small increase in the peak rate is not significant.
(f) Dimensions, material specifications and installation details for each post-construction stormwater management practice.

The dimensions, material specifications and installation details for each post-construction stormwater management practice may be referenced on drawings DE-1 and DE-2.
(g) Maintenance schedule to ensure continuous and effective operation of each postconstruction stormwater management practice.

A maintenance schedule for each post-construction stormwater management practice is included in this report and may be referenced in Appendix C.
(h) Maintenance easements to ensure access to all stormwater management practices at the site for the purpose of inspection and repair. Easements shall be recorded on the plan and shall remain in effect with transfer of title to the property.

Maintenance easements are proposed to ensure access to the stormwater management practices that will not be in solely private ownership. The maintenance easements may be referenced on drawing IPP-1.
(i) Inspection and maintenance agreement binding on all subsequent landowners served by the on-site stormwater management measures in accordance with § 173-7 of the Town Code.

An inspection and maintenance agreement will be prepared for review by the Town and its counsel.
(j) For Condition A, the SWPPP shall be prepared by a landscape architect, certified professional or professional engineer and must be signed by the professional preparing the plan, who shall certify that the design of all stormwater management practices meets the requirements in this chapter.

The project SWPPP has been prepared by licensed professional engineer.
C. Other environmental permits. The applicant shall assure that all other applicable environmental permits have been or will be acquired for the land development activity prior to approval of the final stormwater design plan.

The applicant will commence the process to obtain approval of the SWPPP from the New York City Department of Environmental Protection (once a State Environmental Quality Review Act determination is made by the Lead Agency) and a SPDES General Permit for Stormwater

Page 60
Discharges from Construction Activity from the New York State Department of Environmental Conservation (following the approval of the SWPPP).
D. Contractor certification.
(1) Each contractor and subcontractor identified in the SWPPP who will be involved in soil disturbance and/or stormwater management practice installation shall sign and date a copy of the following certification statement before undertaking any land development activity: "I certify under penalty of law that I understand and agree to comply with the terms and conditions of the Stormwater Pollution Prevention Plan. I also understand that it is unlawful for any person to cause or contribute to a violation of water quality standards."
(2) The certification must include the name and title of the person providing the signature, address and telephone number of the contracting firm, the address (or other identifying description) of the site, and the date the certification is made.
(3) The certification statement(s) shall become part of the SWPPP for the land development activity.

So noted that each contractor to the project will need to sign a certification statement.
E. A copy of the SWPPP shall be retained at the site of the land development activity during construction from the date of initiation of construction activities to the date of final stabilization.

A copy of the SWPPP shall be retained at the site, as required.

FIGURES

Appendix A

Stormwater Quality/
Runoff Reduction Volume Calculations

Table 1
Hidden Oak Subdivision Existing Condition Drainage Areas

Table 2

Hidden Oak Subdivision

Future Condition Drainage Areas and Water Quality Volume (WQv) Calculation

Under the Watershed Regulations, the requirement is to capture and treat the runoff from the 1 -year, 24 hour storm event which is equal to 3.1 inches of precipitation, or the water quality volume, whichever is greater. The following calculates the treatment volume of runoff from the 1-year storm (using TR-55 in accordance with the New York Stormwater Management Design Manual) and the Water Quality Volume - $1.3^{\prime \prime}$ of precipitation (using the 90% Rule).

$$
\begin{array}{r|r|}
\text { 1-year, } 24 \text { hour precipitation } & = \\
90 \% & 3.1 \\
\text { inches } \\
\text { inches }
\end{array}
$$

Drainage Area	Area (in sq feet)	Area (in acres)	CN Value	Runoff Depth (inches)	1 yr, 24 hr storm Treatment Vol. (cu feet)	90% Rule Treatment Vol. (cu feet)

1 - FDA-1.1 to Design Point 1: Treatment in Bioretention Facility

Lawn/landscape, HSG B	18,513	0.425	61			
Woods, HSG B	7,020	0.161	55			
Woods, HSG B (OFF-SITE)	3,739	0.086	55			
TOTALS /WEIGHTED CN	29,272	0.672	59	0.34	824	159

Impervious Surfaces $=$	0	sq feet	\% Impervious =	0.0
$R v=$	0.05			
Water Quality Volume, WQv =	0.019	acre-feet	1 year storm	
Water Quality Volume, WQv =	0.004	acre-feet	90\% Rule	
Specified Reduction Factor, S	Area (ac.)	\%	\underline{S}	
Area in HSG B	0.672	100.0	0.4	
Area in HSG C	0.000	0.0	0.3	
Area in HSG D	0.000	0.0	0.2	
TOTAL	0.672	100.0		
Specified Reduction Factor, S=			0.40	

	Area (in sq feet)	Area (in acres)	CN Value	Runoff Depth (inches)	1 yr, 24 hr storm Treatment Vol. (cu feet)	90% Rule Treatment Vol. (cu feet)

2 - FDA1. 2 to Design Point 1: Treatment in Infiltration Facility

Table 2
Hidden Oak Subdivision
Future Condition Drainage Areas and Water Quality Volume (WQv) Calculation

Drainage Area	Area (in sq feet)	$\begin{gathered} \text { Area } \\ \text { (in acres) } \end{gathered}$	CN Value	Runoff Depth (inches)	1 yr, 24 hr storm Treatment Vol. (cu feet)	\qquad

3 - FDA1.3 to Design Point 1: Treatment in Stormwater Management Basin			
Impervious surfaces, HSG B	9,958	0.229	98
Crushed stone maintenance path, HSG B	1,720	0.039	85
Retaining Wall, HSG B	185	0.004	98
Lawn/landscape, HSG B	60,200	1.382	61
Lawn/landscape, HSG C	2,190	0.050	74
Lawn/landscape, HSG D	523	0.012	80
Brush/Grass Mix (BASIN), HSG B	12,069	0.277	48
Woods, HSG B	34,260	0.787	55
Woods, HSG B (OFF-SITE)	51,994	1.194	55
Woods, HSG C	2,962	0.068	70
Woods, HSG D	1,481	0.034	77
TOTALS /WEIGHTED CN	177,542	4.076	60

Impervious Surfaces $=$	10,143	sq feet	\% Impervious =	5.7
$\mathrm{Rv}=$	0.10			
Water Quality Volume, WQv =	0.126	acre-feet	1 year storm	
Water Quality Volume, WQv =	0.045	acre-feet	90\% Rule	
Specified Reduction Factor, S	Area (ac.)	\%	S	
Area in HSG B	3.868	95.9	0.4	
Area in HSG C	0.118	2.9	0.3	
Area in HSG D	0.046	1.1	0.2	
TOTAL	4.032	100.0		
Specified Reduction Factor, S=			0.39	

	Area (in sq feet)	Area (in acres)	CN Value	Runoff Depth (inches)	$1 \mathrm{yr}, 24 \mathrm{hr}$ storm Treatment Vol. (cu feet)	90% Rule Treatment Vol. (cu feet)

4 - FDA1.4 to Design Point 1: No Treatment Provided					
Lawn/landscape, HSG B	478	0.011	61		293
Lawn/landscape, HSG C	124	0.003	74		
Lawn/landscape, HSG D	62	0.001	80		
Woods, HSG B	3,040	0.070	55		
Woods, HSG C	2,102	0.048	70		
Woods, HSG D	1,051	0.024	77		
TOTALS / WEIGHTED CN	6,857	0.157	64	0.51	
Impervious Surfaces $=$	0 sq feet		\% Impervious =		
$\mathrm{Rv}=$	0.05				
Water Quality Volume, WQv =	0.007 acre-feet		1 year storm		
Water Quality Volume, WQv =	0.001 acre-feet		90\% Rule		
Specified Reduction Factor, S	Area (ac.)	\%	S		
Area in HSG B	0.081	51.3	0.4		
Area in HSGC	0.051	32.5	0.3		
Area in HSG D	0.026	16.2	0.2		
TOTAL	0.157	100.0			
Specified Reduction Factor, $\mathrm{S}=$			0.34		

Table 2
Hidden Oak Subdivision
Future Condition Drainage Areas and Water Quality Volume (WQv) Calculation

	Area (in sq feet)	Area (in acres)	CN Value	Runoff Depth (inches)	1 yr, 24 hr storm Treatment Vol. (cu feet)	90% Rule Treatment Vol. (cu feet)

5 - FDA-L1 (LOT 1) to Design Point 1: Treatment in Infiltration Facility

Impervious surfaces, HSG B	8,454	0.194	98		
Lawn/landscape, HSG B	784	0.018	61		
TOTALS /WEIGHTED CN	9,238	0.212	95	2.55	1,961

Impervious Surfaces $=$	8,454 sq feet		$\%$ Impervious $=$	91.5
$\mathrm{Rv}=$	0.8			
Water Quality Volume, WQv =	0.04	-feet	1 year storm	
Water Quality Volume, WQv =	0.02	e-feet	90\% Rule	
Specified Reduction Factor, S	Area (ac.)	\%	S	
Area in HSG B	0.212	100.0	0.4	
Area in HSG C	0.000	0.0	0.3	
Area in HSG D	0.000	0.0	0.2	
TOTAL	0.212	100.0		
Specified Reduction Factor, S=			0.40	

Drainage Area	Area (in sq feet)	$\begin{gathered} \text { Area } \\ \text { (in acres) } \end{gathered}$	CN Value	Runoff Depth (inches)	1 yr, 24 hr storm Treatment Vol. (cu feet)	\qquad

6 - FDA-L2.1 (LOT 2) to Design Point 1: Treatment in Infiltration Facility

Impervious surfaces, HSG B	3,185	0.073	98

Lawn/landscape, HSG B $\quad 2,550 \quad 0.059 \quad 61$
$\begin{array}{lllllll}\text { TOTALS / WEIGHTED CN } & 5,735 & 0.132 & 82 & 1.46 & 697 & 342\end{array}$

Impervious Surfaces $=$
3,185 sq feet \quad \% Impervious $=$
55.5
$R v=$
0.550

Water Quality Volume, $W Q v=\quad 0.016$ acre-feet 1 year storm
Water Quality Volume, WQv = 0.008 acre-feet $\quad 90 \%$ Rule

Specified Reduction Factor, S	Area (ac.)	\%	S
Area in HSG B	0.132	100.0	0.4
Area in HSG C	0.000	0.0	0.3
Area in HSG D	0.000	0.0	0.2
TOTAL	0.132	100.0	

Table 2
Hidden Oak Subdivision
Future Condition Drainage Areas and Water Quality Volume (WQv) Calculation

Drainage Area	$\begin{gathered} \text { Area } \\ \text { (in sq feet) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Area } \\ \text { (in acres) } \\ \hline \end{gathered}$	CN Value	Runoff Depth (inches)	1 yr, 24 hr storm Treatment Vol. (cu feet)	90\% Rule Treatment Vol. (cu feet)

7 - FDA-L2.2 (LOT 2) to Design Point 1: Treatment in Infiltration Facility Impervious surfaces, HSG B
TOTALS / WEIGHTED CN

4,285	0.098
4,285	0.098

98
2.87 1,024

Impervious Surfaces $=$	4,285 sq feet		\% Impervious =	100.0
$\mathrm{Rv}=$	0.9			
Water Quality Volume, WQv =	0.024 acre-feet		1 year storm	
Water Quality Volume, WQv =	0.010 acre-feet		90\% Rule	
Specified Reduction Factor, S	Area (ac.)	\%	\underline{S}	
Area in HSG B	0.098	100.0	0.4	
Area in HSG C	0.000	0.0	0.3	
Area in HSG D	0.000	0.0	0.2	
TOTAL	0.098	100.0		
Specified Reduction Factor, S=			0.40	

	Area (in sq feet)	Area (in acres)	CN Value	Runoff Depth (inches)	1 yr, 24 hr storm Treatment Vol. (cu feet)	90% Rule Treatment Vol. (cu feet)

8 - FDA-L3.1 (LOT 3) to Design Point 1:	Treatment in Rain Garden				
Impervious surfaces (house), HSG B	982	0.023	98		
Impervious surfaces (house), HSG B	907	0.021	98		
Impervious surfaces (walks), HSG B	387	0.009	98		
Lawn/landscape, HSG B	5,387	0.124	61		
Woods, HSG B	3,721	0.085	55		
TOTALS /WEIGHTED CN	11,384	0.261	66	0.59	563

Impervious Surfaces $=$	2,276 sq feet		
$\mathrm{Rv}=$			
Water Quality Volume, WQv =	0.013 acre-feet 1 year		
Water Quality Volume, WQv =	0.007 acre-feet		
Specified Reduction Factor, S	Area (ac.)	\%	S
Area in HSG B	0.023	100.0	0.4
Area in HSG C	0.000	0.0	0.3
Area in HSG D	0.000	0.0	0.2
TOTAL	0.023	100.0	
Specified Reduction Factor, S=			0.40

Table 2
Hidden Oak Subdivision
Future Condition Drainage Areas and Water Quality Volume (WQv) Calculation

Drainage Area	Area (in sq feet)	$\begin{gathered} \text { Area } \\ \text { (in acres) } \end{gathered}$	CN Value	Runoff Depth (inches)	$1 \mathrm{yr}, 24 \mathrm{hr}$ storm Treatment Vol. (cu feet)	90% Rule Treatment Vol. (cu feet)

9 - FDA-L3.2 (LOT 3) to Design Point 1: Treatment in RAIN GARDEN

Impervious surfaces, HSG B	1,015	0.023	98
Lawn/landscape, HSG B	1,875	0.043	61
Woods, HSG B	1,396	0.032	55
TOTAL S /WEIGHTED CN	4,286	0.098	68

Impervious Surfaces =	1,015 sq feet		$\%$ Impervious $=$	23.7
$\mathrm{Rv}=$	0.26			
Water Quality Volume, WQv =	0.00	re-feet	1 year storm	
Water Quality Volume, WQv =	0.003 acre-feet		90\% Rule	
Specified Reduction Factor, S	Area (ac.)	\%	\underline{S}	
Area in HSG B	0.098	100.0	0.4	
Area in HSG C	0.000	0.0	0.3	
Area in HSG D	0.000	0.0	0.2	
TOTAL	0.098	100.0		
Specified Reduction Factor, S=			0.40	

OVERALL DRAINAGE AREA TO DESIGN POINT 1					
				$1 \mathrm{yr}, 24 \mathrm{hr} \mathrm{storm}$	$1 \mathrm{yr}, 24 \mathrm{hr}$ storm
	AREA	AREA	Curve	Treatment Vol.	Treatment Vol.
LAND COVER TYPE	(sq feet)	(acres)	Number	(cu feet)	(acre-feet)
Impervious surfaces, HSG B	40,599	0.932	98		
Lawn/landscape, HSG B	92,967	2.134	61		
Lawn/landscape, HSG C	2,314	0.053	74		
Lawn/landscape, HSG D	585	0.013	80		
Brush/Grass Mix, HSG B	12,069	0.277	48		
Woods, HSG B	52,965	1.216	55		
Woods, HSG C	5,064	0.116	70		
Woods, HSG D	2,532	0.058	77		
TOTAL (ON-SITE)	209,095	4.800	67	13,668	0.314
Woods, HSG B (OFF-SITE)	55,733	1.279			
TOTAL INCLUDING OFF-SITE	264,828	6.080			

Table 2
Hidden Oak Subdivision
Future Condition Drainage Areas and Water Quality Volume (WQv) Calculation
OVERALL DRAINAGE AREA TO EXTENDED DETENTION SWMB

LAND COVER TYPE	AREA (sq feet)	AREA (acres)	CURVE NUMBER
Impervious surfaces, HSG B	40,599	0.932	98
Lawn/landscape, HSG B	92,489	2.123	61
Lawn/landscape, HSG C	2,190	0.050	74
Lawn/landscape, HSG D	523	0.012	80
Brush/Grass Mix, HSG B	12,069	0.277	48
Woods, HSG B	49,925	1.146	55
Woods, HSG C	2,962	0.068	70
Woods, HSG D	1,481	0.034	77
Woods, HSG B (OFF-SITE)	55,733	1.279	55
TOTAL (ON-SITE)	$\mathbf{2 5 7 , 9 7 1}$	5.922	64

Drainage Area	Area (in sq feet)	$\begin{gathered} \text { Area } \\ \text { (in acres) } \end{gathered}$	$C N$ Value	Runoff Depth (inches)	$1 \mathrm{yr}, 24$ hr storm Treatment Vol. (cu feet)	90\% Rule Treatment Vol. (cu feet)
10 - FDA2.1 to Design Point 2: No treatment						
Lawn/landscape, HSG B	16,814	0.386	61			
Woods, HSG B	21,954	0.504	55			
TOTALS / WEIGHTED CN	38,768	0.890	58	0.31	99	210

Impervious Surfaces $=\quad 0 \mathrm{sq}$ feet $\quad \%$ Impervious $=\quad 0.0$

Impervious Surfaces $=$	0 sq feet		\% Impervious $=$	0.0
$\mathrm{Rv}=$	0.05			
Water Quality Volume, WQv =	0.023 acre-feet		1 year storm	
Water Quality Volume, WQv =	0.005 acre-feet		90\% Rule	
Specified Reduction Factor, S	Area (ac.)	\%	S	
Area in HSG B	0.890	100.0	0.4	
Area in HSG C	0.000	0.0	0.3	
Area in HSG D	0.000	0.0	0.2	
TOTAL	0.890	100.0		
Specified Reduction Factor, S=			0.40	

Table 2
Hidden Oak Subdivision
Future Condition Drainage Areas and Water Quality Volume (WQv) Calculation

	Area (in sq feet)	Area (in acres)	CN Value	Runoff Depth (inches)	1 yr, 24 hr storm Treatment Vol. (cu feet)	90% Rule Treatment Vol. (cu feet)

11 - FDA2.2 to Design Point 2: Treatment in Infiltration Facility

Subdivision Road, HSG B
Off-site impervious road, HSG B
Lawn/landscape, HSG B
Woods, HSG B (OFF-SITE)
Woods, HSG B
TOTALS / WEIGHTED CN

11,021	0.253	98
1,437	0.033	98
1,307	0.030	61
9,109	0.209	55
5,658	0.130	55
28,532	0.655	74

0.97 2,312

1,369

Impervious Surfaces $=$	12,458 sq feet	
Rv $=$	0.44	
Water Quality Volume, $\mathrm{WQv}=$	0.053 acre-feet	1 year storm
Water Quality Volume, $\mathrm{WQv}=$	0.031 acre-feet	90% Rule

Specified Reduction Factor, S	Area (ac.)	\%	S
Area in HSG B	0.655	100.0	0.4
Area in HSG C	0.000	0.0	0.3
Area in HSG D	0.000	0.0	0.2
TOTAL	0.655	100.0	

Specified Reduction Factor, $\mathrm{S}=\quad 0.40$

	Area (in sq feet)	Area (in acres)	CN Value	Runoff Depth (inches)	1 yr, 24 hr storm Treatment Vol. (cu feet)	90% Rule Treatment Vol. (cu feet)

12 - FDA2.3 to Design Point 2: Treatment in Vegetated Swale			
Impervious (existing, off-site), HSG B	715	0.016	98
Woods, HSG B (OFF-SITE)	41,149	0.945	55
Impervious, walkway, HSG B	112	0.003	98
Lawn/landscape, HSG B	23,284	0.535	61
Woods, HSG B	19,715	0.453	55
TOTALS /WEIGHTED CN	84,975	1.951	57

Impervious Surfaces $=$	827 sq feet		
RV $=$	0.06		
Water Quality Volume, WQv $=$	0.045 acre-feet	1 year	
Water Quality Volume, WQv $=$	0.012 acre-feet	90%	
Specified Reduction Factor, S	Area (ac.)	$\underline{\%}$	\underline{S}
Area in HSG B	1.951	100.0	0.4
Area in HSG C	0.000	0.0	0.3
Area in HSG D	0.000	0.0	0.2
TOTAL	1.951	100.0	
Specified Reduction Factor, S=			0.40

Table 2
Hidden Oak Subdivision
Future Condition Drainage Areas and Water Quality Volume (WQv) Calculation

OVERALL DRAINAGE AREA TO DESIGN POINT 2					
				$1 \mathrm{yr}, 24 \mathrm{hr} \mathrm{storm}$	$1 \mathrm{yr}, 24 \mathrm{hr} \mathrm{storm}$
	AREA	AREA		Treatment Vol.	Treatment Vol.
LAND COVER TYPE	(sq feet)	(acres)		(cu feet)	(acre-feet)
New Impervious surfaces, HSG B	11,133	0.256	98		
Lawn/landscape, HSG B	41,405	0.951	61		
Woods, HSG B	47,327	1.086	55		
TOTAL	99,865	2.293	62	5,266	0.121
WEIGHTED CURVE NUMBER =					

$\begin{array}{lll}\text { Woods, HSG B (OFF-SITE) } & 50,258 & 1.154\end{array}$

Drainage Area	Area (in sq feet)	Area (in acres)	CN Value	Runoff Depth (inches)	$1 \mathrm{yr}, 24 \mathrm{hr}$ storm Treatment Vol. (cu feet)	90% Rule Treatment Vol. (cu feet)

13 - FDA-3 to Design Point 3: No Treatment Provided

Lawn/landscape, HSG B
Woods, HSG B
TOTALS / WEIGHTED CN
Impervious Surfaces =
$R v=$

5,955	0.137	61
17,100	0.393	55
23,055	0.529	57

$23,055 \quad 0.529$
0.28
$\%$ Impervious = 533 125

Impervious Surfaces =	0 sq feet		\% Impervious =	0.0
$R v=$	0.05			
Water Quality Volume, WQv =	0.012 acre-feet		1 year storm	
Water Quality Volume, WQv =	0.003 acre-feet		90\% Rule	
Specified Reduction Factor, S	Area (ac.)	\%	S	
Area in HSG B	0.529	100.0	0.4	
Area in HSG C	0.000	0.0	0.3	
Area in HSG D	0.000	0.0	0.2	
TOTAL	0.529	100.0		
Specified Reduction Factor, S=			0.40	

Table 2
Hidden Oak Subdivision
Future Condition Drainage Areas and Water Quality Volume (WQv) Calculation

Drainage Area	Area (in sq feet)	Area (in acres)	CN Value	Runoff Depth (inches)	$1 \mathrm{yr}, 24 \mathrm{hr}$ storm Treatment Vol. (cu feet)	90% Rule Treatment Vol. (cu feet)

14 - FDA-4 to Design Point 4: No Treatment Provided
Woods, HSG B
Woods, HSG C
Woods, HSG D
TOTALS / WEIGHTED CN

4,220
4,220
2,105
$\begin{array}{lll}10,545 & 0.242 & 65\end{array}$
0.55

486
57

Impervious Surfaces $=$
0 sq feet $\%$ Impervious $=$ 0.0
$R v=$ 0.05

Water Quality Volume, WQv =
0.011 acre-feet 1 year storm

Water Quality Volume, WQv =
0.001 acre-feet $\quad 90 \%$ Rule

Specified Reduction Factor, S Area (ac.) \% \underline{S}
$\begin{array}{llll}\text { Area in HSG B } & 0.242 & 100.0 & 0.4\end{array}$
Area in HSG C $\quad 0.000 \quad 0.0 \quad 0.3$
$\begin{array}{llll}\text { Area in HSG D } & 0.000 & 0.0 & 0.2\end{array}$
$\begin{array}{lll}\text { TOTAL } & 0.242 & 100.0\end{array}$
Specified Reduction Factor, $\mathrm{S}=\quad 0.40$

Table 3
Hidden Oak Subdivision
Percolation Test Results

Hole \#I Facility \#	$\begin{gathered} \text { Run } \\ \# \end{gathered}$	Start Time	Stop Time		$\begin{gathered} \text { Elapsed } \\ \text { Tíme } \\ \text { (min.) } \\ \hline \end{gathered}$	Elapsed Time (hr)	Depth to water from TOC (in.)		WaterLeveldrop(inches)	Soil rate min/lin. drop	Soil rate (in./hr.)	Notes
							Start	Stop				
P-1	1	10:15	11:05	0:50	50	0.83	12.00	36.00	24.00	2.08	28.8	Hole dry upon check
	2	11:06	11:54	0:48	48	0.80	12.00	36.00	24.00	2.00	30.0	Hole just dry
SWMF 2.2	3	11:59	12:59	1:00	60	1.00	12.00	29.00	17.00	3.53	17.0	
	4	13:00	14:02	1:02	62	1.03	12.00	29.00	17.00	3.65	16.5	
P-2	1	10:19	11:19	1:00	60	1.00	12.00	25.00	13.00	4.62	13.0	
	2	11:20	12:20	1:00	60	1.00	12.00	24.50	12.50	4.80	12.5	
SWMF L1	3	12:20	13:20	1:00	60	1.00	12.00	24.25	12.25	4.90	12.3	
	4	13:20	14:20	1:00	60	1.00	12.00	24.00	12.00	5.00	12.0	
P-3	1	10:23	11:09	0:46	46	0.77	12.00	36.00	24.00	1.92	31.3	Hole dry upon check
	2	11:11	12:11	1:00	60	1.00	12.00	35.50	23.50	2.55	23.5	
SWMF L2.1	3	12:13	13:13	1:00	60	1.00	12.00	34.00	22.00	2.73	22.0	
	4	13:14	14:14	1:00	60	1.00	12.00	33.00	21.00	2.86	21.0	
P-4	1	10:27	11:27	1:00	60	1.00	12.00	33.00	21.00	2.86	21.0	
	2	11:29	12:29	1:00	60	1.00	12.00	31.50	19.50	3.08	19.5	
SWMF L2.2	3	12:30	13:30	1:00	60	1.00	12.00	31.00	19.00	3.16	19.0	
	4	13:30	14:30	1:00	60	1.00	12.00	31.00	19.00	3.16	19.0	
P-5	1	10:30	11:22	0:52	52	0.87	12.00	36.00	24.00	2.17	27.7	Hole dry upon check
	2	11:24	12:24	1:00	60	1.00	12.00	36.00	24.00	2.50	24.0	Hole dry upon check
SWMF 1.2	3	12:24	13:06	0:42	42	0.70	12.00	35.75	23.75	1.77	33.9	
	4	13:09	13:58	0:49	49	0.82	12.00	35.75	23.75	2.06	29.1	

Note: Holes that were dry upon check have lower rates ($\mathrm{min} / \mathrm{in}$.) than shown for those runs

Pre-Soak	Date: $11 / 11 / 2014$
P-1	$9: 30 \mathrm{AM}$
P-2	$9: 40 \mathrm{AM}$
P-3	$9: 55 \mathrm{AM}$
P-4	$10: 00 \mathrm{AM}$
P-5	$10: 08 \mathrm{AM}$

Table 4
Hidden Oak Subdivision Soil Percolation Rate Calculations

Determine soil percolation rate for stormwater modeling purposes

Using a percolation test hole with the following parameters:
Percolation hole diameter $=$ Depth of percolation hole $=$ Bottom surface area =

Percolation Rates as per testing:

P-1	3.65 minutes per inch
P-2	5.00 minutes per inch
P-3	2.9 minutes per inch
P-4	3.16 minutes per inch
P-5	2.06 minutes per inch

Include a 25\% safety (soil clogging) factor for percolation:
P-1 4.6 minutes per inch
P-2 6.3 minutes per inch
P-3
P-4
P-5

6 inches
36 inches
0.196 square feet
3.65 minutes per inch
5.00 minutes per inch
minutes per inch
2.06 minutes per inch
4.6 minutes per inch
3.6 minutes per inch
3.9 minutes per inch
2.6 minutes per inch

Remarks
casing diameter
as constructed
calculated (pi x radius^2)
as per test
25% safety factor applied
25% safety factor applied 25% safety factor applied 25% safety factor applied 25% safety factor applied

Table 5
Hidden Oak Subdivision Stormwater Infiltration Design Calculations

RECHARGERS IN DRAINAGE AREA TO DESIGN POINT 1

Stormwater Infiltration Facility for FDA-1.2

FDA-1.2	Consists of:	32
Percolation Test P-5		units
V_{w}, total volume in chambers $=$	3,065.8	cubic fee
Height of Chambers, including stone $=$	3.17	et
Bed Width =	23.50	eet
Bed Length =	56.17	et
Bed Area =	1,319.9	eet
Side Surface Area =	261.2	sq feet
Vp, Volume of percolation $=$	673.5	bic
Total 24 hr volume, $\mathrm{Vt}=$	3,739.3	bic
Compare to 1 yr storm WQv =	2,588.7	bic fe
Capture volume in FDA-1.2 Facility $=$	3,065.8	cubic fee

Recharger V8HD chambers
Remarks
Vol per chamber x no. of chambers
Stone below chambers
As per design
As per design
As per design

Calculated as side surface surface area x soil perc rate, Sr

Cultec 150XLHD chambers

Remarks
Vol per chamber x no. of chambers
Stone below chambers

As per design
As per design

Calculated as side surface surface area \times soil perc rate, Sr

Recharger 330XLHD chambers

Remarks
Vol per chamber x no. of chambers
Stone below chambers

As per design
As per design

Calculated as side surface surface area x soil perc rate, Sr

Consists of: 10 units

984.3	cubic feet
3.04	feet
20.83	feet
24.50	feet
510.42	feet
175.7	sq feet

$\mathbf{5 1 0 . 4 2}$	feet
175.7	sq feet

Stormwater Infiltration Facility for Lo

Percolation Test P-3

$\mathrm{V} w$, total volume in chambers Height of Chambers, including stone $=$ Bed Width =
Bed Length =
Bed Area =
Side Surface Area =

Vp , Volume of percolation Total 24 hr volume, Vt Compare to 1 yr storm WQv

Capture volume in FDA-L2.1 Facility = \qquad 984.3 cubic feet
627.6 cubic feet 1,611.9 cubic feet 696.9 cubic feet

Table 5
Hidden Oak Subdivision Stormwater Infiltration Design Calculations

FDA-L2.2	Consists of:	12	Recharger 330XLHD chambers
Percolation Test P-4		units	Remarks
Vw, total volume in chambers	1,363.3	cubic feet	Vol per chamber x no. of chambers
Height of Chambers, including stone =	0.50	feet	Stone below chambers
Bed Width =	20.83	feet	
Bed Length =	24.50	feet	As per design
Bed Area =	510.42	feet	As per design
Side Surface Area =	69.8	sq feet	
Vp, Volume of percolation	249.4	cubic feet cubic feet cubic feet	Calculated as side surface surface area \times soil perc rate, Sr
Total 24 hr volume, Vt	1,612.7		
Compare to 1 yr storm WQv	1,024.1		
Capture volume in FDA-L2.2 Facility =	1,363.3	cubic feet	
RECHARGERS IN DRAINAGE AREA TO DESIGN POINT 2			
Stormwater Infiltration Facility for FDA-2.2			
FDA-2.2 Field A	Consists of:	12	Recharger 330XLHD chambers
Percolation Test P-1		units	Remarks
Vw , total volume in chambers	1,110.6	cubic feet feet	Vol per chamber x no. of chambers
Height of Chambers, including stone $=$	2.54		Stone below chambers
Bed Width =	16.0	feet feet	As per design
Bed Length =	31.5	feet	
FDA-2.2 Field B	Consists of:	16	Recharger 330XLHD chambers
Percolation Test P-1		units	Remarks
Vw, total volume in chambers	1,458.6	cubic feet feet	Vol per chamber x no. of chambers
Height of Chambers, including stone =	2.54		Stone below chambers
Bed Width =	20.8	feet	As per design
Bed Length =	31.5		As per design
Perimeter of chamber installation	162.6	fee	As per design (measured on plan)
Side surface area	413.3	sq feet	Calculated as perimeter x height
Total Volume in Chambers	2,569.2	cubic feet cubic feet cubic feet	Sum of Vw for Field $A+$ Field B Calculated as side surface surface area \times soil perc rate, Sr
V , Volume of percolation	1,884.0		
Total $24 \mathrm{hr} \mathrm{volume}$,	2,994.7		
Compare to 1 yr storm WQv	2,311.8	cubic feet	

Table 6
Hidden Oak Subdivision Rain Garden Design Calculations

RAIN GARDEN FOR DRAINAGE AREA FDA-L3.1

Elevation feet	Area s.f.	Incremental Volume c.f.	Volume Sum cu. ft.	Volume Sum acre-feet
144.50	1025	0	0	0
144.75	1135	270	270	0.0062
145.00	1245	298	568	0.0130

Parameters for Rain Garden Design as per 2015 NYS Stormwater Management Design Manual

```
Equations as per 2015 NYS SMDM:
WQv\leqVSM + VDL + (DP x ARG)
VSM = ARG x DSM xnSM
VDL (optional) = ARG x DDL }\timesnD
where:
    VSM = volume of the soil media [cubic feet]
    VDL = volume of the gravel drainage layer [cubic feet]
    ARG = rain garden surface area [square feet]
    DSM = depth of the soil media, typically* 1.0 to 1.5 [feet]
    DDL = depth of the drainage layer, minimum 0.5 [feet]
    DP = depth of ponding above surface, maximum 0.5 feet [feet]
    nSM = porosity of the soil media ( }\geq20%\mathrm{ )
    nDL = porosity of the drainage layer ( }\geq40%\mathrm{ )
    WQv = Water Quality Volume [cubic feet], as defined in Chapter 4
\begin{tabular}{rcl} 
Surface Area of Rain Garden, ARG \(=\) & 1025 sq feet & \begin{tabular}{l} 
Remarks \\
as per design
\end{tabular} \\
Depth of the Soil Media, DSM \(=\) & 2.5 foot & as per design \\
Porosity of the Soil Media, \(\mathrm{nSM}=\) & \(30 \%\) & \begin{tabular}{l} 
typical
\end{tabular} \\
Depth of the Gravel Drainage Layer \(=\) & 1 foot & as per design \\
Porosity of the Drainage Layer, nDL \(=\) & \(40 \%\) & typical \\
Depth of Ponding above Surface \(=\) & 0.5 feet & as per design \\
Volume of Soil Media, VSM \(=\) & 769 cubic feet & calculated \\
Volume of Gravel Drainage Layer, VDL \(=\) & 410 cubic feet & calculated \\
WQv for FDA L3.1A on Lot \(3=\) & 563 cubic feet & calculated \\
WQV \(<=\) VSM + VDL + (DP \(\times\) ARG \()\) & & 1691 cubic feet \\
calculated
\end{tabular}
```

Since the WQv for FDA-L3. 1 is less than the equation above, the design is acceptable.

Table 6
Hidden Oak Subdivision
Rain Garden Design Calculations

RAIN GARDEN \#2 FOR DRAINAGE AREA FDA L-3.2

Elevation feet	Area s.f.	Incremental Volume c.f.	Volume Sum cu. ft.	Volume Sum acre-feet
152.00	620	0	0	0
152.25	770	174	174	0.0040
152.50	920	211	385	0.0088

Parameters for Rain Garden Design as per 2015 NYS Stormwater Management Design Manual
Equations as per 2015 NYS SMDM:
$W Q v \leq V S M+V D L+(D P \times A R G)$
VSM $=A R G \times D S M \times n S M$
VDL (optional) $=A R G \times D D L \times n D L$
where:
VSM = volume of the soil media [cubic feet]
VDL = volume of the gravel drainage layer [cubic feet]
ARG = rain garden surface area [square feet]
DSM $=$ depth of the soil media, typically* 1.0 to 1.5 [feet]
DDL $=$ depth of the drainage layer, minimum 0.5 [feet]
$D P=$ depth of ponding above surface, maximum 0.5 feet [feet]
$n S M=$ porosity of the soil media ($\geq 20 \%$)
$n D L=$ porosity of the drainage layer ($\geq 40 \%$)
WQv = Water Quality Volume [cubic feet], as defined in Chapter 4

		Remarks
Surface Area of Rain Garden, ARG =	620 sq feet	as per design
Depth of the Soil Media, DSM =	1.5 foot	as per design
Porosity of the Soil Media, $\mathrm{nSM}=$	30%	typical
Depth of the Gravel Drainage Layer =	1 foot	as per design
Porosity of the Drainage Layer, $\mathrm{nDL}=$	40 \%	typical
Depth of Ponding above Surface, DP =	0.5 feet	as per design
Volume of Soil Media, VSM $=$	279 cubic feet	calculated
Volume of Gravel Drainage Layer, VDL =	248 cubic feet	calculated
WQv for FDA L3.2C on Lot $3=$	242 cubic feet	calculated
$V S M+V D L+(D P \times A R G)=$	837 cubic feet	calculated

Since the WQv for FDA-L3.2 is less than the equation above, the design is acceptable.

Table 7.1
Hidden Oak Subdivision Bioretention Facility Calculations for FDA-1.1

Using equations provided in the 2015 New York State Stormwater Management Design Manual chapter 6 , filtering systems, page 6-50 and 6-51:

1. WQv Calculation:

WQv $=$	824 cubic feet	as per calculation
0.019 acre feet, or	as per calculation	

2. Determine Size of Bioretention Area

Using the equation, $A f=(W Q v)(d f) /[(k)(h f+d f)(f f)]$
Where,
$W Q v=$ water quality volume, in cubic feet
$A f=$ surface area of filter bed in sq feet
$d f=$ filter bed depth in feet
$k=$ coefficient of permeability
$h f=$ average height of water above filter bed in feet
$t f=$ design filter bed drain time in days
Notes:
Use 1.67 days for filter bed drain time for sand filters; 2 days for bioretention
Factors used fork,
sand - 3.5 feet/day
peat - 2.0 feet/day
leaf compost -8.7 feet per day
bioretention soil - 0.5 feet per day
Coeff of
PLANTING SOIL MIX:
In \% Permeability

	In \% Permeability	
Sand	50.0	3.5
Bioretention Soil	50.0	0.5
k value $=$		2.0

Therefore, with the following:

Remarks

Table 7.1
Hidden Oak Subdivision Bioretention Facility Calculations for FDA-1.1

Bioretention Facility Elevations Summary			
Finished Grade/Top of Mulch Layer	156.50	feet	3-inch mulch layer
Top of Planting Soil Mix	156.25	feet	calculated
Planting Soil Mix Depth	4.00	feet	as per design
Bottom of Planting Soil Mix	152.25	feet	calculated
Top of Gravel/Filter Fabric	152.25	feet	calculated
Bottom of Gravel	151.58	feet	calculated
12" Pipe Invert Elevation	151.67	feet	calculated (discharges to MH A-8)

Table 7.2
Hidden Oak Subdivision
Bioretention Facility Stage-Storage Calculations for FDA-1.1

BIORETENTION AREA FOR FDA-1.1

Elevation feet	Area s.f.	Incremental Volume c.f.	Volume Sum cu. f.	Volume Sum acre-feet
156.50	1,133	0	0	0
157.00	1,370	626	626	0.0144
157.50	1,620	748	1,373	0.0315

Table 8
Hidden Oak Subdivision
Coliform Bacteria Loading and Discharge

Calculation of Pre- and Post-Development Fecal Coliform (FC) Bacteria Discharge from Hidden Oak Subdivision Property

Loading Rate (Ib/ac/yr)	$\underline{F^{1}}$	Anticipated Pollutant Reduction ${ }^{2}$:	
Woods	$6.07 \mathrm{E}+09$	Extended Detention Wetland	78%
Lawn/Landscape	$2.41 \mathrm{E}+10$	Infiltration Facility	90%
Impervious	$2.50 \mathrm{E}+08$	Bioretention (Filtering) Practice	37%
Single Family Residential (low density)	$1.43 \mathrm{E}+10$	Vegetated Swale	0%

	Land Cover	Area to Design Pt (acres)	Total FC Loading at Present (lbs/yr)				
DRAINAGE AREAS TO DESIGN POINT 1:							
XDA-1	Impervious Surfaces (off-site) Woods, good condition STING LOADING TO DESIGN POINT 1	$\begin{aligned} & 0.049 \\ & 4.495 \end{aligned}$	$\begin{aligned} & 1.22 \mathrm{E}+07 \\ & 2.73 \mathrm{E}+10 \\ & 2.73 \mathrm{E}+10 \end{aligned}$				
		Area to Design Pt (acres)	Total FC Loading at Present (lbs/yr)	Reduction in Infiltration Facility (lbs/yr)	Reduction in Bioretention Facility (Ibslyr)	Reduction in Extended Det. Wetland (lbs/yr)	Residual Bacterial Load (Ibs/yr)
DRAINAGE AREAS TO DESIGN POINT 1:							
FDA-1.1	Lawn/landscape, HSG B	0.425	$1.06 \mathrm{E}+08$		$6.69 \mathrm{E}+07$	$1.47 \mathrm{E}+07$	$1.47 \mathrm{E}+07$
bioret	Woods, HSG B	0.161	$3.88 \mathrm{E}+09$		$2.45 \mathrm{E}+09$	$5.38 \mathrm{E}+08$	$5.38 \mathrm{E}+08$
	Woods, HSG B (OFF-SITE)	0.086	$5.21 \mathrm{E}+08$		$3.28 \mathrm{E}+08$	$7.22 \mathrm{E}+07$	$7.22 \mathrm{E}+07$
FDA-1.2	Impervious surfaces, HSG B	0.292	$7.29 \mathrm{E}+07$	7.29E+06			$7.29 \mathrm{E}+06$
infiltra	Lawn/landscape, HSG B	0.073	$1.76 \mathrm{E}+09$	$1.76 \mathrm{E}+08$			$1.76 \mathrm{E}+08$
	Woods, HSG B	0.081	$4.91 \mathrm{E}+08$	$4.91 \mathrm{E}+07$			$4.91 \mathrm{E}+07$
FDA-1.3	Impervious surfaces, HSG B	0.229	$5.71 \mathrm{E}+07$			$1.26 \mathrm{E}+07$	$1.26 \mathrm{E}+07$
swmb	Lawn/landscape, HSG B	1.382	$3.33 \mathrm{E}+10$			$7.32 \mathrm{E}+09$	$7.32 \mathrm{E}+09$
	Lawn/landscape, HSG C	0.050	$1.21 \mathrm{E}+09$			$2.66 \mathrm{E}+08$	$2.66 \mathrm{E}+08$
	Lawn/landscape, HSG D	0.012	$2.89 \mathrm{E}+08$			$6.36 \mathrm{E}+07$	$6.36 \mathrm{E}+07$
	Brush/Grass Mix (BASIN), HSG B	0.277	$6.67 \mathrm{E}+09$			$1.47 \mathrm{E}+09$	1.47E+09
	Woods, HSG B	0.787	$4.77 \mathrm{E}+09$			$1.05 \mathrm{E}+09$	$1.05 \mathrm{E}+09$
	Woods, HSG B (OFF-SITE)	1.194	$7.24 \mathrm{E}+09$			$1.59 \mathrm{E}+09$	$1.59 \mathrm{E}+09$
	Woods, HSG C	0.068	$4.12 \mathrm{E}+08$			$9.07 \mathrm{E}+07$	$9.07 \mathrm{E}+07$
	Woods, HSG D	0.034	$2.06 \mathrm{E}+08$			$4.54 \mathrm{E}+07$	$4.54 \mathrm{E}+07$
FDA-1.4	Lawn/landscape, HSG B	0.011	$2.64 \mathrm{E}+08$				$2.64 \mathrm{E}+08$
none	Lawn/landscape, HSG C	0.003	$6.86 \mathrm{E}+07$				$6.86 \mathrm{E}+07$
	Lawn/landscape, HSG D	0.001	$3.43 \mathrm{E}+07$				$3.43 \mathrm{E}+07$
	Woods, HSG B	0.070	$4.23 \mathrm{E}+08$				$4.23 \mathrm{E}+08$
	Woods, HSG C	0.048	$2.93 \mathrm{E}+08$				$2.93 \mathrm{E}+08$
	Woods, HSG D	0.024	$1.46 \mathrm{E}+08$				$1.46 \mathrm{E}+08$

Table 8
Hidden Oak Subdivision Coliform Bacteria Loading and Discharge

Calculation of Pre- and Post-Development Fecal Coliform (FC) Bacteria Discharge from Hidden Oak Subdivision Property

	Loading Rate (lb/ac/yr)WoodsLawn/LandscapeImpervious	FC ${ }^{1}$	Anticipated Pollutant Reduction ${ }^{2}$:			
		$6.07 \mathrm{E}+09$		Extended Detention Wetland Infiltration Facility Bioretention (Filtering) Practice Vegetated Swale	$\begin{gathered} 78 \% \\ 90 \% \\ 37 \% \\ 0 \% \end{gathered}$	
		$2.41 \mathrm{E}+10$				
		$2.50 \mathrm{E}+08$				
		$1.43 \mathrm{E}+10$				
\|FDA-L1	Impervious surfaces, HSG B	0.194	4.85E+07	$4.85 \mathrm{E}+06$		$4.85 \mathrm{E}+06$
infilt	Lawn/landscape, HSG B	0.018	4.33E+08	$4.33 \mathrm{E}+07$		$4.33 \mathrm{E}+07$
FDA-L2.1	Impervious surfaces, HSG B	0.073	$1.83 \mathrm{E}+07$	$1.83 \mathrm{E}+06$		$1.83 \mathrm{E}+06$
infilt	Lawn/landscape, HSG B	0.059	$1.41 \mathrm{E}+09$	$1.41 \mathrm{E}+08$		$1.41 \mathrm{E}+08$
FDA-L2.2 infilt	Impervious surfaces, HSG B	0.098	$2.46 \mathrm{E}+07$	$2.46 \mathrm{E}+06$		$2.46 \mathrm{E}+06$
FDA-L3.1	Impervious surfaces (house), HSG B	0.023	$5.63 \mathrm{E}+06$	$3.55 \mathrm{E}+06$		$3.55 \mathrm{E}+06$
rain garden	Impervious surfaces (house), HSG B	0.021	$5.20 \mathrm{E}+06$	$3.28 \mathrm{E}+06$		$3.28 \mathrm{E}+06$
	Impervious surfaces (walks), HSG B	0.009	$2.22 \mathrm{E}+06$	$1.40 \mathrm{E}+06$		$1.40 \mathrm{E}+06$
	Lawn/landscape, HSG B	0.124	$3.09 \mathrm{E}+07$	$1.95 \mathrm{E}+07$		$1.95 \mathrm{E}+07$
	Woods, HSG B	0.085	2.13E+07	$1.34 \mathrm{E}+07$		$1.34 \mathrm{E}+07$
FDA-L3.2	Impervious surfaces, HSG B	0.023	$5.82 \mathrm{E}+06$	$3.67 \mathrm{E}+06$		$3.67 \mathrm{E}+06$
swmb	Lawn/landscape, HSG B	0.043	$1.08 \mathrm{E}+07$	$6.77 \mathrm{E}+06$		$6.77 \mathrm{E}+06$
	Woods, HSG B	0.032	$7.72 \mathrm{E}+08$	$4.86 \mathrm{E}+08$		$4.86 \mathrm{E}+08$
TOTAL FÜT	TưE COMDITION LOADING TO DESIG	N POÖNT				$1.47 \mathrm{E}+10$
CHANGE IN	N BACTERIAL LOADING TO DESIGN P-	OINT 1				$1.25 \mathrm{E}+10$
DRAINAGE AREAS TO DESIGN POINT 2:						
XDA-2	Woods, good condition	4.816	$2.92 \mathrm{E}+10$			
	Impervious surfaces	0.050	$1.26 \mathrm{E}+07$			
TOTAL EXI	STING LOADING TO DESIGN POINT 2		$2.92 \mathrm{E}+10$			
DRAINAGE AREAS TO DESIGN POINT 2:						
FDA-2.1	Lawn/landscape, HSG B	0.386	$9.30 \mathrm{E}+09$			$9.30 \mathrm{E}+09$
none	Woods, HSG B	0.504	$3.06 \mathrm{E}+09$			$3.06 \mathrm{E}+09$
FDA-2.2	Subdivision Road, HSG B	0.253	$6.32 \mathrm{E}+07$	$6.32 \mathrm{E}+06$		$6.32 \mathrm{E}+06$
infilt	Off-site impervious road, HSG B	0.033	$8.24 \mathrm{E}+06$	$8.24 \mathrm{E}+05$		$8.24 \mathrm{E}+05$
	Lawn/landscape, HSG B	0.030	7.23E+08	$7.23 \mathrm{E}+07$		$7.23 \mathrm{E}+07$
	Woods, HSG B (OFF-SITE)	0.209	$1.27 \mathrm{E}+09$	1.27E+08		1.27E+08
	Woods, HSG B	0.130	$7.88 \mathrm{E}+08$	$7.88 \mathrm{E}+07$		$7.88 \mathrm{E}+07$

Table 8
Hidden Oak Subdivision Coliform Bacteria Loading and Discharge

Calculation of Pre- and Post-Development Fecal Coliform (FC) Bacteria Discharge from Hidden Oak Subdivision Property

1 Loading rates for fecal coliform bacteria obtained from Table 3-13 of Fundamentals of Urban Runofff Management, Technical and Institutional Issues, 2007.
2 Anticipated pollutant reduction percentages obtained from Table A-4 of the 2001 New York State Stormwater Management Design Manual.
Runoff Reduction Volume (RRv) Calculation
$\begin{aligned} \mathrm{P}= & 3.1 \text { inches } \\ \mathrm{Rv} & =\end{aligned}$
Runoff Reduction Volume (RRv) Summary
As per Chapter 4 of the 2015 NYS Stormwater Management Design Manual, the minimum runoff reduction volume, RRv min is

RRv min $=\frac{P * R v * A i c * S}{12}$

 $R v=0.05+0.009$ (I) where I is 100% imperviousRRv min $=$ Minimum runoff reduction volume required from impervious area (acre-feet)

S = Hydrologic Soil Group (HSG) Specific Reduction Factor (S)
11
imum RRv
Table 9.1
Hidden Oak Subdivision
Runoff Reduction Volume (RRv) Summary
0.314 acre-feet
0.095 acre-feet
0.177 acre-feet
0.121 acre-feet
0.030 acre-feet
0.053 acre-feet

CONCLUSION: RRv Provided Exceeds Minimum RRv required.
Total Water Quality Volume to Design Point $2=$
CONCLUSION: RRv Provided Exceeds Minimum RRv required

Table 9.2
Hidden Oak Subdivision
Runoff Reduction Volume (RRv) Summary for FDA-1.3, FDA-L3.1 FDA-L3.2

Runoff Reduction Volume (RRv) Calculation

$$
\begin{array}{rc}
P= & 3.1 \text { inches } \\
R V= & 0.95
\end{array}
$$

As per Chapter 4 of the 2015 NYS Stormwater Management Design Manual, the minimum runoff reduction volume, RRv min is

RRvmin $=\quad \frac{P * R v * A i c * S}{12}$
where,
$R R v \min =$ Minimum runoff reduction volume required from impervious area (acre-feet)
$\mathrm{Rv}=0.05+0.009$ (I) where I is 100% impervious (i.e. 0.95)
Aic $=$ Total area of new impervious cover (in acres)
$S=$ Hydrologic Soil Group (HSG) Specific Reduction Factor (S)
COMBINED DRAINAGE AREAS FDA-1.3, FDA-L3.1 \& FDA-L3.2

Drainage	Design Point	Drainage Area in sq feet	New Imperv Surfaces (Aic) (sq feet)	Specified Reduction Factor, S	Minimum RRv (acre-feet)	Minimum RRv (cubic feet)
FDA 1.3	Des. Pt. 1	193,212	13,434	0.40	0.0301	1,313
FDA L3.1, L3.2						

Adjustments to Aic value

Aic value $=$	13,434 sq feet	Rooftop Disconnection Areas	
Less Rooftop Disconnect $=$	3,595	FDA-L3.1	1,889
New Aic value $=$	9,839	FDA 1.3	1,706
Less Pool Lot 3 Water Surface Area $=$	930	TOTAL	3,595
New Aic value $=$	$8,909 \mathrm{sq}$ feet		
Tree Planting - No. of Trees $=$	8		
Adjustment per Tree $=$	100 sq feet/tree		
Total Tree Planting Adjustment $=$	800 sq feet		
New Aic value $=$	$\mathbf{8 , 1 0 9}$		

ADJUSTED RRv CALCULATION FOR COMBINED FDA 1.3, L-3.1 \& L-3.2

Drainage Area	Design Point	On-Site Drainage Area (s.f.)	New Imperv Surfaces (Aic) (sq feet)	Specified Reduction Factor, S	Minimum RRv (acre-feet)	Minimum RRv (cubic feet) $)$
FDA 1.3t	Des. Pt. 1	193,212	8,109	0.40	0.0182	793
FDA L3.1, L3.2						

Table 9.2
Hidden Oak Subdivision Runoff Reduction Volume (RRv) Summary for FDA-1.3, FDA-L3.1 FDA-L3.2

IMPERVIOUS SURFACES IN COMBINED DRAINAGE AREAS

LOCATION
LOT 2 /FDA-1.3 Deck 450
Walkway to Pool 290
Pool Equipment Pad 54
Driveway 384
Driveway 367
LOT 3 /FDA-1.3 Pool Patio \& Walkways 2,138
Pool Equipment Pad 54
Patio 370
Driveway $\quad 1,966$
Driveway $\quad 1,007$
Driveway 810
Driveway 362
House 1,706
Retaining Wall 185
LOT 3/FDA-L3.1 House 907
House 982
Walkway to Front Door 241
Entry to House 98
Entry to House 48
LOT 3 /FDA-L3. 2 Driveway 537
Driveway $\quad 478$

Table 10
Hidden Oak Subdivision
Channel Protection Volume (Cpv) Calculation for Design Point 1

Post-Development Drainage Area Summary

Land Cover Type	Area (acres)	CN	Area
D CN			

Precipitation (1 yr storm), $\mathrm{P}=$	3.1 inches
Runoff depth $\mathrm{Q}=$	0.24 inches
Time of Concentration, $\mathrm{Tc}=$	0.167 hr

Compute Stream Channel Protection Volume, (Cpv)
(see Section 4.3 and Appendix B of SMDM)
For stream channel protection, provide 24 hours of extended detention (T) for the one-year event.

Step 1:

Determine the value of the unit peak discharge (qu) using TR-55 and Type III Rainfall Distribution

Initial abstraction, $\mathrm{la}=(200 / \mathrm{CN}-2)$

$\mathrm{la}=$	1.125
$\mathrm{la} / \mathrm{P}=$	0.363

Remarks
calculated as per equation calculated

Using the above data and Exhibit 4-III from TR-55 (NRCS, 1986), read the value of qu (in cu feet per second per sq mile per year)

$$
\begin{aligned}
& \hline \mathrm{qu}= 381.2 \mathrm{cu} \text { feet } / \mathrm{sec} / \mathrm{mi} \wedge 2 / \mathrm{yr} \\
& \hline
\end{aligned}
$$

Step 2:

Knowing qu and $T=24$ hours, find qo/qi using Figure 8.5

$$
\text { qo } / \mathrm{qi}=0.045
$$

Step 3:

$\mathrm{Vs} / \mathrm{Vr}=0.683-1.43$ (qo/qi) +1.64 (qo/qi) $2-0.804$ (qo/qi) 3 (from Appendix B)
Where Vs equals channel protection storage (Cpv) and
Vr equals the volume of runoff in inches.
$\mathrm{Vs} / \mathrm{Vr}=0.621 \quad$ calculated

Runoff Depth, Q, calculated in accordance with TR-55
$Q=\quad 0.241$ inches as calculated above

Solving for Vs , where $\mathrm{Vs}=\mathrm{Cpv}=(\mathrm{Vs} / \mathrm{Vr}) \times \mathrm{Q} \times(1 / 12) \times($ Area in acres $)=\mathrm{Vs}$ in acre-feet

$V_{s}=$	0.074 acre-feet
3,222 cubic feet	

calculated converted to cu feet

Table 10
Hidden Oak Subdivision
Channel Protection Volume (Cpv) Calculation for Design Point 1

Determine the Average Release Rate
The above volume is to be released over 24 hours

Avg Release Rate $=$	0.04 cu feet per second	calculated
Actual Storage in SWMB \#2 = (in 1 year storm event)	$5,985 \mathrm{cubic}$ feet 56.00 hr $201,600 \mathrm{sec}$ 0.030 cfs avg release rate	peak storage in 1 yr storm actual time to drain in hrs converted to seconds calculated avg release rate

Table 11
Hidden Oak Subdivision
Channel Protection Volume (Cpv) Calculation for Design Point 2

Post-Development Drainage Area Summary

	Area (acres)	CN	Area
Land Cover Type	2.293	62	142.14
Drainage Areas to Design Point 2			

Remarks
as per calculation

Precipitation (1 yr storm), $\mathrm{P}=$	3.1 inches
Runoff depth $\mathrm{Q}=$	0.20 inches
Time of Concentration, $\mathrm{Tc}=$	0.167 hr

Compute Stream Channel Protection Volume, (Cpv)
(see Section 4.3 and Appendix B of SMDM)
For stream channel protection, provide 24 hours of extended detention (T) for the one-year event.

Step 1:

Determine the value of the unit peak discharge (qu) using TR-55 and Type III Rainfall Distribution

Initial abstraction, la $=(200 / \mathrm{CN}-2)$

$\mathrm{l} \mathrm{a}=$	1.226
$\mathrm{la} / \mathrm{P}=$	0.395

Remarks calculated as per equation calculated

Using the above data and Exhibit 4-III from TR-55 (NRCS, 1986), read the value of qu (in cu feet per second per sq mile per year)

$$
q u=\quad 371.8 \mathrm{cu} \mathrm{feet} / \mathrm{sec} / \mathrm{mi}^{\wedge} 2 / \mathrm{yr}
$$

calculated

Step 2:
Knowing qu and $T=24$ hours, find qo/qi using Figure 8.5

$$
\mathrm{qo} / \mathrm{qi}=\quad 0.047
$$

Step 3:

$\mathrm{Vs} \mathrm{Nr}=0.683-1.43$ (qo/qi) +1.64 (qo/qi) $2-0.804$ (qo/qi) 3 (from Appendix B)
Where Vs equals channel protection storage (Cpv) and
Vr equals the volume of runoff in inches.

$$
\mathrm{Vs} / \mathrm{Vr}=0.618
$$

calculated
Runoff Depth, Q, calculated in accordance with TR-55
$\mathrm{Q}=0.200$ inches as calculated above
Solving for Vs , where $\mathrm{Vs}=\mathrm{Cpv}=(\mathrm{Vs} / \mathrm{Vr}) \times \mathrm{Q} \times(1 / 12) \times$ (Area in acres) $=\mathrm{Vs}$ in acre-feet
$V s=0.024$ acre-feet 1,027 cubic feet converted to cu feet

Determine the Average Release Rate
The above volume is to be released over 24 hours

Table 11
 Hidden Oak Subdivision Channel Protection Volume (Cpv) Calculation for Design Point 2

Avg Release Rate $=$	0.012 cu feet per second	calculated
Actual Storage in SWMB \#2 $=$ 728 cubic feet (in 1 year storm event) 26.00 hr $93,600 \mathrm{sec}$ 0.008 cfs avg release rate peak storage in 1 yr storm actual time to drain in hrs converted to seconds colculated avg release rate		

Table 12

Hidden Oak Subdivision Vegetated Channel Design Parameters

Grass Channel Design

Drainage Area FDA-2.3

Water Quality Volume, WQv $=\frac{1,963}{} \frac{\text { cu feet }}{}$ cu feet
The Chezy-Manning Equation states that the flow Q is equal to: $Q=1.486 / n^{*} A * R h^{\wedge} 2 / 3 * S^{\wedge} 1 / 2$
where,
$Q=$ Flow in cubic feet per second
$V=$ Velocity of flow in feet per second
$\mathrm{n}=$ Manning's n factor
Area, $A=$ Cross-sectional area in flow
Rh $=$ Hydraulic radius
Slope, $S=$ Slope of channel
Required residence time $=$
1,800
seconds, or 30 minutes
The grass channel is designed with the following parameters:
Enter the information to calculate the flow:

Parameter:	Value units
$\mathrm{n}=$	0.150 unitless
Bottom width $=$	4.00 feet
Side slope $1=$	3.00 to 1 horizontal to vertical
Side slope $2=$	3.00 to 1 horizontal to vertical
Flow Depth =	0.19 feet
Upper invert =	162.00 feet
Lower invert =	158.00 feet
Length of Open Channel Swale=	180 feet
Slope $=$	0.022 feet per foot
Af =	720 square feet
$Q=$	0.40 cubic feet per second
$V=$	0.45 feet per second

Remarks
as per SMDM App. L, pg. L-2
as per design
as per design
as per design
calculated
as per design
as per design
as per design
calculated
calculated as per Manning's Eqn.

Open Channel Surface Area Calculation
WQv = $\quad 1963$ cubic feet
$\mathrm{df}=\quad 2.50$ feet
$k=\quad 1.50$ feet per day
$\mathrm{hf}=\quad 0.19$ feet
$\mathrm{tf}=\quad 2.00$ days
$\mathrm{Af}=\mathrm{WQv} \times \mathrm{df} /(\mathrm{k} \times(\mathrm{hf}+\mathrm{df}) \times \mathrm{tf}$
$\mathrm{Af}=\quad 607.4$ square feet
Area of vegetated swale exceeds requirments.

Table 12

Hidden Oak Subdivision Vegetated Channel Design Parameters

Therefore, the required length of the grass channel to treat 100% of the WQv would be:
Water Quality Volume, $\mathrm{WQv}=1,963$ cu feet 1 year, 24 hour storm

Water Quality design storm flow	$=$0.22 cu feet per second Flow Velocity at $W Q$ design storm $=$ Channel length, L, for 100% of $W Q v$ $=$ feet per second Chi3 feet

1 year peak runoff as per routing velocity at peak rate of runoff $1,800 \sec x \quad 0.45 \quad \mathrm{ft} / \mathrm{sec}$

Adjust length to account for actual volume to be provided:
Grass channel length required, $L=813$ feet
Length \times WQv to treat / WQv
Therefore, a grass channel of at leas Grass channel length provided =

813 feet is required
calculated
as per design

Table 13
Hidden Oak Subdivision Temporary Sediment Trap Design Parameters

Sediment Trap Design for Portion of Subdivision Road

$$
\begin{array}{cc}
\text { Drainage Area to Trap }= & \begin{array}{c}
32,475 \text { sq feet } \\
0.746 \text { acres }
\end{array}
\end{array}
$$

As per the NYSDEC Standards and Specifications for Erosion \& Sediment Control the sediment trap must have at least $3,600 \mathrm{cu}$ feet of storage per acre of drainage area

Therefore, the minimum sediment trap volume is to be:
Sediment Trap Volume $=\quad 2,684 \mathrm{cu}$ feet

TEMPORARY SEDIMENT TRAP

Elevation feet	Area s.f.	Incremental Volume c.f.	Volume Sum cu. ft.	Volume Sum acre-feet
146.00	465	0	0	0
148.00	680	1,145	1,145	0.0263
150.00	915	1,595	2,740	0.0629

Since sediment trap volume > required, therefore OK.

Stormceptor Design Summary

PCSWMM for Stormceptor

Project Information

Date	$03 / 01 / 2016$
Project Name	Hidden Oak Subdivision
Project Number	936
Location	North Castle, N.Y.

Designer Information

Company Contact	Evans Associates
Alan L. Pilch, PE, RLA	

Notes

Drainage Area

Total Area (ac)	0.446
Imperviousness (\%)	65.5

The Stormceptor System model STC 900 achieves the water quality objective removing 87% TSS for a Fine (organics, silts and sand) particle size distribution.

Rainfall

Name	YORKTOWN HEIGHTS 1 W
State	NY
ID	9670
Years of Records	1970 to 2005
Latitude	$41^{\circ} 15^{\prime} 59^{\prime \prime} \mathrm{N}$
Longitude	$73^{\circ} 477^{\prime} 51^{\prime \prime} \mathrm{W}$

Water Quality Objective

Upstream Storage

Storage (ac-ft)	Discharge (cfs)
0	0

Stormceptor Sizing Summary

Stormceptor Model	TSS Removal $\%$
STC 450i	79
STC 900	$\mathbf{8 7}$
STC 1200	88
STC 1800	89
STC 2400 3600	92
STC 4800	93
STC 6000	94
STC 7200 11000	95
STC 13000	96
STC 16000	97
	97

Stormceptor ${ }^{\circ}$

Particle Size Distribution

Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal.

Fine (organics, silts and sand)

Stormceptor Design Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal.
- Only the STC 450i is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 450i to STC 7200 may accommodate multiple inlet pipes.
- Inlet and outlet invert elevation differences are as follows:

Inlet and Outlet Pipe Invert Elevations Differences			
Inlet Pipe Configuration	STC 450i	STC 900 to STC 7200	STC 11000 to STC 16000
Single inlet pipe	3 in.	1 in.	3 in. Multiple inlet pipes
3 in.	3 in.	Only one inlet pipe.	

- Design estimates are based on stable site conditions only, after construction is completed.
- Design estimates assume that the storm drain is not submerged during zero flows. For submerged applications, please contact your local Stormceptor representative.
- Design estimates may be modified for specific spills controls. Please contact your local Stormceptor representative for further assistance.
- For pricing inquiries or assistance, please contact Rinker Materials 1 (800) 909-7763 www.rinkerstormceptor.com

Stormceptor Design Summary

PCSWMM for Stormceptor

Project Information

Date	03/01/2016			
Project Name				
Project Number	Hidden Oak Subdivision			
936				
Location	North Castle, N.Y.		Designer Information	
:---	:---			
Company	Evans Associates			
Contact	Alan L. Pilch, PE, RLA			

Notes

Drainage Area

Total Area (ac)	0.655
Imperviousness (\%)	43.7

The Stormceptor System model STC 900 achieves the water quality objective removing 87% TSS for a Fine (organics, silts and sand) particle size distribution.

Rainfall

Name	YORKTOWN HEIGHTS 1 W
State	NY
ID	9670
Years of Records	1970 to 2005
Latitude	$41^{\circ} 15^{\prime} 59^{\prime \prime} \mathrm{N}$
Longitude	$73^{\circ} 47^{\prime} 51^{\prime \prime} \mathrm{W}$

Water Quality Objective

TSS Removal (\%)	80

Upstream Storage

Storage (ac-ft)	Discharge (cfs)
0	0

Stormceptor Sizing Summary

Stormceptor Model	TSS Removal $\%$
STC 450i	79
STC 900	$\mathbf{8 7}$
STC 1200	88
STC 1800	89
STC 2400	92
STC 4800	93
STC 6000	94
STC 7200	95
STC 11000 13000	96
STC 16000	97

Particle Size Distribution

Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal.

Fine (organics, silts and sand)

Particle Size $\mu \mathrm{m}$	Distribution $\%$	Specific Gravity	Settling Velocity ft/s	Particle Size $\mu \mathrm{m}$	Distribution $\%$	Specific Gravity	Settling Velocity ft/s
20	20	1.3	0.0013				
60	20	1.8	0.0051				
150	20	2.2	0.0354				
400	20	2.65	0.2123				
2000	20	2.65	0.9417				

Stormceptor Design Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal.
- Only the STC 450 is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 450i to STC 7200 may accommodate multiple inlet pipes.
- Inlet and outlet invert elevation differences are as follows:

Inlet and Outlet Pipe Invert Elevations Differences

Inlet Pipe Configuration	STC 450i	STC 900 to STC 7200	STC 11000 to STC 16000
Single inlet pipe	3 in.	1 in.	3 in.
Multiple inlet pipes	$3 \mathrm{in}$.	3 in.	Only one inlet pipe.

- Design estimates are based on stable site conditions only, after construction is completed.
- Design estimates assume that the storm drain is not submerged during zero flows. For submerged applications, please contact your local Stormceptor representative.
- Design estimates may be modified for specific spills controls. Please contact your local Stormceptor representative for further assistance.
- For pricing inquiries or assistance, please contact Rinker Materials 1 (800) 909-7763 www.rinkerstormceptor.com

Stormceptor Design Summary

PCSWMM for Stormceptor

Project Information

Date	$03 / 01 / 2016$
Project Name	Hidden Oak Subdivision
Project Number	936
Location	North Castle, N.Y.

Designer Information

Company	Evans Associates
Contact	Alan L. Pilch, PE, RLA

Notes

Drainage Area

Total Area (ac)	0.212
Imperviousness (\%)	91.5

The Stormceptor System model STC 450i achieves the water quality objective removing 83% TSS for a Fine (organics, silts and sand) particle size distribution.

Rainfall

Name	YORKTOWN HEIGHTS 1 W
State	NY
ID	9670
Years of Records	1970 to 2005
Latitude	$41^{\circ} 15^{\prime} 59^{\prime \prime N}$
Longitude	$73^{\circ} 47^{\prime} 51^{\prime \prime} \mathrm{W}$

Water Quality Objective

TSS Removal (\%)	80

Upstream Storage

Storage (ac-ft)	Discharge (cfs)
0	0

Stormceptor Sizing Summary

Stormceptor Model	TSS Removal $\%$
STC 450j	$\mathbf{8 3}$
STC 900	90
STC 1200	91
STC 1800	92
STC 2400 3600	94
STC 4800	95
STC 6000	96
STC 7200 11000	96
STC 13000	97
STC 16000	98
	98

MATERIALS ${ }^{\text {m }}$

Stormceptor ${ }^{\circ}$

Particle Size Distribution

Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal.

Fine (organics, silts and sand)

Particle Size $\mu \mathrm{m}$	Distribution $\%$	Specific Gravity	Settling Velocity ft/s	Particle Size $\mu \mathrm{m}$	Distribution $\%$	Specific Gravity	Settling Velocity f/s	
20	20	1.3	0.0013					
60	20	1.8	0.0051					
150	20	2.2	0.0354					
400	20	2.65	0.2123					
2000	20	2.65	0.9417					

Stormceptor Design Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal.
- Only the STC 450 i is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 450 i to STC 7200 may accommodate multiple inlet pipes.
- Inlet and outlet invert elevation differences are as follows:

Inlet and Outlet Pipe Invert Elevations Differences

Inlet Pipe Configuration	STC 450i	STC 900 to STC 7200	STC 11000 to STC 16000
Single inlet pipe	3 in.	1 in.	3 in. Multiple inlet pipes
3 in.	3 in.	Only one inlet pipe.	

- Design estimates are based on stable site conditions only, after construction is completed.
- Design estimates assume that the storm drain is not submerged during zero flows. For submerged applications, please contact your local Stormceptor representative.
- Design estimates may be modified for specific spills controls. Please contact your local Stormceptor representative for further assistance.
- For pricing inquiries or assistance, please contact Rinker Materials 1 (800) 909-7763 www.rinkerstormceptor.com

Stormceptor Design Summary

PCSWMM for Stormceptor

Project Information

Date	$03 / 01 / 2016$
Project Name	Hidden Oak Subdivision
Project Number	936
Location	North Castle, N.Y.

Designer Information

Company	Evans Associates
Contact	Alan L. Pilch, PE, RLA

Notes

Drainage Area

Total Area (ac)	0.132
Imperviousness (\%)	55.5

The Stormceptor System model STC 450i achieves the water quality objective removing 91% TSS for a Fine (organics, silts and sand) particle size distribution.

Rainfall

Name	YORKTOWN HEIGHTS 1 W
State	NY
ID	9670
Years of Records	1970 to 2005
Latitude	$41^{\circ} 15^{\prime} 59^{\prime \prime} \mathrm{N}$
Longitude	$73^{\circ} 47^{\prime} 51^{\prime \prime} \mathrm{W}$

Water Quality Objective

TSS Removal (\%)	80

Upstream Storage

Storage (ac-ft)	Discharge (cfs)
0	0

Stormceptor Sizing Summary

Stormceptor Model	TSS Removal $\%$
STC 450i	$\mathbf{9 1}$
STC 900	95
STC 1200	96
STC 1800	96
STC 2400 3600	97
STC 4800	98
STC 6000	98
STC 7200 11000	98
STC 13000	99
STC 16000	99
	99

Stormceptor ${ }^{\circ}$

Particle Size Distribution

Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal.

Fine (organics, silts and sand)

Particle Size $\mu \mathrm{m}$	Distribution $\%$	Specific Gravity	Settling Velocity ft/s	Particle Size $\mu \mathrm{m}$	Distribution $\%$	Specific Gravity	Settling Velocity f/s
20	20	1.3	0.0013				
60	20	1.8	0.0051				
150	20	2.2	0.0354				
400	20	2.65	0.2123				
2000	20	2.65	0.9417				

Stormceptor Design Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal.
- Only the STC 450i is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 450i to STC 7200 may accommodate multiple inlet pipes.
- Inlet and outlet invert elevation differences are as follows:

Inlet and Outlet Pipe Invert Elevations Differences			
Inlet Pipe Configuration	STC 450i	STC 900 to STC 7200	STC 11000 to STC 16000
Single inlet pipe	3 in.	1 in.	3 in.
Multiple inlet pipes	$3 \mathrm{in}$.	$3 \mathrm{in}$.	Only one inlet pipe.

- Design estimates are based on stable site conditions only, after construction is completed.
- Design estimates assume that the storm drain is not submerged during zero flows. For submerged applications, please contact your local Stormceptor representative.
- Design estimates may be modified for specific spills controls. Please contact your local Stormceptor representative for further assistance.
- For pricing inquiries or assistance, please contact Rinker Materials 1 (800) 909-7763 www.rinkerstormceptor.com

Stormceptor Design Summary

PCSWMM for Stormceptor

Project Information

Date	$03 / 01 / 2016$
Project Name	Hidden Oak Subdivision
Project Number	936
Location	North Castle, N.Y.

Designer Information

Company	Evans Associates
Contact	Alan L. Pilch, PE, RLA

Notes

Drainage Area

Total Area (ac)	0.098
Imperviousness (\%)	100

The Stormceptor System model STC 450i achieves the water quality objective removing 89% TSS for a Fine (organics, silts and sand) particle size distribution.

Rainfall

Name	YORKTOWN HEIGHTS 1 W
State	NY
ID	9670
Years of Records	1970 to 2005
Latitude	$41^{\circ} 15^{\prime} 59^{\prime \prime} \mathrm{N}$
Longitude	$73^{\circ} 47^{\prime} 51^{\prime \prime} \mathrm{W}$

Water Quality Objective

TSS Removal (\%)	80

Stormceptor Sizing Summary

Stormceptor Model	TSS Removal
	$\%$
STC 450i	$\mathbf{8 9}$
STC 900	94
STC 1200	95
STC 1800	
STC 2400	95
STC 4800	96
STC 6000	97
STC 7200	98
STC 11000 13000	98
STC 16000	98
	99
	99

Particle Size Distribution

Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal.

Fine (organics, silts and sand)

Fine (organics, silts and sand)								
Particle Size $\mu \mathrm{m}$	Distribution $\%$	Specific Gravity	Settling Velocity ft/s	Particle Size $\mu \mathrm{m}$	Distribution $\%$	Specific Gravity	Settling Velocity ft/s	
20	20	1.3	0.0013					
60	20	1.8	0.0051					
150	20	2.2	0.0354					
400	20	2.65	0.2123					
2000	20	2.65	0.9417					

Stormceptor Design Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal.
- Only the STC 450i is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 450 i to STC 7200 may accommodate multiple inlet pipes.
- Inlet and outlet invert elevation differences are as follows:

Inlet Pipe Configuration	STC 450i	$\begin{gathered} \hline \text { STC } 900 \text { to STC } \\ 7200 \end{gathered}$	STC 11000 to STC 16000
Single inlet pipe	3 in .	1 in .	3 in .
Multiple inlet pipes	3 in.	3 in.	Only one inlet pipe.

- Design estimates are based on stable site conditions only, after construction is completed.
- Design estimates assume that the storm drain is not submerged during zero flows. For submerged applications, please contact your local Stormceptor representative.
- Design estimates may be modified for specific spills controls. Please contact your local Stormceptor representative for further assistance.
- For pricing inquiries or assistance, please contact Rinker Materials 1 (800) 909-7763 www.rinkerstormceptor.com

Appendix B
Deep Hole and Percolation Soils Testing for Stormwater Management Practices

DEPTH	HOLE \# DH-1	HOLE \# DH-2	HOLE \# DH-4	HOLE \# DH-5
G.L.				
0'-6"	Topsoil	Topsoil	Topsoil	Topsoil
$1^{\prime}-0{ }^{\prime \prime}$	--------- ${ }^{\text {y }}$	-.-.-.-.--- -		
1'-6"	Sandy loam	Sandy loam	Coarse sandy	Sandy loam
$2^{\prime}-0$ "			loam	\pm
2'-6"		\downarrow		Moderately
$3^{\prime}-0{ }^{\prime \prime}$	-----------	Compact sandy		Denser Sandy
3'-6"	Moderately	loam	Roots to 4'	Loam
4'-0"	Compact		----------	
4'-6"	Sandy Loam		Weathered rock	
5'-0"			Very friable	
5'-6"		Seep @ 5' to	-.-.-.-.- $\frac{1}{1}$	
6'-0"		$5^{\prime}-4^{\prime \prime}$	Rock @ 5'-6"	\downarrow
6'-6"	Seep @ 6'			Rock @ 6'
7'-0"	Water level 6'	\downarrow		

INDICATE LEVEL AT WHICH GROUND WATER IS ENCOUNTERED - See each record above.
INDICATE LEVEL FOR WHICH WATER LEVEL RISES AFTER BEING ENCOUNTERED
TESTS MADE BY Alan L. Pilch, P.E.
DATE May 14, 2014
DEEP HOLE TESTING WITNESSED BY: John Drake, P.E., New York City Dept of Environmental Protection
DESIGN
Soil Rate Used \qquad Min/1" Drop: \qquad S.D. Usable Area Provided \qquad
No. of Bedrooms \qquad Septic Tank Capacity \qquad Gals. Masonry \qquad Metal \qquad
Absorption Area Provided by \qquad L.F. x $24 "$ \qquad

Name: Alan L. Pilch, Evans Associates
Address: 205 Amity Road

Signature: \qquad
SEAL:

Bethany, CT 06524

DEPTH	HOLE \# DH-6	HOLE \# DH-7	HOLE \# DH-8	HOLE \# DH-9
G.L.				
0'-6"	Topsoil	Topsoil	Topsoil	Topsoil
$1^{\prime}-0{ }^{\prime \prime}$			\downarrow	
$1^{\prime \prime}-6 "$	Sandy loam	Sandy loam	Mod. compact	Sandy loam
2'-0"	-.-.-.-.-.-.-		Sandy loam \downarrow	-------雨
2'-6"	Rock @ 2'	- -.-.-.-.-- ${ }^{\text {y }}$		Fine Sandy
$3^{\prime}-0{ }^{\prime \prime}$		Silty		Loam
$3^{\prime}-6{ }^{\prime \prime}$		loam	Moderately	
$4^{\prime}-0{ }^{\prime \prime}$			Compact sandy	
4'-6"		----------.	loam \quad	
5'-0'		Sandy loam	Rock-refusal	Some weathered
5'-6"				Rock - friable \ddagger
$6^{\prime}-0{ }^{\prime \prime}$		---------7		Rock
6'-6"		Rock		
$7{ }^{\prime}-0{ }^{\prime \prime}$				

INDICATE LEVEL AT WHICH GROUND WATER IS ENCOUNTERED - See each record above.
INDICATE LEVEL FOR WHICH WATER LEVEL RISES AFTER BEING ENCOUNTERED
TESTS MADE BY Alan L. Pilch, P.E.
DATE May 14, 2014
DEEP HOLE TESTING WITNESSED BY: John Drake, P.E., New York City Dept of Environmental Protection

DESIGN

Soil Rate Used \qquad Min/1" Drop: \qquad S.D. Usable Area Provided \qquad
No. of Bedrooms \qquad Septic Tank Capacity \qquad Gals. Masonry \qquad Metal \qquad
Absorption Area Provided by \qquad L.F. x $24^{\prime \prime}$ \qquad

Name: Alan L. Pilch, Evans Associates \qquad Signature: \qquad
Address: 205 Amity Road
SEAL:

INDICATE LEVEL AT WHICH GROUND WATER IS ENCOUNTERED - See each record above.
INDICATE LEVEL FOR WHICH WATER LEVEL RISES AFTER BEING ENCOUNTERED
TESTS MADE BY Alan L. Pilch, P.E.
DATE May 14, 2014
DEEP HOLE TESTING WITNESSED BY: John Drake, P.E., New York City Dept of Environmental Protection
DESIGN
Soil Rate Uscd__ Min/1" Drop:__ S.D. Usable Area Provided__
No. of Bedrooms \qquad Septic Tank Capacity \qquad Gals. Masonry \qquad Metal \qquad
Absorption Area Provided by \qquad L.F. x $24{ }^{\prime \prime}$ \qquad

Name: Alan L. Pilch, Evans Associates \qquad
Address: 205 Amity Road

Signature: \qquad
SEAL:

Table 3
Hidden Oak Subdivision Percolation Test Results

Note: Holes that were dry upon check have lower rates (min/in.) than shown for those runs

Pre-Soak	Date: $11 / 11 / 2014$
P-1	$9: 30$ AM
P-2	$9: 40$ AM
P-3	$9: 55$ AM
P-4	$10: 00 \mathrm{AM}$
P-5	$10: 08 \mathrm{AM}$

Table 4
 Hidden Oak Subdivision Soil Percolation Rate Calculation

Determine soil percolation rate for stormwater modeling purposes

Using a percolation test hole with the following parameters:	Remarks	
Percolation hole diameter $=$	6 inches	as measured
Depth of percolation hole $=$	30 inches	typical
Bottom surface area $=$	0.196 square feet	calculated
Percolation Rates as per testing:		
P-1	3.65 minutes per inch	as per test
P-2	5.00 minutes per inch	as per test
P-3	2.9 minutes per inch	as per test
P-4	3.16 minutes per inch	as per test
P-5	2.06 minutes per inch	as per test

Include a 25% safety (soil clogging) factor for percolation:
P-1 4.6 minutes per inch
P-2
P-3
P-4
P-5
6.3 minutes per inch
3.6 minutes per inch
3.9 minutes per inch
2.6 minutes per inch

Remarks
as measured
typical
calculated
as per test
25% safety factor applied
25\% safety factor applied

Appendix C

Maintenance Schedule for Stormwater Management Facilities

STORMWATER CONTROL FACILITY

 MAINTENANCE AND ACCESS AGREEMENTThis Agreement is made as of this day of ,2016 by and between the TOWN OF NORTH CASTLE, a New York municipal corporation with offices at 15 Bedford Road, Armonk, New York 10510, hereinafter referred to as the "Town", and McKenna Custom Homes, Inc., a New York corporation with offices at 343 Manville Road, Pleasantville, New York hereinafter referred to as "McKenna Custom".

WITNESSETH

WHEREAS, McKenna Custom is the owner of that certain plot, piece and parcel of land, with the buildings and improvements thereon, situated at 13 Hidden Oak Road in the Town of North Castle, comprising 7.69 acres, and shown and designated on the Tax Map for the Town of North Castle Section 107.01, Block 1, Lot 32 (the "Land") and title to said lands being subject to the conditions imposed by the Town of North Castle as shown and designated on a certain Map entitled "Hidden Oak Subdivision Proposed Lots $1,2 \& 3$, in Armonk, Town of North Castle, Westchester County, New York", made by William J. Welsh, Land Surveyor, dated \qquad and filed in the Westchester County Clerk's Office, Division of Land Records, on as Map No. ; and

WHEREAS, Declarant plans to undertake or is undertaking plans for the development or sale of land that will result in Plans for development or sale of land that will result in the disturbance of five (5) or more acres of total land area as described in the Section 18-39 (b) (3) (i) in the Rules and Regulations for the Protection from Contamination, Degradation and Pollution of the New York City Water Supply and Its Sources ("Watershed Regulations"); and

WHEREAS, the Watershed Regulations require Declarant to prepare a Stormwater Pollution Prevention Plan ("SWPPP") and submit the SWPPP to the New York City Department of Environmental Protection ("DEP") for its review and approval so that stormwater generated by precipitation during and after soil disturbing activities and runoff from newly created impervious surfaces is captured and treated, thus reducing or eliminating a pollution discharge; and

WHEREAS, Declarant has submitted a SWPPP application to DEP for the Property described above, Hidden Oak Subdivision, DEP Log \# 2014-KE-01088-SP.1, and received an approval from DEP for such SWPPP, dated \qquad , such SWPPP approval and the maintenance obligations being attached hereto as Exhibits 1 and 2; and

WHEREAS, McKenna Custom has submitted a Stormwater Pollution Prevention Plan ("SWPPP") to the Town dated March 1, 2016 prepared by Evans Associates which sets forth, among other things, the proposed improvements to be constructed and/or installed for the purpose of controlling and mitigating stormwater runoff from the Subdivision ("Storm Water Control Facilities") consisting of subsurface infiltration facilities, an extended detention stormwater management basin, a bioretention facility, two rain gardens and tree planting, as well as filter strips; and

WHEREAS, the SWPPP has been approved by the Town; and
WHEREAS, as required by the Town of North Castle, a maintenance and access agreement is to be recorded in the Office of the Westchester County Clerk (Division of Land Records) in order to provide for the long-term maintenance and continuation of the various stormwater control measures shown on the approved subdivision plans (the "Plan") and

WHEREAS, copies of the approved plans of the Subdivision are on file with the Building Department of the Town of North Castle at the Town Hall, 17 Bedford Road, Armonk, New York 10504; and

WHEREAS, the Town and McKenna Custom desire that Stormwater Control Facilities be constructed and installed in accordance with the approved plans and that they thereafter be inspected, used, maintained, repaired and replaced in perpetuity in order to insure that they continue to function in the manner for which they are intended.

NOW, THEREFORE, in consideration of the approval and the mutual agreements and understandings set forth herein, and consistent with all applicable provisions of the Town Code, the Town and McKenna Custom hereby agree as follows:

1. McKenna Custom and/or any subsequent owner(s) of property shall use, maintain, repair and replace the Stormwater Control Facilities located on the portions of the premises owned by them in accordance with the maintenance plan contained in the SWPPP, a copy of which
maintenance plan is set forth on Schedule " A " which is annexed hereto and hereby made a part hereof (the "Maintenance Procedures").
2. McKenna Custom shall perform the Maintenance Procedures and shall pay all expenses related to the use, maintenance, repair and replacement of the Stormwater Control Facilities. In the event that the property is conveyed to another party or parties, the subsequent owner or owners shall, as a result of such conveyance, assume all responsibility for performing the Maintenance Procedures and for any other costs associated with using, maintaining, repairing and replacing the Stormwater Control Facilities located on his or their lot or lots except that all property owners shall equally share in the maintenance and repair costs of all control facilities contained in Storm Water Mitigation Areas, identified on the approved subdivision map of McKenna Custom as "Easement for Maintenance of Common Stormwater Control Facilities". The conveyance of the property shall unconditionally release the party conveying any such property from all obligations contained herein, unless provided for otherwise in a contract of sale or other agreement between the parties to any such conveyance.
3. McKenna Custom, or any subsequent owner or owners of the property, shall inspect the Storm Water Control Facilities at the frequency set forth in the SWPPP. The inspector shall prepare and submit a written report to the appropriate lot owner and to the Town's Stormwater Management Officer ("SMO") within 30 days following the completion of the inspection. Any such report of the findings shall include, if appropriate, recommendations for future use, maintenance, repair and/or replacement of the Stormwater Control Facilities in order to ensure the continuing effectiveness of the Facilities.
4. No lot owner shall authorize, undertake or permit alteration, abandonment, modification or discontinuation of the use of the Stormwater Control Facilities except in accordance with written approval of the Town and the North Castle Planning Board, which approval shall not be unreasonably withheld.
5. Any lot owner shall undertake on his lot any necessary repairs and replacement of the

Stormwater Control Facilities at the reasonable direction of the Town or in accordance with the recommendations of the inspector. In the event that the SMO determines that a lot owner or all lot owners as the case may be have failed to construct or maintain the Stormwater Control Facilities located on their lot in accordance with the SWPPP or has failed to undertake corrective action specified by the Town or by the engineer pursuant to this Paragraph, the SMO shall notify such lot owner or all lot owners, as the case may be, to perform or cause to be performed any such maintenance or corrective action. Any such notice shall be sent to such lot owner or owners, as the case may be, by certified mail, return receipt requested, to the address for such lot owner(s) maintained by the Tax Assessor's Office for the Town. Any such lot owner(s) shall have thirty-five (35) days from the mailing of such notice to (a) complete or timely commence such corrective action; or (b) appeal any such determination of the SMO to the Town Board. The decision of the Town Board may be appealed pursuant to the provisions of Article 78 of the New York State Civil Practice Law and Rules.
6. In the event that a lot owner(s) is (a) duly notified by the Town to undertake maintenance or corrective action pursuant to Paragraph 4, above; and (b) either (1) such lot owner(s) does not appeal said notification; or (2) the order of the Town is upheld by either the Town Board or a court of competent jurisdiction and the lot owner does not, following the outcome of such appeal, carry out said maintenance or corrective action if required to do so, the Town is hereby granted an easement to enter the lots for the purpose of undertaking said maintenance or corrective action to the Facilities. Reasonable notice shall be given prior to such entry. The Town may affix the expenses thereof as a lien against the property.
7. In order to give effect to the provisions of this Agreement, the Town is permitted, at reasonable times, to have access to the property for inspection of the Stormwater Control Facilities. Access to the lots pursuant to Paragraph 6 above or this Paragraph 7 shall be limited to the areas known and designated on a certain Map entitled "Final Subdivision Plat for Hidden Oak Subdivision prepared by William J. Welsh, Welsh Engineering \& Land Surveying, P.C. and filed in the office of Westchester County Clerk, Division of Land Records on
as filed Map No.
as Storm Water Mitigation Areas.
8. The approval of the Town and the North Castle Planning Board, by resolution or otherwise shall be required prior to any amendment to this Agreement or the SWPPP.
9. This Agreement shall run with the land and shall be binding on the successors and assigns of McKenna Custom. This Agreement is to be recorded in the Office of the County Clerk of Westchester (Division of Land Records) upon the approval of the subdivision and shall be effective as of the date of recording.
10. The singular number as used herein shall be read as the plural number, and vice versa, and the masculine gender shall be read as the feminine or neuter gender, whenever necessary to give full effect to the terms and provisions hereof.

IN WITNESS WHEREOF, the parties hereto have executed this Agreement as of the date first written above.

McKENNA CUSTOM HOMES, INC.

BY: \qquad

TOWN OF NORTH CASTLE

BY: \qquad

STATE OF NEW YORK
COUNTY

On the day of
State, personally appeared
2016. before me, a notary public of New York , personally known to me or proved to me by satisfactory evidence to be the individual whose name is subscribed to the within instrument and (s) he duly acknowledged to me that (s) he executed the same in his/her capacity and that by his/her signature on the instrument, the individual or person upon behalf of which the individual acted, executed the instrument. Notary Public:

STATE OF
NEW YORK
On the day of
2016. before me, a notary public of New York State, personally appeared , personally known to me or proved to me by satisfactory evidence to be the individual whose name is subscribed to the within instrument and (s)he duly acknowledged to me that (s)he executed the same in his/her capacity as the Supervisor of the Town of North CASTLE and that by his/her signature on the instrument, the individual or person upon behalf of which the individual acted, executed the instrument.

Record and Return:

SCHEDULE "A"
 TO STORMWATER CONTROL FACILITY
 MAINTENANCE AND ACCESS AGREEMENT
 BY AND BETWEEN MCKENNA CUSTOM, LTD. AND THE TOWN OF NORTH CASTLE

As used herein, "Short Term Maintenance Requirements" are those stormwater control measures to be undertaken by a lot owner during such time as a residence is under construction upon said lot. "Long Term Maintenance Requirements" are those stormwater control measures to be undertaken following the completion of construction of a residence on any such lot.

Maintenance and Inspection Requirements:

In accordance with New York State Department of Environmental Conservation SPDES General Permit for Stormwater Discharges from Construction Activity, Permit No. GP-0-15-002, the qualified inspector shall conduct at least two (2) site inspections every seven (7) calendar days. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.

At a minimum, the qualified inspector shall inspect all erosion and sediment control practices and pollution prevention measures to ensure integrity and effectiveness, all post-construction stormwater management practices under construction to ensure that they are constructed in conformance with the SWPPP, all areas of disturbance that have not achieved final stabilization, all points of discharge to natural surface waterbodies located within, or immediately adjacent to, the property boundaries of the construction site, and all points of discharge from the construction site.

The qualified inspector shall prepare an inspection report subsequent to each and every inspection. At a minimum, the inspection report shall include and/or address the following:
a. Date and time of inspection;
b. Name and title of person(s) performing inspection;
c. A description of the weather and soil conditions (e.g. dry, wet, saturated) at the time of the inspection;
d. A description of the condition of the runoff at all points of discharge from the construction site. This shall include identification of any discharges of sediment from the construction site. Include discharges from conveyance systems (i.e. pipes, culverts, ditches, etc.) and overland flow;
e. A description of the condition of all natural surface waterbodies located within, or immediately adjacent to, the property boundaries of the construction site which receive runoff from disturbed areas. This shall include identification of any discharges of sediment to the surface waterbody;
f. Identification of all erosion and sediment control practices and pollution prevention measures that need repair or maintenance;
g. Identification of all erosion and sediment control practices and pollution prevention measures that were not installed properly or are not functioning as designed and need to be reinstalled or replaced;
h. Description and sketch of areas with active soil disturbance activity, areas that have been disturbed but are inactive at the time of the inspection, and areas that have been stabilized (temporary and/or final) since the last inspection;
i. Current phase of construction of all post-construction stormwater management practices and identification of all construction that is not in conformance with the SWPPP and technical standards;
j. Corrective action(s) that must be taken to install, repair, replace or maintain erosion and sediment control practices and pollution prevention measures; and to correct deficiencies identified with the construction of the post-construction stormwater management practice(s);
k. Identification and status of all corrective actions that were required by previous inspection; and

1. Digital photographs, with date stamp, that clearly show the condition of all practices that have been identified as needing corrective actions. The qualified inspector shall attach paper color copies of the digital photographs to the inspection report being maintained onsite within seven (7) calendar days of the date of the inspection. The qualified inspector shall also take digital photographs, with date stamp, that clearly show the condition of the practice(s) after the corrective action has been completed. The qualified inspector shall attach paper color copies of the digital photographs to the inspection report that documents the completion of the corrective action work within seven (7) calendar days of that inspection.

Within one business day of the completion of an inspection, the qualified inspector shall notify the owner or operator and appropriate contractor or subcontractor identified in Part III.A.6. of this permit of any corrective actions that need to be taken. The contractor or subcontractor shall begin implementing the corrective actions within one business day of this notification and shall complete the corrective actions in a reasonable time frame.

All inspection reports shall be signed by the qualified inspector. Pursuant to Part II.C.2. of this permit, the inspection reports shall be maintained on site with the SWPPP.

Short Term Maintenance and Inspection Requirements:

Inspections performed during construction shall verify all practices are functioning properly, correctly maintained, and accumulated sediment is removed from all control structures. The inspector must also examine the site for any evidence of soil erosion, the potential for pollutants to enter the storm drain system, turbid discharge at all outfalls, and the potential for soil and mud to be transported on the public roadway at the site entrance. In addition to these general guidelines, the project plans will provide more specific erosion control guidelines, as well as a construction sequence to guide the contractor through the construction process. Discussed below are specific maintenance and inspection requirements for the temporary practices to be employed at the site. The short-term maintenance requirements may be referenced in the Stormwater Pollution Prevention Plan report in the section entitled "Erosion and Sediment Control Measures Maintenance Schedule" beginning on page 22 of said report.

The contractor shall notify the Town of North Castle Stormwater Management Officer at least 48 hours prior to the commencement of any of the following construction stages: start of construction, installation of erosion and sediment control measures, completion of site clearing, completion of rough grading, installation of stormwater management practices, completion of final grading and stabilization of disturbed areas, closure of construction, and completion of final landscaping.

Once construction is completed and the site has been stabilized, a Notice of Termination shall be filed.

Long Term Maintenance and Inspection Requirements:

Once final stabilization is achieved, and construction is complete, maintenance and inspections will be performed by the parties identified in Exhibit 1, attached. The Maintenance and Inspection Checklists from Appendix "G" of the New York State Stormwater Management Design Manual shall serve as a guide for maintaining and inspecting the infiltration and bioretention facilities. Appendix "G" can be found as part of the Hidden Oak SWPPP report on file with the Town of North Castle as well as using the following link http://www.dec.ny.gov/docs/water_pdf/swdmappendixg.pdf. The entire New York State Stormwater Management Design Manual may be found at the following web page http://www.dec.ny.gov/docs/water pdf/swdm2015entire.pdf.

Inspections of the stormwater management practices and the collection and conveyance facilities shall be performed in accordance with Exhibit 1 which is excerpted from the approved Stormwater Pollution Prevention Plan.

EXHIBIT 1: Post-Construction Stormwater and Erosion Control Maintenance Responsibilities

Maintenance Item	Entity Responsible for Maintenance Following Construction and Sale of Lots
Stormwater Management Facilities	The three future homeowners collectively and under the legal agreement between them will be responsible for the maintenance of the following stormwater management practices: SWMF-1.1 (bioretention facility) SWMF-1.2 (infiltration facility) SWMF-1.3 (stormwater management basin) SWMF-2.2 (infiltration facility). Individual homeowner has responsibility for the maintenance of the following stormwater management facilities located on the lot to which he/she has acquired title: - On Lot 1, SWMF-L1 (infiltration facility); - On Lot 2, SWMF-L2. 1 (infiltration facility) and SWMF-L2.2 (infiltration facility); - On Lot 3, Rain Gardens \#1 and \#2, and Green Infrastructure Tree Planting.
Stormwater Collection and Conveyance System	Town of North Castle responsibility includes: Storm drainage facilities within the right-of-way in the subdivision road which is to be dedicated to the Town. Maintaining the vegetated swales within the Town roadway right-of-way. The three future homeowners collectively and under the legal agreement between them will be responsible for: Storm drainage facilities (catch basin, manholes and outlet control structures outside of the subdivision road right-of-way which convey runoff to SWMF-1.3 (stormwater management basin). Individual homeowner has responsibility for: Storm drainage facilities (catch basin, manholes and outlet control structures on the individual lot to which he/she has obtained title and which convey runoff to stormwater management facilities to manage the runoff from that lot. This includes the collection and conveyance storm drainage system which conveys runoff to: - On Lot 1, SWMF-L1 (infiltration facility) - On Lot 2, SWMF-L2.1 (infiltration facility) and SWMF-L2.2 (infiltration facility) On Lot 3, Rain Gardens \#1 and \#2.
Erosion in Landscaped Areas of the Individual Lots	Each individual homeowner for the lot to which he/she has obtained title

Maintenance Item	Entity Responsible for Maintenance Following Construction and Sale of Lots
Erosion of Slopes, Sand, Grit and Debris in the Subdivision Road Right-of-Way	Town of North Castle

EXHIBIT 2: MAINTENANCE OF STORMWATER FACILITIES

Maintenance of stormwater management facilities is described below for each stormwater management practice and component of the stormwater collection and conveyance system.

Definitions:

Owner - Refers to the present owner and applicant for the three lot subdivision of the property, McKenna Custom Homes, or its successors and assigns.

Homeowner - Refers to an individual owner of one of the three lots that has acquired the title to one of the lots.

Legal Agreement between the Three Homeowners ("three future homeowners collectively") Refers to the legal agreement between the three future homeowners of the individual lots. Under the legal agreement, the three future homeowners collectively have maintenance and financial responsibility with regard to the stormwater practices and facilities noted in Exhibit 1.

STORMWATER MANAGEMENT BASIN
 (SWMF-1.3):

1. Description: The stormwater management basin is used to control the rate of discharge from the property, and to improve the quality of the runoff.
2. Maintenance measures include:
(i) Periodically remove debris and litter from basin.
(ii) Clean trash rack when trash or debris has accumulated.
(iii) Mow side slopes, embankments, emergency spillway and access road at least once a year, preferably after August. Woody growth on the side slopes into the basin and on the berm outside of the basin should be discouraged.
(iv) Remove sediment from forebay every five to six years or when depth has reached $6 "$ measured on the sediment stick; from main portion of the basin if depth of sediment has reached 6 " or long flow path of water is hindered. Some replacement wetland planting may be necessary following removal of sediment.
(v) Stabilize eroding soils of stormwater management basin side slopes, embankment, and emergency spillway by placing topsoil as may be needed, then seeding and mulching with straw or other appropriate means.
(vi) Repair or replace structural elements such as inlet and outlet structures as necessary.
(vii) Remove larger borrowing animals, such as muskrats, from structural features. Trapping may be necessary.
(viii) Rock/riprap pads have not migrated, but are placed as per the design, and that vegetation, especially woody plants, are not growing within these areas.
3. Inspect for:
(i) Erosion, cracking, embankment subsidence, tree growth, burrowing animals.
(ii) Sediment and clogging in the outlet control facility, stormwater inlets, emergency spillway and drain (if present).
(iii) Sediment in forebay.
(iv) Adequacy of channel erosion controls at the outlet.
(v) Adequacy of plant coverage in shallow marsh (vegetated wetland) areas.
(vi) Proper functioning of structural elements.
(vii) Sources of erosion in the contributory drainage area.
4. Erosion in Stormwater Management Basin:
(i) In the event the Owner and/or the three future homeowners collectively under the legal agreement observe bare soils exceeding 20 square feet within the stormwater management basin, it shall seed those areas with a quick germination rye seed mix as soon as possible, or as directed by the landscape architect or civil engineer.
(ii) In the event the Owner and/or the three future homeowners collectively observe gully erosion more than 3 " deep within the stormwater management basin or in vegetated or grassed swales, it shall fill the same immediately and seed the area with a quick germination rye seed, or as directed by the landscape architect or civil engineer.
(iii) Any debris accumulation, litter, and/or fallen trees or brush within Drainage Easement Areas shall be removed and disposed of off-site.
5. Sediment Deposits in Stormwater Management Basin:
(i) Sediment deposits obstructing more than one-third of the inlet or outlet structures or pipes associated with the basin shall be removed therefrom by the Owner and/or the three future homeowners collectively and be placed in a suitable upland area of the property or removed from the property and properly disposed of.
(ii) Sediment deposits that exceed one inch in depth within the vegetated areas of any detention basin or infiltration basin encompassing more than 20 square feet shall be removed by the Owner and/or the three future homeowners collectively and be placed in a suitable upland area of the property or removed from the property and properly disposed. Any plants affected by the removal process shall be dug out or replanted.
(iii) Sediment deposits in the forebay and micropool shall not exceed six (6) inches in depth. All sediment removed shall be deposited and stabilized in a location that is not likely to erode.

INFILTRATION FACILITIES

(SWMF-1.2, SWMF-L1, SWMF-L2.1 and SWMF-L2.2, and SWMF-2.2):

1. Description: Infiltration facilities are used to improve the quality of the runoff, provide for a reduction in the volume of runoff, and in some cases, reduce the peak rate of runoff. Maintenance of infiltration facilities is essential to ensure their continued effectiveness. Principally, this involves preventing suspended solids from being discharged to the infiltration facilities. These may have the effect of filling the void spaces thereby clogging the soil. A log shall be maintained for each infiltration facility.
2. Maintenance Measures Include:
(i) Observation of the depth of sediment, if any, through inspection via the installed observation port on each row of the chambers during the first 2 to 3 months of operation, and thereafter on an annual basis.
(ii) Remove sediment from pre-treatment facility when the depth of sediment reaches 50% of capacity of the facility.
(iii) Remove sediment from chambers when the depth of sediment is 3 " in depth.
(iv) The manufacturer of the chambers recommends cleaning of the stormwater management chambers every 9 years after installation and every 9 years thereafter.
(v) The manufacturer also recommends that 45 years after installation, the chambers be inspected using closed circuit television (CCTV) or other comparable technique to determine the condition of the interior of the chambers, and rehabilitate or replace as may be necessary.
(vi) Ensuring that the meadow vegetation to be established above the infiltration facilities, where it is proposed, achieves good growth and final stabilization of the ground surface above the chambers. Periodic mowing of the meadow, once in the spring (midApril and once in autumn (late October) is needed to ensure that woody vegetation does not become established in the meadow.

3. Inspect for:

(i) Depth of sediment, if any, through inspection via the installed observation port on each row of the chambers during the first 2 to 3 months of operation, and thereafter on an annual basis.
(ii) The rate of dewatering of the infiltration facility following a precipitation event. The chambers should fully dewater within 48 hours of the end of the precipitation event.

CATCH BASINS, MANHOLES AND STORM DRAINAGE PIPES

Catch basins, drain inlets and manholes located within the right of way of the subdivision road will be maintained by the Town of North Castle. If these structures are located on private property, their maintenance shall be carried out by the Owner and/or by the three future homeowners collectively under their legal agreement.

1. Description: Catch basins have sumps to allow sediment and debris to drop out before the water exits this drainage junction. Storm pipes normally need no maintenance.
2. Maintenance Measures Include:
(i) Clean out and dispose of sediment and debris from sump, if there is less than 12" between top of sediment and invert of pipe.
(ii) Trash or debris which is located immediately in front of the catch basin opening or is blocking inletting capacity of the basin by more than 10%.
3. Inspection:
(i) Annual visual check for sediment accumulation is usually sufficient.
(ii) Recommend using tool to open cover, flashlight and dipstick for inspection of deep water quality catch basins.
(iii) Check that the grate is sitting flush on the structure, and that there are no holes or cracks in the pavement or ground adjacent to the catch basin.

LEVEL SPREADER

1. Description: Level spreader serves to dissipate the flow of water over a broad area to reduce the potential for erosion. Maintenance of the level spreader is to be performed under by the legal agreement between the three homeowners.
2. Maintenance:
(i) Periodically remove debris and litter.
(ii) Mow at least twice per year the meadow vegetation to be established. Mowing is to be done in spring (mid-May) and in autumn (mid-October).
(iii) Periodically remove sediment in order to maintain original design depth.
(iv) Stabilize eroding soils by seeding and mulching or other appropriate means.
3. Inspection:
(i) Annual visual check for erosion, sediment accumulation and debris is usually sufficient.
(ii) Ensure that lip over which flow is directed is level, stable and well-vegetated, and is not eroding.
(iii) Ensuring that the vegetation to be established at the level spreader achieves good growth and final stabilization of the ground surface above the chambers.

DIVERSION STRUCTURES

1. Description: Diversion structures, also known as flow splitters, are used as required where runoff is conveyed to infiltration facilities by a storm pipe in order to divert the WQv to the filtering practice, and allow larger flows to bypass the practice. Maintenance of diversion structures is to be performed for each stormwater practice as per Exhibit 1 , above.

2. Maintenance:

(i) Clean sediment out annually or when sediment has reached a depth of 6 inches using a vactor truck or clamshell scoop. Use similar procedures to cleaning underground tanks, and catch basins.
(ii) Remove trash and debris.

3. Inspection

(i) Annual visual check for sediment accumulation is usually sufficient.

BIORETENTION FACILITY AND RAIN GARDENS

1. Description: Bioretention facilities and rain gardens are similar stormwater management practices intended to manage and treat small volumes of stormwater runoff from impervious surfaces using a conditioned planting soil bed and planting materials to filter runoff stored within a shallow depression. SWMF-1.1 (bioretention facility) is to be maintained under by the legal agreement between the three homeowners. The two rain gardens on Lot 3 shall be maintained by the future homeowner of Lot 3 .

2. Maintenance:

(i) Routine maintenance may include the occasional replacement of plants, mulching, weeding and thinning to maintain the desired appearance.
(ii) Weeding and watering are essential the first year, and can be minimized with the use of a weed-free mulch layer. Re-mulch bioretention facilities annually.
(iii) Homeowners and landscapers must be educated regarding the purpose and maintenance requirements of the bioretention facility and/or rain garden, so the desirable aspects of ponded water are recognized and maintained.
(iv) Keep plants pruned if they start to get "leggy" and floppy. Cut off old flower heads after a plant is done blooming.
(v) Inspect for sediment accumulations or heavy organic matter where runoff enters the bioretention facility and/or rain garden and remove as necessary. The top few inches of planting soil mix should be removed and replaced when water ponds for more than 48 hours. Re-mulch following such removal.
(vi) If the overflow device is an earthen berm or lip, check for erosion and repair as soon as possible. If this continues, a harder armoring of stone may be necessary.
(vii) Make sure all appropriate elevations have been maintained, no settlement has occurred and no low spots have been created.
(viii) Mow the grass filter strip between the bioretention facility and the level spreader weekly during the growing season or as per the adjacent lawn areas. Maintenance of level spreader as per noted above.

EXHIBIT 2: Summary of Maintenance Schedule for Permanent Stormwater Management Practices and Stormwater Infrastructure

STORMWATER MANAGEMENT PRACTICE	MAINTENANCE ACTIVITY	FREQUENCY
STORMWATER MANAGEMENT BASIN	Cleaning and removal of debris	Inspect after major storm events $\left(>2^{\prime \prime}\right.$ of rainfall); otherwise annual removal of debris
	Inspect vegetation and harvest vegetation when a 50\% reduction in the original open water surface area occurs	Inspect annually
	Inspect and repair embankment and side slopes	Inspect annually
	Inspect outlet control structure and repair if needed	Inspect annually
	Removing accumulated sediment from forebay or sediment storage areas when 60% of the original volume has been lost	Every 5 years
	Removing accumulated sediment from main cells of pond once 50\% of the original volume has been lost	Every 5 years
	Remove invasive plants	Inspect annually; remove invasive plants promptly

INFILTRATION FACILITY	MAINTENANCE ACTIVITY	FREQUENCY
	Inspect level of sediment in subsurface chambers through observation port and remove if depth > 3"	Inspect after first year in operation, then every 5 years
	Inspect water level in observation well outlet control structures and repair if needed	Inspect annually
	Inspect annually are eroding	Apply mulching to bare or void areas
BIORETENTION FACILITY AND RAIN GARDENS	Inspect annually diseased vegetation	Inspect annually
Watering plant material	As may be needed in summer months	
	Removing mulch and applying a new layer to prevent weed growth	Inspect annually
Remove invasive plants	Inspect annually; remove invasive plants promptly	
	Sediment removal	Inspect annually; observe if runoff water is present above the surface for more than 24 hr after rain event

	MAINTENANCE ACTIVITY	FREQUENCY
TREE PLANTING	Place mulch (shredded hardwood bark) around trunk of tree to a diameter of at least 3 feet. Mulch shall be placed to a depth of between 3" and 4", and mulch shall not be placed against the trunk (i.e. no "mulch volcanoes")	Inspect annually and add mulch as needed
	Watering of the newly planted tree Observe condition of tree. Call expert (arborist or cooperative extension service) for questions about pest or disease problems.	Watering of newly planted trees is needed for the first two growing seasons after planting.
	Inspect annually.	
	Remove sediment from sump	
CATCH BASINS AND MANHOLES	Check integrity of structure	Inspect annually
	Check for debris that might impair the flow through the grate	Inspect after every storm event $0.5 " ~ o f ~ p r e c i p i t a t i o n ~$
CATCH BASIN DIVERSION STRUCTURES	Remove floatables and sediment from facility in accordance with manufacturer's specifications	Inspect after first year in operation, then every 5 years
HYDRODYNAMIC SEPARATOR		

Contractor Certification

Contractor Certification

Prior to the commencement of construction activity, the owner or operator must identify the contractor(s) and subcontractor(s) that will be responsible for installing, constructing, repairing, replacing, inspecting and maintaining the erosion and sediment control practices included in the SWPPP; and the contractor(s) and subcontractor(s) that will be responsible for constructing the post-construction stormwater management practices included in the SWPPP. The owner or operator shall have each of the contractors and subcontractors identify at least one person from their company that will be responsible for implementation of the SWPPP. This person shall be known as the trained contractor. The owner or operator shall ensure that at least one trained contractor is on site on a daily basis when soil disturbance activities are being performed.

The owner or operator shall have each of the contractors and subcontractors identified above sign a copy of the following certification statement below before they commence any construction activity:
"I hereby certify under penalty of law that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the qualified inspector during a site inspection. I also understand that the owner or operator must comply with the terms and conditions of the most current version of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater discharges from construction activities and that it is unlawful for any person to cause or contribute to a violation of water quality standards. Furthermore, I am aware that there are significant penalties for submitting false information that I do not believe to be true, including the possibility of fine and imprisonment for knowing violations".

In addition to providing the certification statement above, the certification page must also identify the specific elements of the SWPPP that each contractor and subcontractor will be responsible for and include the name and title of the person providing the signature; the name and title of the trained contractor responsible for SWPPP implementation; the name, address and telephone number of the contracting firm; the address (or other identifying description) of the site; and the date the certification statement is signed. The owner or operator shall attach the certification statement(s) to the copy of the SWPPP that is maintained at the construction site. If new or additional contractors are hired to implement measures identified in the SWPPP after construction has commenced, they must also sign the certification statement and provide the information listed above.

Signature of Contractor

Appendix E
Stormwater Management Report Hydrographs and Routings

Hidden Oak 2.7 01-26-2016

Prepared by EAEC
HydroCAD® 10.00-15 s/n 03392 © 2015 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
3.216	61	$>75 \%$ Grass cover, Good, HSG B (1S, 2S, 5S, 6S, 20S, 21S, 23S, 24S, 26S, 31S, 32S, 35S)
0.053	74	$>75 \%$ Grass cover, Good, HSG C (20S, 21S) 0.013
00	$>75 \%$ Grass cover, Good, HSG D (20S, 21S)	
0.277	48	Brush, Good, HSG B (20S)
0.073	98	Driveway and roofs, HSG B (5S)
0.023	98	Driveway, HSG B (35S)
0.229	98	Impervious Surfaces, HSG B (20S)
0.043	98	Lot 3 Roof, HSG B (6S)
0.039	85	Maintenance Path, HSG B (20S)
0.016	98	Off-Site Road, HSG B (32S)
0.033	98	Off-site impervious road, HSG B (1S)
0.524	98	Paved parking, HSG B (2S, 23S, 33S)
0.004	98	Retaining Wall, HSG B (20S)
0.098	98	Roofs, HSG B (29S)
0.253	98	Subdivision Road, HSG B (1S)
0.063	98	Unconnected pavement, HSG B (30S, 32S)
0.009	98	Walks, Entry Steps, HSG B (6S)
1.279	55	Woods (off-site), Good, HSG B (20S, 31S)
0.787	55	Woods (on-site), Good, HSG B (20S)
13.096	55	Woods, Good, HSG B (1S, 2S, 4S, 6S, 21S, 24S, 26S, 27S, 30S, 31S, 32S, 33S, 34S, 35S)
0.474	70	Woods, Good, HSG C (4S, 20S, 21S, 27S, 30S)
0.236	77	Woods, Good, HSG D (4S, 20S, 21S, 27S, 30S)
20.841	59	TOTAL AREA

Ground Covers (all nodes)

$\begin{aligned} & \text { HSG-A } \\ & \text { (acres) } \end{aligned}$	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	$\begin{array}{r} \text { Total } \\ \text { (acres) } \end{array}$	Ground Cover	Subcatchment Numbers
0.000	3.216	0.053	0.013	0.000	3.283	>75\% Grass cover, Good	$\begin{aligned} & 1 \mathrm{~S}, 2 \mathrm{~S}, 5 \mathrm{~S}, 6 \mathrm{~S} \\ & 20 \mathrm{~S}, 21 \mathrm{~S}, 23 \mathrm{~S} \\ & 24 \mathrm{~S}, 26 \mathrm{~S}, 31 \mathrm{~S} \\ & 32 \mathrm{~S}, 35 \mathrm{~S} \end{aligned}$
0.000	0.277	0.000	0.000	0.000	0.277	Brush, Good	20S
0.000	0.023	0.000	0.000	0.000	0.023	Driveway	35S
0.000	0.073	0.000	0.000	0.000	0.073	Driveway and roofs	5S
0.000	0.229	0.000	0.000	0.000	0.229	Impervious Surfaces	20S
0.000	0.043	0.000	0.000	0.000	0.043	Lot 3 Roof	6S
0.000	0.039	0.000	0.000	0.000	0.039	Maintenance Path	20S
0.000	0.016	0.000	0.000	0.000	0.016	Off-Site Road	32S
0.000	0.033	0.000	0.000	0.000	0.033	Off-site impervious road	1S
0.000	0.524	0.000	0.000	0.000	0.524	Paved parking	2S, 23S, 33S
0.000	0.004	0.000	0.000	0.000	0.004	Retaining Wall	20S
0.000	0.098	0.000	0.000	0.000	0.098	Roofs	29S
0.000	0.253	0.000	0.000	0.000	0.253	Subdivision Road	1S
0.000	0.063	0.000	0.000	0.000	0.063	Unconnected pavement	30S, 32S
0.000	0.009	0.000	0.000	0.000	0.009	Walks, Entry Steps	6 S
0.000	1.279	0.000	0.000	0.000	1.279	Woods (off-site), Good	20S, 31S
0.000	0.787	0.000	0.000	0.000	0.787	Woods (on-site), Good	20S
0.000	13.096	0.474	0.236	0.000	13.807	Woods, Good	$\begin{aligned} & 1 \mathrm{~S}, 2 \mathrm{~S}, 4 \mathrm{~S}, 6 \mathrm{~S}, \\ & 20 \mathrm{~S}, 21 \mathrm{~S}, 24 \mathrm{~S} \\ & 26 \mathrm{~S}, 27 \mathrm{~S}, 30 \mathrm{~S}, \\ & 31 \mathrm{~S}, 32 \mathrm{~S}, 33 \mathrm{~S} \\ & 34 \mathrm{~S}, 35 \mathrm{~S} \end{aligned}$
0.000	20.064	0.527	0.250	0.000	20.841	TOTAL AREA	

HydroCAD® 10.00-15 s/n 03392 © 2015 HydroCAD Software Solutions LLC_Page 4

Time span=0.00-96.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}, 9601$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: FDA-2.2

Subcatchment 2S: FDA-1.2

Subcatchment 4S: XDA4

Subcatchment 5S: FDA-L2.1

Subcatchment 6S: FDA-L3.1

Subcatchment 20S: FDA-1.3

Subcatchment 21S: FDA-1.4

Subcatchment 23S: FDA-L1

Subcatchment 24S: FDA-2.1

Subcatchment 26S: FDA-3

Subcatchment 27S: FDA-4

Subcatchment 29S: FDA-L2.2

Subcatchment 30S: XDA1

Subcatchment 31S: FDA-1.1

Subcatchment 32S: FDA-2.3

Subcatchment 33S: XDA2

Subcatchment 34S: XDA3

Subcatchment 35S: FDA-L3. 2

Runoff Area=28,532 sf 43.66% Impervious Runoff Depth=0.97" Flow Length=483' Tc=13.2 $\mathrm{min} \quad \mathrm{CN}=74$ Runoff= 0.55 cfs 0.053 af

Runoff Area=19,428 sf 65.47\% Impervious Runoff Depth=1.60" $\mathrm{T}=10.0 \mathrm{~min} \mathrm{CN}=84$ Runoff $=0.73 \mathrm{cfs} 0.059$ af

Runoff Area=10,541 sf 0.00% Impervious Runoff Depth $=0.55^{\prime \prime}$
Flow Length=100' Slope $=0.1900$ '/' $\mathrm{Tc}=8.3 \mathrm{~min} \mathrm{CN}=65$ Runoff= 0.11 cfs 0.011 af
Runoff Area=5,735 sf 55.54% Impervious Runoff Depth=1.46" $\mathrm{Tc}=5.0 \mathrm{~min} \quad \mathrm{CN}=82$ Runoff=$=0.23 \mathrm{cfs} 0.016$ af

Runoff Area=11,384 sf 19.99% Impervious Runoff Depth=0.59" $\mathrm{T}=10.0 \mathrm{~min} \mathrm{CN}=66$ Runoff $=0.12 \mathrm{cfs} 0.013$ af

Runoff Area=177,542 sf 5.71% Impervious Runoff Depth=0.37" Flow Length=974' Tc=17.9 min CN=60 Runoff=0.73 cfs 0.126 af

Runoff Area=6,857 sf 0.00\% Impervious Runoff Depth=0.51" Flow Length=87' Tc=5.5 min CN=64 Runoff=0.07 cfs 0.007 af

Runoff Area=8,712 sf 91.00% Impervious Runoff Depth=2.55" $\mathrm{Tc}=5.0 \mathrm{~min} \mathrm{CN}=95$ Runoff=$=0.59 \mathrm{cfs} 0.042$ af

Runoff Area $=38,768$ sf 0.00% Impervious Runoff Depth $=0.31$ " Flow Length=141' $\mathrm{Tc}=6.3 \mathrm{~min} \quad \mathrm{CN}=58$ Runoff=$=0.13 \mathrm{cfs} 0.023$ af

Runoff Area=23,055 sf 0.00% Impervious Runoff Depth=0.28" Flow Length=156' Tc=7.6 min $\mathrm{CN}=57$ Runoff=$=0.07 \mathrm{cfs} 0.012 \mathrm{af}$

Runoff Area $=10,545$ sf 0.00% Impervious Runoff Depth $=0.55^{\prime \prime}$ Flow Length=100' Slope $=0.1900 \mathrm{l} / \mathrm{Tc}=8.3 \mathrm{~min} \mathrm{CN}=65$ Runoff=$=0.11 \mathrm{cfs} 0.011 \mathrm{af}$

Runoff Area=4,285 sf 100.00% Impervious Runoff Depth=2.87" $\mathrm{Tc}=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=$=0.31 \mathrm{cfs} 0.024$ af

Runoff Area=208,652 sf 1.02% Impervious Runoff Depth=0.25" Flow Length=1,046' Tc=25.6 min CN=56 Runoff=0.39 cfs 0.099 af

Runoff Area $=29,272$ sf 0.00% Impervious Runoff Depth $=0.34$ " $\mathrm{T}=15.0 \mathrm{~min} \mathrm{CN}=59$ Runoff $=0.11 \mathrm{cfs} 0.019$ af

Runoff Area $=85,225$ sf 1.54% Impervious Runoff Depth=0.28" Flow Length $=401^{\prime} \quad \mathrm{Tc}=14.7 \mathrm{~min} \quad \mathrm{CN}=57$ Runoff $=0.22 \mathrm{cfs} 0.045$ af

Runoff Area=211,963 sf 1.03\% Impervious Runoff Depth=0.22" Flow Length $=544^{\prime}$ Tc=15.5 min $\quad \mathrm{CN}=55$ Runoff $=0.37 \mathrm{cfs} 0.090$ af

Runoff Area=23,043 sf 0.00% Impervious Runoff Depth=0.22" Flow Length=156' Tc=8.3 min $\mathrm{CN}=55$ Runoff=0.04 cfs 0.010 af

Runoff Area $=4,286$ sf 23.68% Impervious Runoff Depth=0.68" $\mathrm{T}=10.0 \mathrm{~min} \mathrm{CN}=68$ Runoff $=0.06 \mathrm{cfs} 0.006$ af

Reach 30R: Vegetated Swale
Pond 15P: SWMF
Pond 29P: SWMF-L1
Pond 30P: Div L1 (DS F.2)
Pond 31P: SWMF-1.1 Bioret
Pond 32P: Div 2.2 (DS D.2)
Pond 33P: Div L2.1

Pond 34P: SWMF-L2.1

Pond 35P: Div 1.2

Pond 36P: Rain Garden \#1 Lot 3

Pond 37P: SWMF-1.2

Pond 38P: SWMF-2.2

Pond 39P: SWMF-L2. 2

Pond 40P: Div L2.2

Pond 41P: Rain Garden \#2 Lot 3

Link 19L: Design Point 1

Link 22L: Design Point 2

Link 25L: Design Point 3

Link 28L: Design Point 4

Avg. Flow Depth=0.19' Max Vel=0.43 fps Inflow=0.22 cfs 0.045 af $\mathrm{n}=0.240 \mathrm{~L}=285.0^{\prime} \mathrm{S}=0.0561$ '/' Capacity= 6.76 cfs Outflow=$=0.19 \mathrm{cfs} 0.045 \mathrm{af}$

Peak Elev=126.85' Storage=5,951 cf Inflow=0.73 cfs 0.126 af Outflow=0.11 cfs 0.126 af

Peak Elev=153.16' Storage=245 cf Inflow=0.59 cfs 0.042 af Outflow $=0.21$ cfs 0.042 af

Peak Elev=154.71' Inflow=0.59 cfs 0.042 af Primary $=0.00$ cfs 0.000 af Secondary $=0.59$ cfs 0.042 af Outflow $=0.59$ cfs 0.042 af

Peak Elev=156.65' Storage=175 cf Inflow=0.11 cfs 0.019 af Discarded $=0.03$ cfs 0.019 af Primary $=0.00$ cfs 0.000 af Outflow= 0.03 cfs 0.019 af

Peak Elev=152.90' Inflow=0.55 cfs 0.053 af Primary $=0.00$ cfs 0.000 af Secondary $=0.55$ cfs 0.053 af Outflow $=0.55$ cfs 0.053 af

Peak Elev=150.30' Inflow=0.23 cfs 0.016 af Primary $=0.00$ cfs 0.000 af Secondary $=0.23$ cfs 0.016 af Outflow $=0.23$ cfs 0.016 af

Peak Elev=148.13' Storage=136 cf Inflow=0.23 cfs 0.016 af Outflow=0.06 cfs 0.016 af

Peak Elev=154.60' Inflow=0.73 cfs 0.059 af Primary $=0.00$ cfs 0.000 af Secondary $=0.73$ cfs 0.059 af Outflow= 0.73 cfs 0.059 af

Peak Elev=144.63' Storage=142 cf Inflow=0.12 cfs 0.013 af Discarded $=0.03$ cfs 0.013 af Primary $=0.00$ cfs 0.000 af Outflow $=0.03$ cfs 0.013 af

Peak Elev=153.81' Storage=610 cf Inflow=0.73 cfs 0.059 af Outflow=0.18 cfs 0.059 af

Peak Elev=150.62' Storage=551 cf Inflow=0.55 cfs 0.053 af Discarded $=0.16$ cfs 0.053 af Primary $=0.00$ cfs 0.000 af Outflow $=0.16$ cfs 0.053 af

Peak Elev=135.76' Storage=209 cf Inflow=0.31 cfs 0.024 af Outflow $=0.07$ cfs 0.024 af

Peak Elev=137.86' Inflow=0.31 cfs 0.024 af Primary $=0.00$ cfs 0.000 af Secondary= 0.31 cfs 0.024 af Outflow $=0.31$ cfs 0.024 af

Peak Elev=152.08' Storage=53 cf Inflow=0.06 cfs 0.006 af Discarded $=0.02$ cfs 0.006 af Primary $=0.00$ cfs 0.000 af Outflow= 0.02 cfs 0.006 af

Primary $=0.12$ cfs 0.132 af

Inflow=0.25 cfs 0.068 af Primary $=0.25$ cfs 0.068 af Inflow=0.07 cfs 0.012 af Primary $=0.07$ cfs 0.012 af Inflow=0.11 cfs 0.011 af Primary $=0.11$ cfs 0.011 af

Total Runoff Area $=20.841$ ac Runoff Volume $=0.666$ af Average Runoff Depth $=0.38^{\prime \prime}$ 93.43% Pervious = 19.472 ac 6.57% Impervious = 1.369 ac

Summary for Subcatchment 1S: FDA-2.2
Runoff $=\quad 0.55$ cfs @ 12.19 hrs, Volume $=\quad 0.053$ af, Depth $=0.97{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 1 year Rainfall=3.10"

	Area (sf)	CN	Description		
	11,021	98			
	1,437	98	Subdivision Road, HSG BOff-site impervious road, HSG B		
	1,307	61 >			
	14,767	55	$>75 \%$ Grass cover, Good, HSG BWoods, Good, HSG B		
	28,532	74	Weighted Average		
	16,074		56.34\% Pervious Area		
	12,458		43.66\% Imp	pervious Ar	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{aligned} & \text { c } \text { Length } \\ & \text { (feet) } \end{aligned}$	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
12.1	100	0.0750	0.14		Sheet Flow, Woods: Light underbrush $n=0.400 \quad \mathrm{P} 2=3.50^{\prime \prime}$
0.6	68	0.1250	- 1.77		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
0.2	265	0.1000	- 6.42		Shallow Concentrated Flow, Paved $K v=20.3 \mathrm{fps}$
0.3	3250	0.0750	13.46	10.57	Pipe Channel,
					12.0" Round Area $=0.8$ sf Perim=3.1'r= 0.25^{\prime}
13.2	2483	Total			

Subcatchment 1S: FDA-2.2

Summary for Subcatchment 2S: FDA-1.2
Runoff $=\quad 0.73$ cfs @ 12.14 hrs, Volume $=\quad 0.059$ af, Depth $=1.60^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 1 year Rainfall=3.10"

	Area (sf)	CN	Description		
	12,720	98 P	Paved parking, HSG B		
	3,180	$61>$	>75\% Grass cover, Good, HSG B		
	3,528	55	Woods, Good, HSG B		
	19,428	84	Weighted Average		
	6,708		34.53\% Pervious Area		
	12,720		65.47\% Impervious Area		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
10.0					Direct Entry

Subcatchment 2S: FDA-1.2

Summary for Subcatchment 4S: XDA4
Runoff $=0.11 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume $=0.011 \mathrm{af}$, Depth $=0.55{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 1 year Rainfall=3.10"

Area (sf)	CN	Description	
4,225	55	Woods, Good, HSG B	
4,225	70	Woods, Good, HSG C	
2,091	77	Woods, Good, HSG D	

Subcatchment 4S: XDA4

Summary for Subcatchment 5S: FDA-L2.1

Runoff $=0.23 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume $=0.016$ af, Depth $=1.46^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 1 year Rainfall=3.10"

	Area (sf)	CN D	Description		
	$\begin{array}{r} 3,185 \\ 2,550 \\ \hline \end{array}$	$\begin{array}{ll} 98 & D \\ 61 & \end{array}$	Driveway and roofs, HSG B $>75 \%$ Grass cover, Good. HSG B		
	$\begin{aligned} & 5,735 \\ & 2,550 \\ & 3,185 \end{aligned}$	82 W	Weighted Average 44.46\% Pervious Area 55.54\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry,

Subcatchment 5S: FDA-L2.1

Summary for Subcatchment 6S: FDA-L3.1

Runoff $=0.12 \mathrm{cfs} @ 12.17 \mathrm{hrs}$, Volume $=0.013 \mathrm{af}$, Depth $=0.59^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 1 year Rainfall=3.10"

	Area (sf)	CN	Description		
	982	98	Lot 3 Roof, HSG B		
	907	98	Lot 3 Roof, HSG B Lot 3 Roof, HSG B		
	387	98	Walks, Entry Steps, HSG B		
	5,387	61 >	>75\% Grass cover, Good, HSG B		
	3,721	55	Woods, Good, HSG B		
	11,384	66	Weighted Average		
	9,108		80.01\% Pervious Area 19.99\% Impervious Area		
	2,276				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{gathered} \text { Capacity } \\ \text { (cfs) } \end{gathered}$	Description
10.0					Direct Entry,

Subcatchment 6S: FDA-L3.1

Summary for Subcatchment 20S: FDA-1.3

Runoff $=0.73 \mathrm{cfs} @ 12.40 \mathrm{hrs}$, Volume $=0.126 \mathrm{af}$, Depth $=0.37^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 1 year Rainfall=3.10"

	Area (sf)	CN	Description Impervious Surfaces, HSG B		
	9,958	98			
	1,720	85	Impervious Surfaces, HSG B Maintenance Path, HSG B		
	185	98 R	Retaining Wall, HSG B		
	60,200	$61>$	>75\% Grass cover, Good, HSG B		
	2,190	$74>$	$>75 \%$ Grass cover, Good, HSG C		
	523	$80>$	$>75 \%$ Grass cover, Good, HSG D		
	12,069	48 B	Brush, Good, HSG B		
	34,260	55	Woods (on-site), Good, HSG B		
	51,994	55	Woods (off-site), Good, HSG B		
	2,962	70	Woods, Good, HSG C		
	1,481	77 W	Woods, Good, HSG D		
	$\begin{array}{r} 177,542 \\ 167,399 \\ 10,143 \end{array}$	60	Weighted Average 94.29\% Pervious Area 5.71\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	$\begin{aligned} & \text { Length } \\ & \text { (feet) } \end{aligned}$	Slope (ft/ft)	Velocity $(\mathrm{ft} / \mathrm{sec})$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
8.7	100	0.1700	0.19		Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400 \quad \mathrm{P} 2=3.50^{\prime \prime}$
1.0	133	0.1880	- 2.17		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
3.1	183	0.0383	- 0.98		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
0.4	57	0.0219	- 2.22		Shallow Concentrated Flow, Grassed Waterway Kv=15.0 fps
0.1	91	0.1000	- 15.54	12.21	Pipe Channel, 12.0" Round Area $=0.8$ sf Perim=3.1' $\mathrm{r}=0.25^{\prime}$ $\mathrm{n}=0.012$
1.6	274	0.0299	- 2.78		Shallow Concentrated Flow, Unpaved Kv=16.1 fps
3.0	136	0.0022	- 0.76		Shallow Concentrated Flow, Unpaved $\mathrm{Kv}=16.1 \mathrm{fps}$

[^1]Subcatchment 20S: FDA-1.3

Summary for Subcatchment 21S: FDA-1.4
Runoff $=0.07$ cfs @ 12.11 hrs , Volume $=0.007$ af, Depth $=0.51{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 1 year Rainfall=3.10"

| Area (sf) | CN | Description |
| ---: | ---: | :--- | :--- | :--- |
| 478 | 61 | >75\% Grass cover, Good, HSG B |
| 124 | 74 | >55\% Grass cover, Good, HSG C |
| 62 | 80 | >55\% Grass cover, Good, HSG D |
| 3,040 | 55 | Woods, Good, HSG B |
| 2,102 | 70 | Woods, Good, HSG C |
| 1,051 | 77 | Woods, Good, HSG D |

Subcatchment 21S: FDA-1.4

Summary for Subcatchment 23S: FDA-L1

Runoff $=0.59$ cfs @ 12.07 hrs, Volume $=0.042$ af, Depth $=2.55^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 1 year Rainfall=3.10"

	Area (sf)	CN	Description		
	7,928	98 P	Paved parking, HSG B $>75 \%$ Grass cover, Good, HSG B		
	784	61 >			
	8,712	$95 \begin{array}{r} \\ \\ 9 \\ 9\end{array}$	Weighted Average 9.00\% Pervious Area 91.00\% Impervious Area		
	784				
	7,928				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry,

Subcatchment 23S: FDA-L1

Summary for Subcatchment 24S: FDA-2.1
Runoff $=0.13 \mathrm{cfs} @ 12.27 \mathrm{hrs}$, Volume $=0.023 \mathrm{af}$, Depth $=0.31^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 1 year Rainfall=3.10"

Subcatchment 24S: FDA-2.1

Summary for Subcatchment 26S: FDA-3

Runoff $=0.07$ cfs @ 12.32 hrs, Volume $=0.012$ af, Depth $=0.28{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 1 year Rainfall=3.10"

Area (sf)		CN Description			
	$\begin{array}{r} 5,955 \\ 17,100 \\ \hline \end{array}$	$\begin{array}{ll} 61 & > \\ 55 & V \end{array}$	$>75 \%$ Grass cover, Good, HSG B Woods, Good, HSG B		
	$\begin{aligned} & 23,055 \\ & 23,055 \end{aligned}$	57 Weighted Average 100.00\% Pervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity \qquad	Description
7.3	86	0.1977	0.20		Sheet Flow, Woods: Light underbrush $n=0.400 \quad \mathrm{P} 2=3.50$ "
0.3	70	0.0571	3.58		Shallow Concentrated Flow, Grassed Waterway Kv=15.0 fps
7.6	156	Total			

Subcatchment 26S: FDA-3

Summary for Subcatchment 27S: FDA-4
Runoff $=0.11 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume $=0.011 \mathrm{af}$, Depth $=0.55{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 1 year Rainfall=3.10"

Area (sf)	CN	Description	
4,220	55	Woods, Good, HSG B	
4,220	70	Woods, Good, HSG C	
2,105	77	Woods, Good, HSG D	

Subcatchment 27S: FDA-4

Summary for Subcatchment 29S: FDA-L2.2

Runoff $=0.31$ cfs @ 12.07 hrs , Volume $=0.024$ af, Depth= $2.87^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 1 year Rainfall=3.10"

	Area (sf)	CN Description			
	4,285	98 Roofs, HSG B			
4,285		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{aligned} & \text { Length } \\ & \text { (feet) } \end{aligned}$	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry,

Subcatchment 29S: FDA-L2.2

Summary for Subcatchment 30S: XDA1

Runoff $=0.39$ cfs @ 12.61 hrs , Volume $=0.099 \mathrm{af}$, Depth $=0.25^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 1 year Rainfall=3.10"

	Area (sf)	CN D	Description			
	2,134	98 U	Unconnected pavement, HSG B			
	195,802	55 W	Woods, Good, HSG B			
	7,144	70 W				
	3,572	77 W	Woods, Good, HSG D			
	208,652	56	Weighted Average 98.98\% Pervious Area 1.02\% Impervious Area 100.00\% Unconnected			
	206,518					
	2,134					
	2,134					
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity	Description	
8.7	100	0.1700	0.19		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=3.50 "$
1.0	133	0.1880	2.17		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
3.1	183	0.0383	0.98		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
2.0	185	0.0919	1.52		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
9.7	367	0.0158	0.63		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
1.1	78	0.0538	1.16		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

[^2]Subcatchment 30S: XDA1

Summary for Subcatchment 31S: FDA-1.1
Runoff $=0.11 \mathrm{cfs} @ 12.39 \mathrm{hrs}$, Volume $=0.019 \mathrm{af}$, Depth $=0.34{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 1 year Rainfall=3.10"

	Area (sf)	CN D	Description		
	18,513	$61>$	>75\% Grass cover, Good, HSG B		
	7,020	55 W	Woods, Good, HSG B		
*	3,739	55 W	Woods (off-site), Good, HSG B		
	29,272	59 W	Weighted Average		
	29,272		100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
15.0					Direct Entry,

Subcatchment 31S: FDA-1.1

Summary for Subcatchment 32S: FDA-2.3

Runoff $=0.22$ cfs @ 12.43 hrs, Volume $=0.045$ af, Depth $=0.28{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 1 year Rainfall=3.10"

	rea (sf)	CN D	Description		
*	715	98 O	Off-Site Road, HSG B		
	315	98 U	Unconnected pavement, HSG B		
	280	98 U	Unconnected pavement, HSG B		
	23,051	$61>$	>75\% Grass cover, Good, HSG B		
	60,864	55 W	Woods, Good, HSG B		
	85,225	57 W	Weighted Average		
	83,915		98.46\% Pervious Area		
	1,310		1.54\% Impervious Area		
	595		45.42\% Unconnected		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
8.1	100	0.2050	0.21		Sheet Flow, Woods: Light underbrush $n=0.400 \quad \mathrm{P} 2=3.50$
1.4	148	0.1284	41.79		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
5.2	153	0.0163	$3 \quad 0.49$	1.29	Trap/Vee/Rect Channel Flow, Bot.W=2.00' D=0.75' Z= 2.0 '/' Top.W=5.00' $\mathrm{n}=0.240$ Sheet flow over Dense Grass
14.7	401	Total			

Subcatchment 32S: FDA-2.3

Summary for Subcatchment 33S: XDA2
Runoff $=0.37$ cfs @ 12.49 hrs , Volume $=0.090$ af, Depth $=0.22^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 1 year Rainfall=3.10"

Subcatchment 33S: XDA2

Summary for Subcatchment 34S: XDA3
Runoff $=\quad 0.04$ cfs @ 12.39 hrs, Volume $=\quad 0.010$ af, Depth $=0.22{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 1 year Rainfall=3.10"

Area (sf) CN Description					
23,043		55 Woods, Good, HSG B			
23,043		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
7.3	86	0.1977	0.20		Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400 \mathrm{P} 2=3.50$ "
1.0	70	0.0571	1.19		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
8.3	156	Total			

Subcatchment 34S: XDA3

Summary for Subcatchment 35S: FDA-L3.2
Runoff $=0.06$ cfs @ 12.16 hrs, Volume $=\quad 0.006$ af, Depth $=0.68{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 1 year Rainfall=3.10"

Area (sf)	CN	Description
1,015	98	Driveway, HSG B
	61	$>75 \%$ Grass cover, Good, HSG B
1,396	55	Woods, Good, HSG B

Subcatchment 35S: FDA-L3.2

Summary for Reach 30R: Vegetated Swale

Inflow Area	$=$	1.956 ac,	1.54% Impervious, Inflow Depth $=0.28 " \quad$ for 1 year event	
Inflow	$=$	$0.22 \mathrm{cfs} @$	12.43 hrs, Volume $=$	0.045 af
Outflow	$=$	$0.19 \mathrm{cfs} @$	12.76 hrs, Volume $=$	0.045 af, Atten $=14 \%, \mathrm{Lag}=19.7 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span=0.00-96.00 hrs, dt= 0.01 hrs
Max. Velocity= 0.43 fps , Min. Travel Time= 11.1 min
Avg. Velocity $=0.19 \mathrm{fps}$, Avg. Travel Time $=25.4 \mathrm{~min}$
Peak Storage= 128 cf @ 12.58 hrs
Average Depth at Peak Storage=0.19'
Bank-Full Depth= 1.25' Flow Area= 5.6 sf, Capacity= 6.76 cfs
$2.00^{\prime} \times 1.25$ deep channel, $n=0.240$ Sheet flow over Dense Grass
Side Slope Z-value= 2.0 '/' Top Width= 7.00'
Length=285.0' Slope=0.0561 '/'
Inlet Invert= 174.00', Outlet Invert= 158.00'

Reach 30R: Vegetated Swale
Hydrograph
 Outflow

Summary for Pond 15P: SWMF

Inflow Area $=$	$5.984 \mathrm{ac}, 15.94 \%$ Impervious, Inflow Depth $=0.25 "$ for 1 year event			
Inflow	$=$	$0.73 \mathrm{cfs} @ 12.40 \mathrm{hrs}$, Volume $=$	0.126 af	
Outflow	$=$	$0.11 \mathrm{cfs} @$	16.09 hrs, Volume $=$	0.126 af, Atten $=84 \%$, Lag $=221.3 \mathrm{~min}$
Primary	$=$	$0.11 \mathrm{cfs} @$	16.09 hrs, Volume $=$	0.126 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Starting Elev=126.00' Surf.Area=2,806 sf Storage=3,133 cf
Peak Elev=126.85' @ 16.09 hrs Surf.Area=3,835 sf Storage= 5,951 cf (2,818 cf above start)
Plug-Flow detention time $=1,554.2$ min calculated for 0.054 af (43% of inflow)
Center-of-Mass det. time= $700.8 \mathrm{~min}(1,636.7-936.0)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	121.50	$21,119 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
121.50	0	0	0
122.00	96	24	24
123.00	318	207	231
124.00	513	416	647
125.00	827	670	1,317
126.00	2,806	1,817	3,133
127.00	4,018	3,412	6,545
128.00	6,230	5,124	11,669
129.00	6,090	6,160	17,829
129.50	7,070	3,290	21,119

Device	Routing	Invert	Outlet Devices
\#1	Primary	125.00'	12.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#2	Device 1	126.00'	1.3" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#3	Device 1	126.75'	4.0" Vert. Orifice/Grate X $3.00 \quad \mathrm{C}=0.600$
\#4	Device 1	127.00'	8.0" Vert. Orifice/Grate X $2.00 \quad \mathrm{C}=0.600$
\#5	Primary	129.20'	6.0' long (Profile 7) Broad-Crested Rectangular Weir Head (feet) 0.490 .981 .48 Coef. (English) 2.993 .413 .62

Primary OutFlow Max=0.11 cfs @ 16.09 hrs HW=126.85' (Free Discharge)
-1 $=$ Orifice/Grate (Passes 0.11 cfs of 4.39 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 0.04 cfs @ 4.29 fps)
3=Orifice/Grate (Orifice Controls 0.07 cfs @ 1.07 fps)
4=Orifice/Grate (Controls 0.00 cfs)
-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 15P: SWMF

Summary for Pond 29P: SWMF-L1

Inflow	$=$	$0.59 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=$	0.042 af
Outflow	$=$	$0.21 \mathrm{cts} @ 11.89 \mathrm{hrs}$, Volume=	0.042 af , Atten $=65 \%$, Lag $=0.0 \mathrm{~min}$
Discarded	$=$	$0.21 \mathrm{cfs} @ 11.89 \mathrm{hrs}$, Volume $=$	0.042 af

Routing by Stor-Ind method, Time Span $=0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=153.16' @ 12.32 hrs Surf.Area= 1,485 sf Storage= 245 cf
Plug-Flow detention time $=5.6 \mathrm{~min}$ calculated for 0.042 af (100% of inflow)
Center-of-Mass det. time $=5.6 \mathrm{~min}(786.7-781.0)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	152.75'	1,069 cf	27.50'W x 54.00'L x 2.54'H Field A
			3,774 cf Overall - 1,102 cf Embedded $=2,672$ cf $\times 40.0 \%$ Voids
\#2A	153.25'	1,102 cf	Cultec R-150XLHD x 40 Inside \#1
			Effective Size $=29.8$ " $\mathrm{W} \times 18.0$ " $\mathrm{H}=>2.65 \mathrm{sf} \times 10.25^{\prime} \mathrm{L}=27.2 \mathrm{cf}$
			Overall Size $=33.0$ 'W x 18.5"H x 11.00'L with 0.75 ' Overlap
			Row Length Adjustment $=+0.75{ }^{\prime} \times 2.65 \mathrm{sf} \times 8$ rows
		2,171 cf	Total Available Storage
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Outl	et Devices
\#1	Discarded	152.75' 6.00	in/hr Exfiltration over Horizontal area

Discarded OutFlow Max=0.21 cfs @ 11.89 hrs HW=152.78' (Free Discharge)
L-Exfiltration (Exfiltration Controls 0.21 cfs) $^{\text {1 }}$

Pond 29P: SWMF-L1 - Chamber Wizard Field A

Chamber Model $=$ Cultec R-150XLHD (Cultec Recharger® 150XLHD)

Effective Size $=29.8^{\prime \prime} \mathrm{W} \times 18.0^{\prime \prime} \mathrm{H}=>2.65 \mathrm{sf} \times 10.25^{\prime} \mathrm{L}=27.2 \mathrm{cf}$
Overall Size $=33.0^{\prime \prime} \mathrm{W} \times 18.5^{\prime \prime} \mathrm{H} \times 11.00^{\prime} \mathrm{L}$ with 0.75^{\prime} Overlap
Row Length Adjustment $=+0.75^{\prime} \times 2.65 \mathrm{sf} \times 8$ rows
33.0" Wide $+6.0^{\prime \prime}$ Spacing $=39.0$ " C-C Row Spacing

5 Chambers/Row x 10.25' Long $+0.75^{\prime}$ Row Adjustment $=52.00^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=54.00^{\prime}$ Base Length
8 Rows $\times 33.0^{\prime \prime}$ Wide $+6.0^{\prime \prime}$ Spacing $\times 7+12.0^{\prime \prime}$ Side Stone $\times 2=27.50^{\prime}$ Base Width
6.0" Base $+18.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=2.54^{\prime}$ Field Height

40 Chambers $\times 27.2$ cf $+0.75^{\prime}$ Row Adjustment $\times 2.65$ sf $\times 8$ Rows $=1,102.0$ cf Chamber Storage
3,774.4 cf Field $-1,102.0$ cf Chambers $=2,672.4$ cf Stone $\times 40.0 \%$ Voids $=1,069.0$ cf Stone Storage
Chamber Storage + Stone Storage $=2,170.9 \mathrm{cf}=0.050$ af
Overall Storage Efficiency = 57.5\%
40 Chambers
139.8 cy Field
99.0 cy Stone

Pond 29P: SWMF-L1

Summary for Pond 30P: Div L1 (DS F.2)

[57] Hint: Peaked at 154.71' (Flood elevation advised)

Inflow Area $=$	$0.200 \mathrm{ac}, 91.00 \%$ Impervious, Inflow Depth $=2.55 "$ for 1 year event	
Inflow	$=$	$0.59 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=$
Outflow	$=$	$0.59 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=$
Primary	$=$	$0.00 \mathrm{css} @$
Secondary	0.00 hr , Volume $=$	0.000 af , Atten $=0 \%$, Lag= 0.0 min
	$0.59 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=$	0.042 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 154.71' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
\#1 Primary 154.00 ' 12.0" Round Culvert to MH A. 9			
			$\mathrm{L}=25.0^{\prime} \quad$ CPP, square edge headwall, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 154.00 ' $/ 153.50 ' S=0.0200$ '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area $=0.79 \mathrm{sf}$
\#2	Secondary	154.25'	8.0" Round Culvert to SWMF L1
			$L=8.0{ }^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 154.25' / 154.00' S=0.0313 '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area $=0.35 \mathrm{sf}$
\#3	Device 1	154.79'	3.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=154.00' (Free Discharge)			
$L_{1}=$ Culvert to MH A. 9 (Controls 0.00 cfs)			
$L_{\text {3 }}$ Sharp-Crested Rectangular Weir (Controls 0.00 cfs)			
Secondary OutFlow Max=0.59 cfs @ $12.07 \mathrm{hrs} \mathrm{HW=154.71'}$ (Free Discharge)			

Pond 30P: Div L1 (DS F.2)
Hydrograph

Summary for Pond 31P: SWMF-1.1 Bioret

| Inflow Area | | 0.672 ac, | 0.00% Impervious, Inflow Depth $=0.34 "$ for 1 year event | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Inflow | $=$ | $0.11 \mathrm{cfs} @$ | 12.39 hrs, Volume $=$ | 0.019 af |
| Outflow | $=$ | $0.03 \mathrm{cfs} @$ | 14.11 hrs, Volume $=$ | 0.019 af, Atten= 74%, Lag $=103.2 \mathrm{~min}$ |
| Discarded | $=$ | $0.03 \mathrm{cfs} @$ | 14.11 hrs, Volume $=$ | 0.019 af |
| Primary | $=$ | $0.00 \mathrm{cfs} @$ | 0.00 hrs, Volume $=$ | 0.000 af |

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=156.65' @ 14.11 hrs Surf.Area=1,204 sf Storage= 175 cf
Plug-Flow detention time $=59.8$ min calculated for 0.019 af (100% of inflow)
Center-of-Mass det. time=59.8 min (999.5-939.6)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	156.50	$1,373 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
156.50	1,133	0	0
157.00	1,370	626	626
157.50	1,620	748	1,373

Device	Routing	Invert	Outlet Devices
\#1	Primary	151.67'	12.0" Round Culvert L= 18.4' CPP, square edge headwall, $\mathrm{Ke}=0.50$
			Inlet / Outlet Invert= 151.67' / 151.40' S=0.0147 '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area= 0.79 sf
\#2	Device 1	157.00'	12.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#3	Discarded	156.50'	$1.000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Horizontal area

Discarded OutFlow Max=0.03 cfs @ 14.11 hrs HW=156.65' (Free Discharge)
$\leftarrow^{-} \mathbf{3}=$ Exfiltration (Exfiltration Controls 0.03 cfs)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=156.50' (Free Discharge)
-1=Culvert (Passes 0.00 cfs of 7.87 cfs potential flow)
L-2=Orifice/Grate (Controls 0.00 cfs)

Pond 31P: SWMF-1.1 Bioret

Summary for Pond 32P: Div 2.2 (DS D.2)

[57] Hint: Peaked at 152.90' (Flood elevation advised)

Inflow Area =	$0.655 \mathrm{ac}, 43.66 \%$ Impervious, Inflow Depth $=0.97{ }^{\prime \prime}$ for 1 year event			
Inflow	0.55 cfs @	12.19 hrs , Volume=	0.053 af	
Outflow	0.55 cfs @	12.19 hrs , Volume=	0.053 af,	Atten= 0\%, Lag= 0.0 rin
Primary	0.00 cfs @	0.00 hrs , Volume=	0.000 af	
Secondary =	0.55 cfs @	12.19 hrs , Volume=	0.053 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 152.90' @ 12.19 hrs

Device	Routing	Invert	Outlet Devices		
\#1 Primary $152.75{ }^{\prime} 15.0$ " Round Culvert to Level Spreader					
			$\mathrm{L}=30.0{ }^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 152.75' / 151.50' S=0.0417 '/' Cc= 0.900		
			$\mathrm{n}=0.012$, Flow Area= 1.23 sf		
\#2	Secondary	152.50'	10.0" Round Culvert to SWMF-2.2		
			$\mathrm{L}=15.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 152.50' / 152.00' S=0.0333 //' Cc= 0.900		
			$\mathrm{n}=0.012$, Flow Area $=0.55 \mathrm{sf}$		
\#3	Device 1	152.90'	3.0' long x 1.50' rise Sharp-Crested Rectangular Weir 2 End Contraction(s)		
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=152.50' (Free Discharge)					
$L_{1=C u l v e r t ~ t o ~ L e v e l ~ S p r e a d e r ~(C o n t r o l s ~}^{0.00 \mathrm{cfs} \text {) }}$ $\mathcal{L}_{3}=$ Sharp-Crested Rectangular Weir (Controls 0.00 cfs)					
Secondary OutFlow Max=0.55 cfs @ $12.19 \mathrm{hrs} \mathrm{HW=152.90'}$ (Free Discharge)					

Pond 32P: Div 2.2 (DS D.2)

Hydrograph

\square Inflow \square Outflow \square Primary Secondary

Summary for Pond 33P: Div L2.1

[57] Hint: Peaked at 150.30' (Flood elevation advised)

Inflow Area =	$0.132 \mathrm{ac}, 55.54 \%$ Impervious, Inflow Depth = 1.46" for 1 year event			
Inflow	0.23 cfs @	12.08 hrs , Volume=	0.016 af	
Outflow	0.23 cfs @	12.08 hrs , Volume=	0.016 af,	Atten= 0\%, Lag= 0.0 m
Primary	0.00 cfs @	0.00 hrs , Volume=	0.000 af	
Secondary =	0.23 cfs @	12.08 hrs , Volume=	0.016	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 150.30' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices
\#1	Primary	150.00'	8.0" Round Culvert to Node EP E. 1 $\mathrm{L}=96.0^{\prime} \quad$ CPP, square edge headwall, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 150.00' / 146.00' S=0.0417 '// Cc= 0.900 $\mathrm{n}=0.012$, Flow Area $=0.35 \mathrm{sf}$
\#2	Secondary	150.00'	6.0" Round Culvert to PTF E. 1 \& SWMF L2. 1 $\mathrm{L}=12.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 150.00' / 149.70' S=0.0250 '/' Cc= 0.900 $\mathrm{n}=0.012$, Flow Area $=0.20 \mathrm{sf}$
\#3	Device 1	150.54'	3.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=150.00' (Free Discharge) $L_{1=C u l v e r t ~ t o ~ N o d e ~ E P ~ E . ~}^{1}$ (Controls 0.00 cfs) 			
Secondary OutFlow Max=0.23 cfs @ 12.08 hrs HW=150.30' (Free Discharge) L2=Culvert to PTF E. 1 \& SWMF L2.1 (Inlet Controls 0.23 cfs @ 1.87 fps)			

Pond 33P: Div L2.1

Hydrograph

Summary for Pond 34P: SWMF-L2.1

Inflow	$=$	$0.23 \mathrm{cfs} @$	12.08 hrs, Volume $=$
Outflow	$=$	0.016 af	
Discarded $=$	$0.06 \mathrm{cts} @ 11.88 \mathrm{hrs}$, Volume=	0.016 af, Atten $=73 \%$, Lag $=0.0 \mathrm{~min}$	
	$0.06 \mathrm{cfs} @ 11.88 \mathrm{hrs}$, Volume $=$	0.016 af	

Routing by Stor-Ind method, Time Span= $0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev= 148.13' @ 12.46 hrs Surf.Area= 449 sf Storage= 136 cf
Plug-Flow detention time $=12.0$ min calculated for 0.016 af (100% of inflow)
Center-of-Mass det. time $=12.0 \mathrm{~min}(848.8-836.9)$

Volume	Invert	Avail.Storage	Storage Description
	147.50'	405 cf	25.67'W x 17.50'L x 3.54'H Field A
\#2A			1,591 cf Overall - 577 cf Embedded $=1,013$ cf $\times 40.0 \%$ Voids
	148.00'		Cultec R-330XLHD $\times 10$ Inside \#1
			Effective Size $=47.8{ }^{\prime \prime} \mathrm{W} \times 30.0 \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
			Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5{ }^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50' Overlap
			Row Length Adjustment $=+1.50$ ' $7.45 \mathrm{sf} \times 5$ rows
983 cf Total Available Storage			
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Out	et Devices
\#1	Discarded	147.50' 6.00	$0 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Discarded OutFlow Max=0.06 cfs @ 11.88 hrs HW=147.54' (Free Discharge)
L-Exfiltration (Exfiltration Controls 0.06 cfs) $^{\text {1 }}$

Pond 34P: SWMF-L2.1-Chamber Wizard Field A
Chamber Model = Cultec R-330XLHD (Cultec Recharger $®$ 330XLHD)
Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50 \times 7.45$ sf $\times 5$ rows
52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

2 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 15.50' Row Length +12.0" End Stone $\times 2=17.50$ ' Base Length
5 Rows x 52.0" Wide $+6.0^{\prime \prime}$ Spacing x $4+12.0^{\prime \prime}$ Side Stone $\times 2=25.67$ ' Base Width
6.0" Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.54$ ' Field Height

10 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45$ sf $\times 5$ Rows $=577.5$ cf Chamber Storage
$1,590.8$ cf Field -577.5 cf Chambers $=1,013.3$ cf Stone $\times 40.0 \%$ Voids $=405.3$ cf Stone Storage
Chamber Storage + Stone Storage $=982.8$ cf $=0.023$ af
Overall Storage Efficiency $=61.8 \%$
10 Chambers
58.9 cy Field
37.5 cy Stone

Pond 34P: SWMF-L2.1

Summary for Pond 35P: Div 1.2

[57] Hint: Peaked at 154.60' (Flood elevation advised)

Inflow Area =	$0.446 \mathrm{ac}, 65.47 \%$ Impervious, Inflow Depth = 1.60" for 1 year event			
Inflow	0.73 cfs @	12.14 hrs, Volume=	0.059 af	
Outflow	0.73 cfs @	12.14 hrs , Volume=	0.059 af ,	Atten $=0 \%, L a g=0.0 \mathrm{~m}$
Primary	0.00 cfs @	0.00 hrs , Volume=	0.000 af	
Secondary =	0.73 cfs @	12.14 hrs , Volume=	0.059 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 154.60' @ 12.14 hrs

Device	Routing	Invert	Outlet Devices		
\#1	Primary	153.92'	12.0" Round Culvert to MH A. 6		
			$\mathrm{L}=18.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 153.92' / 151.00' S=0.1622 '/' Cc= 0.900		
			$\mathrm{n}=0.012$, Flow Area $=0.79$ sf		
\#2	Secondary	153.75'	6.0" Round Culvert to SWMF-1.2		
			$\mathrm{L}=6.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 153.75' / 153.50' S=0.0417 '/' Cc= 0.900		
			$\mathrm{n}=0.012$, Flow Area $=0.20 \mathrm{sf}$		
\#3	Device 1	154.92'	3.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)		
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=153.75' (Free Discharge) $L_{1}=$ Culvert to MH A. 6 (Controls 0.00 cfs) 					
Secondary OutFlow Max=0.73 cfs @ 12.14 hrs HW=154.59' (Free Discharge) L2=Culvert to SWMF-1.2 (Inlet Controls 0.73 cfs @ 3.71 fps)					

Pond 35P: Div 1.2
Hydrograph

Summary for Pond 36P: Rain Garden \#1 Lot 3

Inflow Area $=$	$0.261 \mathrm{ac}, 19.99 \%$ Impervious, Inflow Depth $=0.59 "$	for 1 year event		
Inflow	$=$	$0.12 \mathrm{cfs} @$	12.17 hrs, Volume $=$	0.013 af
Outflow $=$	$0.03 \mathrm{cfs} @$	13.00 hrs, Volume $=$	0.013 af, Atten $=80 \%, \mathrm{Lag}=50.2 \mathrm{~min}$	
Discarded	$=$	$0.03 \mathrm{cfs} @$	13.00 hrs, Volume $=$	0.013 af
Primary $=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$	0.000 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= $0.01 \mathrm{hrs} / 2$
Peak Elev=144.63' @ 13.00 hrs Surf.Area=1,084 sf Storage= 142 cf
Plug-Flow detention time $=46.8 \mathrm{~min}$ calculated for 0.013 af (100% of inflow)
Center-of-Mass det. time $=46.8 \mathrm{~min}$ (944.7-897.8)

Discarded OutFlow Max=0.03 cfs @ 13.00 hrs HW=144.63' (Free Discharge)
②=Exfiltration (Exfiltration Controls 0.03 cfs)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=144.50' (Free Discharge)
—1=Orifice/Grate (Controls 0.00 cfs)

Pond 36P: Rain Garden \#1 Lot 3

Summary for Pond 37P: SWMF-1.2

[79] Warning: Submerged Pond 35P Secondary device \# 2 INLET by $0.06{ }^{\prime}$

Inflow	$=$	$0.73 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume $=$	0.059 af
Outflow	$=$	$0.18 \mathrm{cfs} @$	11.88 hrs, Volume=
Discarded	$=$	$0.18 \mathrm{cfs} @ 11.88 \mathrm{hrs}$, Volume $=$	0.059 af, Atten $=75 \%$, Lag $=0.0 \mathrm{~min}$
		0.059 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 153.81' @ 12.59 hrs Surf.Area= 1,320 sf Storage= 610 cf
Plug-Flow detention time $=19.5 \mathrm{~min}$ calculated for 0.059 af (100% of inflow)
Center-of-Mass det. time $=19.5 \mathrm{~min}(854.3-834.7$)

Volume	Invert	Avail.Storage	Storage Description
\#1A	153.00'	1,184 cf	23.50'W x 56.17'L x 3.67'H Field A
			4,840 cf Overall - 1,880 cf Embedded = 2,960 cf x 40.0\% Voids
\#2A	153.50'	1,880 cf	Cultec R-V8HD $\times 32$ Inside \#1
			Effective Size $=55.2^{\prime \prime} \mathrm{W} \times 32.0 \mathrm{H} \mathrm{H}=>8.68 \mathrm{sf} \times 7.50 \mathrm{~L}=65.1 \mathrm{cf}$
			Overall Size $=60.0 \mathrm{~W} \times 32.0{ }^{\prime \prime} \mathrm{H} \times 8.00^{\prime} \mathrm{L}$ with $0.50{ }^{\prime}$ Overlap
			Row Length Adjustment $=-5.83$ x $8.68 \mathrm{sf} \times 4$ rows
		3,064 cf	Total Available Storage

Storage Group A created with Chamber Wizard
Device Routing Invert Outlet Devices
\#1 Discarded 153.00 ' $6.000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
Discarded OutFlow Max=0.18 cfs @ 11.88 hrs HW=153.04' (Free Discharge)
L1 $_{1=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~} 0.18 \mathrm{cfs}$)

Pond 37P: SWMF-1.2 - Chamber Wizard Field A

Chamber Model = Cultec R-V8HD (Cultec Recharger® V8HD)

Effective Size=55.2"W x 32.0"H => $8.68 \mathrm{sf} \times 7.50^{\prime} \mathrm{L}=65.1 \mathrm{cf}$
Overall Size $=60.0^{\prime \prime} \mathrm{W} \times 32.0^{\prime \prime} \mathrm{H} \times 8.00^{\prime} \mathrm{L}$ with 0.50^{\prime} Overlap
Row Length Adjustment $=-5.83$ x 8.68 sf 4 rows
60.0" Wide +6.0 " Spacing $=66.0$ " C-C Row Spacing

8 Chambers/Row x 7.50' Long -5.83' Row Adjustment $=54.1^{\prime} 7^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=56.17^{\prime}$ Base Length
4 Rows $\times 60.0$ " Wide $+6.0^{\prime \prime}$ Spacing $\times 3+12.0^{\prime \prime}$ Side Stone $\times 2=23.50^{\prime}$ Base Width
6.0" Base $+32.0^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.67^{\prime}$ Field Height

32 Chambers x 65.1 cf -5.83 Row Adjustment $\times 8.68$ sf $\times 4$ Rows $=1,879.9$ cf Chamber Storage
$4,840.0$ cf Field $-1,879.9$ cf Chambers $=2,960.1$ cf Stone $\times 40.0 \%$ Voids $=1,184.0$ cf Stone Storage
Chamber Storage + Stone Storage $=3,063.9$ cf $=0.070$ af
Overall Storage Efficiency $=63.3 \%$
32 Chambers
179.3 cy Field
109.6 cy Stone

Pond 37P: SWMF-1.2

Summary for Pond 38P: SWMF-2.2

Inflow	$=$	$0.55 \mathrm{cfs} @$	12.19 hrs, Volume $=$
Outflow	$=$	$0.16 \mathrm{cfs} @$	12.09 hrs, Volume $=$
Discarded	$=$	$0.16 \mathrm{cfs} @$	0.053 af, Atten $=71 \%$, Lag $=0.0 \mathrm{~min}$
Primary	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$
		0.053 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=150.62' @ 12.68 hrs Surf.Area=1,160 sf Storage= 551 cf
Plug-Flow detention time $=23.4$ min calculated for 0.053 af (100% of inflow)
Center-of-Mass det. time= $23.4 \mathrm{~min}(894.2$ - 870.8)

Volume	Invert	Avail.Storage	Storage Description
\#1A	149.50'	450 cf	16.00'W x 31.50'L x 3.54'H Field A
			1,785 cf Overall - 659 cf Embedded $=1,126$ cf $\times 40.0 \%$ Voids
\#2A	150.00'	659 cf	Cultec R-330XLHD $\times 12$ Inside \#1
			Effective Size $=47.8$ "W $\times 30.0$ 'H $=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
			Overall Size=52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' $\times 7.45$ sf $\times 3$ rows
\#3B	150.00'	578 cf	20.83'W x 31.50'L x 3.54'H Field B
			2,324 cf Overall - 879 cf Embedded $=1,445$ cf $\times 40.0 \%$ Voids
\#4B	150.50'	879 cf	Cultec R-330XLHD $\times 16$ Inside \#3
			Effective Size $=47.8$ "W $\times 30.0$ "H $=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
			Overall Size $=52.0$ 'W x 30.5"H $\times 8.50$ 'L with 1.50' Overlap
			Row Length Adjustment $=+1.50$ x $7.45 \mathrm{sf} \times 4$ rows
2,567 cf Total Available Storage			
Storage Group A created with Chamber Wizard			
Storage Group B created with Chamber Wizard			
Device	Routing	Invert Outl	D Devices
\#1	Discarded	149.50' 6.00	in/hr Exfiltration over Horizontal area
\#2	Primary	153.00' 8.0'	Round Culvert L=15.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
		Inlet	/ Outlet Invert= 153.00' / 151.50' S=0.1000 '/' Cc= 0.900
		$\mathrm{n}=0$	012, Flow Area= 0.35 sf

Discarded OutFlow Max=0.16 cfs @ 12.09 hrs HW=150.00' (Free Discharge)
L-1=Exfiltration (Exfiltration Controls 0.16 cfs)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=149.50' (Free Discharge)
L2=Culvert (Controls 0.00 cfs)

Pond 38P: SWMF-2.2 - Chamber Wizard Field A

Chamber Model = Cultec R-330XLHD (Cultec Recharger® ${ }^{\circledR}$ 330XLHD)

Effective Size=47.8"W x $30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50$ x 7.45 sf $\times 3$ rows
52.0" Wide $+6.0^{\prime \prime}$ Spacing $=58.0$ " C-C Row Spacing

4 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 29.50' Row Length +12.0" End Stone $\times 2=31.50$ ' Base Length
3 Rows x 52.0" Wide $+6.0^{\prime \prime}$ Spacing x $2+12.0^{\prime \prime}$ Side Stone x $2=16.00$ ' Base Width
6.0" Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.54$ ' Field Height

12 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45 \mathrm{sf} \times 3$ Rows $=659.4$ cf Chamber Storage
$1,785.0$ cf Field -659.4 cf Chambers $=1,125.6$ cf Stone $\times 40.0 \%$ Voids $=450.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,109.6 \mathrm{cf}=0.025$ af
Overall Storage Efficiency $=62.2 \%$
12 Chambers
66.1 cy Field
41.7 cy Stone

Pond 38P: SWMF-2.2 - Chamber Wizard Field B

Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger ${ }^{\circledR 3}$ 330XLHD)

Effective Size=47.8"W x $30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0$ "W x 30.5"H x 8.50'L with 1.50' Overlap
Row Length Adjustment $=+1.50$ ' 7.45 sf $\times 4$ rows
52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

4 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 29.50' Row Length +12.0" End Stone $\times 2=31.50$ ' Base Length
4 Rows x 52.0" Wide $+6.0^{\prime \prime}$ Spacing x $3+12.0^{\prime \prime}$ Side Stone x $2=20.83^{\prime}$ Base Width
6.0" Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.54$ ' Field Height

16 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45 \mathrm{sf} \times 4$ Rows $=879.2$ cf Chamber Storage

$2,324.2$ cf Field -879.2 cf Chambers $=1,445.0$ cf Stone $\times 40.0 \%$ Voids $=578.0$ cf Stone Storage

Chamber Storage + Stone Storage $=1,457.2$ cf $=0.033$ af
Overall Storage Efficiency $=62.7 \%$
16 Chambers
86.1 cy Field
53.5 cy Stone

Pond 38P: SWMF-2.2

Summary for Pond 39P: SWMF-L2.2

Inflow	$=$	$0.31 \mathrm{cfs} @$	12.07 hrs, Volume $=$
Outflow	$=$	0.024 af	
Discarded $=$	$0.07 \mathrm{cfs} @$	11.74 hrs, Volume $=$	0.024 af, Atten $=77 \%, \mathrm{Lag}=0.0 \mathrm{~min}$
Din	$0.07 \mathrm{cfs} @ 11.74 \mathrm{hrs}$, Volume $=$	0.024 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Peak Elev=135.76' @ 12.45 hrs Surf.Area= 504 sf Storage= 209 cf

Plug-Flow detention time $=14.7 \mathrm{~min}$ calculated for 0.024 af (100% of inflow)
Center-of-Mass det. time $=14.7 \mathrm{~min}(770.9-756.1)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	135.00'	450 cf	$\begin{aligned} & \text { 16.00'W x 31.50'L } \times 3.54 \text { 'H Field A } \\ & 1,785 \mathrm{cf} \text { Overall }-659 \mathrm{cf} \text { Embedded }=1,126 \mathrm{cf} \times 40.0 \% \text { Voids } \end{aligned}$
\#2A	135.50'	659 cf	Cultec R-330XLHD x 12 Inside \#1 Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$ Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50^{\prime} Overlap Row Length Adjustment $=+1.50^{\prime} \times 7.45 \mathrm{sf} \times 3$ rows
1,110 cf Total Available Storage			
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Outl	et Devices
\#1	Discarded	135.00' 6.00	in/hr Exfiltration over Horizontal area

Discarded OutFlow Max=0.07 cfs @ 11.74 hrs HW=135.04' (Free Discharge)
L-1=Exfiltration (Exfiltration Controls 0.07 cfs)

Pond 39P: SWMF-L2.2 - Chamber Wizard Field A

Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger ${ }^{\circledR 3}$ 330XLHD)

Effective Size=47.8"W x $30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0$ "W x 30.5"H x 8.50'L with 1.50' Overlap
Row Length Adjustment $=+1.50$ x 7.45 sf $\times 3$ rows
52.0" Wide $+6.0^{\prime \prime}$ Spacing = 58.0" C-C Row Spacing

4 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 29.50' Row Length +12.0" End Stone $\times 2=31.50$ ' Base Length
3 Rows x 52.0" Wide $+6.0^{\prime \prime}$ Spacing x $2+12.0^{\prime \prime}$ Side Stone x $2=16.00$ ' Base Width
6.0" Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.54$ ' Field Height

12 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45 \mathrm{sf} \times 3$ Rows $=659.4$ cf Chamber Storage
$1,785.0$ cf Field -659.4 cf Chambers $=1,125.6$ cf Stone $\times 40.0 \%$ Voids $=450.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,109.6$ cf $=0.025$ af
Overall Storage Efficiency $=62.2 \%$
12 Chambers
66.1 cy Field
41.7 cy Stone

Pond 39P: SWMF-L2. 2

Summary for Pond 40P: Div L2.2

[57] Hint: Peaked at 137.86' (Flood elevation advised)

flow Ar	$0.098 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth $=2.87^{\prime \prime}$ for 1 year event			
Inflow	0.31 cfs @	12.07 hrs, Volume=	0.024 af	
Outflow	0.31 cfs @	12.07 hrs , Volume=	0.024 af,	, Atten $=0 \%, L a g=0.0 \mathrm{~min}$
Primary	0.00 cfs @	0.00 hrs , Volume=	0.000 af	
Secondary =	0.31 cfs @	12.07 hrs , Volume=	0.024 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 137.86' @ 12.07 hrs

Device Routing Invert $\# 1$ Primary 138.00^{\prime} Outlet Devices 12.0 Round Culve					
			$\mathrm{L}=50.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 138.00' / 134.00' S=0.0800 '/' Cc= 0.900		
			$\mathrm{n}=0.012$, Flow Area $=0.79 \mathrm{sf}$		
\#2	Secondary	137.50'	6.0" Round Culvert to SWMF L2.2		
			$\mathrm{L}=5.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 137.50' / 136.00' S=0.3000 '/' Cc= 0.900		
			$\mathrm{n}=0.012$, Flow Area $=0.20 \mathrm{sf}$		
\#3	Device 1	138.04'	3.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)		
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=137.50' (Free Discharge) $L_{1=C u l v e r t ~ t o ~ M H ~ C . ~}^{1}$ (Controls 0.00 cfs) 					
Secondary OutFlow Max=0.31 cfs @ 12.07 hrs HW=137.86' (Free Discharge) L2=Culvert to SWMF L2.2 (Inlet Controls 0.31 cfs @ 2.04 fps)					

Pond 40P: Div L2.2

Summary for Pond 41P: Rain Garden \#2 Lot 3

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=152.08' @ 12.67 hrs Surf.Area= 670 sf Storage= 53 cf
Plug-Flow detention time= 24.9 min calculated for 0.006 af (100% of inflow)
Center-of-Mass det. time $=24.9 \mathrm{~min}$ ($914.5-889.5$)

Discarded OutFlow Max=0.02 cfs @ 12.67 hrs HW=152.08' (Free Discharge)
L2=Exfiltration (Exfiltration Controls 0.02 cfs)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=152.00' (Free Discharge)
L1=Orifice/Grate (Controls 0.00 cfs)

Pond 41P: Rain Garden \#2 Lot 3

Summary for Link 19L: Design Point 1

Primary outflow $=$ Inflow, Time Span= $0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 19L: Design Point 1

Hydrograph

Summary for Link 22L: Design Point 2

Inflow Area $=$	3.501 ac,	9.03% Impervious, Inflow Depth $=0.23 "$ for 1 year event
Inflow	$=$	$0.25 \mathrm{cfs} @$
Primary	$=$	$0.25 \mathrm{cfs} @$
	12.75 hrs , Volume $=$	0.068 af

Primary outflow $=$ Inflow, Time Span= $0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 22L: Design Point 2

Summary for Link 25L: Design Point 3

Inflow Area $=$	0.529 ac,	0.00% Impervious, Inflow Depth $=0.28 "$ for 1 year event	
Inflow	$=$	$0.07 \mathrm{cfs} @$	12.32 hrs , Volume $=$
Primary	$=$	$0.07 \mathrm{cfs} @$	12.32 hrs, Volume $=$

Primary outflow $=$ Inflow, Time Span $=0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 25L: Design Point 3

Hydrograph

Summary for Link 28L: Design Point 4

Primary outflow $=$ Inflow, Time Span= $0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 28L: Design Point 4

Hydrograph

Time span= $0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 9601$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: FDA-2.2

Subcatchment 2S: FDA-1.2

Subcatchment 4S: XDA4

Subcatchment 5S: FDA-L2.1

Subcatchment 6S: FDA-L3.1

Subcatchment 20S: FDA-1.3

Subcatchment 21S: FDA-1.4

Subcatchment 23S: FDA-L1

Subcatchment 24S: FDA-2.1

Subcatchment 26S: FDA-3

Subcatchment 27S: FDA-4

Subcatchment 29S: FDA-L2.2

Subcatchment 30S: XDA1

Subcatchment 31S: FDA-1.1

Subcatchment 32S: FDA-2.3

Subcatchment 33S: XDA2

Subcatchment 34S: XDA3

Subcatchment 35S: FDA-L3. 2

Runoff Area $=28,532$ sf 43.66% Impervious Runoff Depth $=1.24$ " Flow Length=483' $\quad \mathrm{C}=13.2 \mathrm{~min} \quad \mathrm{CN}=74 \quad$ Runoff $=0.72$ cfs 0.068 af

Runoff Area $=19,428$ sf 65.47% Impervious Runoff Depth $=1.94$ " $\mathrm{T}=10.0 \mathrm{~min} \mathrm{CN}=84$ Runoff $=0.88$ cfs 0.072 af

Runoff Area $=10,541$ sf 0.00% Impervious Runoff Depth= $=0.75$ "
Flow Length $=100^{\prime}$ Slope $=0.1900$ '/' Tc=8.3 min $\quad \mathrm{CN}=65$ Runoff $=0.16 \mathrm{cfs} 0.015$ af
Runoff Area $=5,735$ sf 55.54% Impervious Runoff Depth $=1.78$ " $\mathrm{Tc}=5.0 \mathrm{~min} \mathrm{CN}=82$ Runoff $=0.28 \mathrm{cfs} 0.020$ af

Runoff Area $=11,384$ sf 19.99% Impervious Runoff Depth $=0.80$ " $\mathrm{T}=10.0 \mathrm{~min} \mathrm{CN}=66$ Runoff $=0.18$ cfs 0.017 af

Runoff Area=177,542 sf 5.71% Impervious Runoff Depth=0.53" Flow Length=974' $\mathrm{T}=17.9 \mathrm{~min} \quad \mathrm{CN}=60$ Runoff $=1.23 \mathrm{cfs} 0.181$ af

Runoff Area $=6,857$ sf 0.00% Impervious Runoff Depth $=0.71$ " Flow Length $=87^{\prime}$ Tc=5.5 min CN=64 Runoff= 0.11 cfs 0.009 af

Runoff Area $=8,712$ sf 91.00% Impervious Runoff Depth $=2.94$ " $\mathrm{T}=5.0 \mathrm{~min} \mathrm{CN}=95$ Runoff $=0.67 \mathrm{cfs} 0.049 \mathrm{af}$

Runoff Area $=38,768$ sf 0.00% Impervious Runoff Depth $=0.45$ " Flow Length $=141^{\prime} \quad \mathrm{Tc}=6.3 \mathrm{~min} \mathrm{CN}=58$ Runoff $=0.27 \mathrm{cfs} 0.034$ af

Runoff Area=23,055 sf 0.00% Impervious Runoff Depth= $=0.42$ " Flow Length $=156$ ' $\mathrm{Tc}=7.6 \mathrm{~min} \mathrm{CN}=57$ Runoff $=0.13$ cfs 0.018 af

Runoff Area $=10,545$ sf 0.00% Impervious Runoff Depth $=0.75$ " Flow Length $=100$ ' Slope $=0.1900$ '/' Tc=8.3 min CN=65 Runoff $=0.16$ cfs 0.015 af

Runoff Area=4,285 sf 100.00% Impervious Runoff Depth $=3.27{ }^{\prime \prime}$ Tc $=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.35$ cfs 0.027 af

Runoff Area=208,652 sf 1.02% Impervious Runoff Depth=0.38" Flow Length $=1,046$ ' $\mathrm{Tc}=25.6 \mathrm{~min} \quad \mathrm{CN}=56$ Runoff $=0.75$ cfs 0.152 af

Runoff Area $=29,272$ sf 0.00% Impervious Runoff Depth $=0.49$ " $\mathrm{T}=15.0 \mathrm{~min} \mathrm{CN}=59$ Runoff $=0.19$ cfs 0.028 af

Runoff Area=85,225 sf 1.54% Impervious Runoff Depth= $0.42^{\prime \prime}$ Flow Length=401' TC=14.7 min CN=57 Runoff $=0.41$ cfs 0.068 af

Runoff Area=211,963 sf 1.03% Impervious Runoff Depth=0.35" Flow Length $=544$ ' $\mathrm{T}=15.5 \mathrm{~min} \quad \mathrm{CN}=55$ Runoff $=0.74$ cfs 0.140 af

Runoff Area $=23,043$ sf 0.00% Impervious Runoff Depth=0.35" Flow Length $=156^{\prime} \quad \mathrm{Tc}=8.3 \mathrm{~min} \mathrm{CN}=55$ Runoff $=0.09 \mathrm{cfs} 0.015$ af

Runoff Area $=4,286$ sf 23.68% Impervious Runoff Depth= $=0.90$ " $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=68$ Runoff $=0.08 \mathrm{cfs} 0.007$ af

Reach 30R: Vegetated Swale
Pond 15P: SWMF
Pond 29P: SWMF-L1
Pond 30P: Div L1 (DS F.2)
Pond 31P: SWMF-1.1 Bioret
Pond 32P: Div 2.2 (DS D.2)
Pond 33P: Div L2.1

Pond 34P: SWMF-L2. 1

Pond 35P: Div 1.2

Pond 36P: Rain Garden \#1 Lot 3

Pond 37P: SWMF-1.2

Pond 38P: SWMF-2.2

Pond 39P: SWMF-L2. 2

Pond 40P: Div L2.2

Pond 41P: Rain Garden \#2 Lot 3

Link 19L: Design Point 1

Link 22L: Design Point 2

Link 25L: Design Point 3

Link 28L: Design Point 4

Avg. Flow Depth=0.27' Max Vel=0.53 fps Inflow=0.41 cfs 0.068 af $\mathrm{n}=0.240 \mathrm{~L}=285.0^{\prime} \mathrm{S}=0.0561$ '/' Capacity= 6.76 cfs Outflow= 0.37 cfs 0.068 af

Peak Elev=126.93' Storage=6,251 cf Inflow=1.23 cfs 0.181 af Outflow $=0.25$ cfs 0.180 af

Peak Elev=153.28' Storage=332 cf Inflow=0.67 cfs 0.049 af Outflow $=0.21$ cfs 0.049 af

Peak Elev=154.75' Inflow=0.67 cfs 0.049 af Primary $=0.00$ cfs 0.000 af Secondary= 0.67 cfs 0.049 af Outflow $=0.67$ cfs 0.049 af

Peak Elev=156.83' Storage=400 cf Inflow=0.19 cfs 0.028 af Discarded $=0.03$ cfs 0.028 af Primary $=0.00$ cfs 0.000 af Outflow $=0.03$ cfs 0.028 af

Peak Elev=152.94' Inflow=0.72 cfs 0.068 af Primary $=0.07$ cfs 0.001 af Secondary $=0.65$ cfs 0.067 af Outflow $=0.72$ cfs 0.068 af

Peak Elev=150.34' Inflow=0.28 cfs 0.020 af Primary $=0.00$ cfs 0.000 af Secondary $=0.28$ cfs 0.020 af Outflow $=0.28$ cfs 0.020 af

Peak Elev=148.30' Storage=199 cf Inflow=0.28 cfs 0.020 af Outflow $=0.06$ cfs 0.020 af

Peak Elev=154.88' Inflow=0.88 cfs 0.072 af Primary $=0.00$ cfs 0.000 af Secondary $=0.88$ cfs 0.072 af Outflow $=0.88$ cfs 0.072 af

Peak Elev=144.72' Storage=241 cf Inflow=0.18 cfs 0.017 af Discarded $=0.03$ cfs 0.017 af Primary $=0.00$ cfs 0.000 af Outflow= 0.03 cfs 0.017 af

Peak Elev=154.02' Storage=846 cf Inflow=0.88 cfs 0.072 af Outflow $=0.18$ cfs 0.072 af

Peak Elev=150.89' Storage=805 cf Inflow=0.65 cfs 0.067 af Discarded $=0.16$ cfs 0.067 af Primary $=0.00$ cfs 0.000 af Outflow $=0.16$ cfs 0.067 af

Peak Elev=135.89' Storage=262 cf Inflow=0.35 cfs 0.027 af Outflow $=0.07$ cfs 0.027 af

Peak Elev=137.89' Inflow=0.35 cfs 0.027 af Primary $=0.00$ cfs 0.000 af Secondary $=0.35$ cfs 0.027 af Outflow $=0.35$ cfs 0.027 af

Peak Elev=152.13' Storage=88 cf Inflow=0.08 cfs 0.007 af Discarded $=0.02$ cfs 0.007 af Primary $=0.00$ cfs 0.000 af Outflow= 0.02 cfs 0.007 af Inflow=0.26 cfs 0.190 af Primary $=0.26$ cfs 0.190 af

Inflow $=0.46$ cfs 0.102 af Primary $=0.46$ cfs 0.102 af

Inflow=0.13 cfs 0.018 af Primary $=0.13 \mathrm{cfs} 0.018$ af Inflow=0.16 cfs 0.015 af Primary $=0.16$ cfs 0.015 af

Total Runoff Area $=20.841$ ac Runoff Volume $=\mathbf{0 . 9 3 4}$ af Average Runoff Depth $=0.54$ " 93.43% Pervious = 19.472 ac 6.57% Impervious = 1.369 ac

Summary for Subcatchment 1S: FDA-2.2
Runoff $=\quad 0.72$ cfs @ 12.19 hrs, Volume $=\quad 0.068$ af, Depth= 1.24 "

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.50"

	Area (sf)	CN	Description		
	11,021	98			
	1,437	98	Subdivision Road, HSG BOff-site impervious road, HSG B		
	1,307	61 >			
	14,767	55	$>75 \%$ Grass cover, Good, HSG BWoods, Good, HSG B		
	28,532	74	Weighted Average		
	16,074		56.34\% Pervious Area		
	12,458		43.66\% Imp	pervious Ar	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{aligned} & \text { c } \text { Length } \\ & \text { (feet) } \end{aligned}$	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
12.1	100	0.0750	0.14		Sheet Flow, Woods: Light underbrush $n=0.400 \quad \mathrm{P} 2=3.50^{\prime \prime}$
0.6	68	0.1250	- 1.77		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
0.2	265	0.1000	- 6.42		Shallow Concentrated Flow, Paved $K v=20.3 \mathrm{fps}$
0.3	3250	0.0750	13.46	10.57	Pipe Channel,
					12.0" Round Area $=0.8$ sf Perim=3.1'r= 0.25^{\prime}
13.2	2483	Total			

Subcatchment 1S: FDA-2.2

Summary for Subcatchment 2S: FDA-1.2
Runoff $=\quad 0.88$ cfs @ 12.14 hrs, Volume $=\quad 0.072 \mathrm{af}$, Depth $=1.94{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.50"

	Area (sf)	CN	Description		
	12,720	98 P	Paved parking, HSG B		
	3,180	$61>$	>75\% Grass cover, Good, HSG B		
	3,528	55	Woods, Good, HSG B		
	19,428	84	Weighted Average		
	6,708		34.53\% Pervious Area		
	12,720		65.47\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
10.0					Direct Entry,

Subcatchment 2S: FDA-1.2

Summary for Subcatchment 4S: XDA4
Runoff $=0.16 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume $=0.015 \mathrm{af}$, Depth $=0.75^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.50"

Area (sf)	CN	Description	
4,225	55	Woods, Good, HSG B	
4,225	70	Woods, Good, HSG C	
2,091	77	Woods, Good, HSG D	

Subcatchment 4S: XDA4

Summary for Subcatchment 5S: FDA-L2.1

Runoff $=0.28 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume= 0.020 af, Depth $=1.78^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 2 year Rainfall=3.50"

	Area (sf)	CN	Description		
	$\begin{aligned} & \hline 3,185 \\ & 2,550 \end{aligned}$	$\begin{array}{ll} 98 \\ 61 & \end{array}$	Driveway and roofs, HSG B $>75 \%$ Grass cover, Good. HSG B		
	$\begin{aligned} & 5,735 \\ & 2,550 \\ & 3,185 \end{aligned}$	82	Weighted Average 44.46\% Pervious Area 55.54\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { cength } \\ \text { c) } \\ \hline \end{array}$	Slope (ft/ft)	Velocity $(\mathrm{ft} / \mathrm{sec})$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry,

Subcatchment 5S: FDA-L2.1

Summary for Subcatchment 6S: FDA-L3.1

Runoff $=0.18 \mathrm{cfs} @ 12.16 \mathrm{hrs}$, Volume $=0.017 \mathrm{af}$, Depth $=0.80^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.50"

Subcatchment 6S: FDA-L3.1

Summary for Subcatchment 20S: FDA-1.3

Runoff $=1.23 \mathrm{cfs} @ 12.34 \mathrm{hrs}$, Volume $=0.181 \mathrm{af}$, Depth $=0.53^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.50"

Subcatchment 20S: FDA-1.3

Summary for Subcatchment 21S: FDA-1.4

Runoff $=0.11 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume $=0.009 \mathrm{af}$, Depth $=0.71^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.50"

| Area (sf) | CN | Description |
| ---: | ---: | :--- | :--- |
| 478 | 61 | >75\% Grass cover, Good, HSG B |
| 124 | 74 | $>75 \%$ Grass cover, Good, HSG C |
| 62 | 80 | >75\% Grass cover, Good, HSG D |
| 3,040 | 55 | Woods, Good, HSG B |
| 2,102 | 70 | Woods, Good, HSG C |
| 1,051 | 77 | Woods, Good, HSG D |

Subcatchment 21S: FDA-1.4

Summary for Subcatchment 23S: FDA-L1

Runoff $=0.67$ cfs @ 12.07 hrs, Volume $=0.049$ af, Depth $=2.94{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.50"

	Area (sf)	CN	Description		
	7,928	98 P	Paved parking, HSG B $>75 \%$ Grass cover, Good, HSG B		
	784	61 >			
	8,712	$95 \begin{array}{r} \\ \\ 9 \\ 9\end{array}$	Weighted Average 9.00\% Pervious Area 91.00\% Impervious Area		
	784				
	7,928				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry,

Subcatchment 23S: FDA-L1

Summary for Subcatchment 24S: FDA-2.1
Runoff $=0.27$ cfs @ 12.13 hrs , Volume $=0.034 \mathrm{af}$, Depth $=0.45{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.50"

Subcatchment 24S: FDA-2.1

Summary for Subcatchment 26S: FDA-3

Runoff $=0.13 \mathrm{cfs} @ 12.16 \mathrm{hrs}$, Volume $=0.018 \mathrm{af}$, Depth $=0.42{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.50"

Subcatchment 26S: FDA-3

Summary for Subcatchment 27S: FDA-4

Runoff $=0.16 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume $=0.015 \mathrm{af}$, Depth $=0.75^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.50"

Area (sf)	CN	Description	
4,220	55	Woods, Good, HSG B	
4,220	70	Woods, Good, HSG C	
2,105	77	Woods, Good, HSG D	

Subcatchment 27S: FDA-4

Summary for Subcatchment 29S: FDA-L2.2

Runoff $=0.35$ cfs @ 12.07 hrs , Volume $=0.027$ af, Depth= $3.27^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.50"

	Area (sf)	CN Description			
	4,285	98	oofs, HSG		
4,285		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \end{array}$	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment 30S: XDA1

Runoff $=0.75$ cfs @ 12.55 hrs , Volume $=0.152 \mathrm{af}$, Depth $=0.38{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.50"

[^3]Subcatchment 30S: XDA1

Summary for Subcatchment 31S: FDA-1.1
Runoff $=0.19$ cfs @ 12.29 hrs , Volume $=0.028 \mathrm{af}$, Depth $=0.49{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 2 year Rainfall $=3.50$ "

	Area (sf)	CN D	Description		
	18,513	6155	>75\% Grass cover, Good, HSG B		
	7,020		>75\% Grass cover, Good, HSG B		
	3,739	55	Woods (off-site), Good, HSG B		
	29,272	59	Weighted Average 100.00\% Pervious Area		
	29,272				
Tc (\min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
15.0					Direct Entry,

Subcatchment 31S: FDA-1.1

Summary for Subcatchment 32S: FDA-2.3

Runoff $=0.41 \mathrm{cfs} @ 12.36 \mathrm{hrs}$, Volume $=0.068 \mathrm{af}$, Depth $=0.42^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.50"

	Area (sf)	CN	Description		
*	715	98	Off-Site Road, HSG B		
	315	98	Unconnected pavement, HSG B		
	280	98	Unconnected pavement, HSG B		
	23,051	61 >	>75\% Grass cover, Good, HSG B		
	60,864	55	Woods, Good, HSG B		
	85,225	57	Weighted Average 98.46\% Pervious Area 1.54\% Impervious Area 45.42\% Unconnected		
	83,915				
	1,310				
	595				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	$\begin{gathered} \text { e } \begin{array}{c} \text { Velocity } \\ \text { t) } \\ (\mathrm{ft} / \mathrm{sec}) \end{array} \\ \hline \end{gathered}$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
8.1	100	0.2050	0.21		Sheet Flow,
					Woods: Light underbrush $\mathrm{n}=0.400 \mathrm{P} 2=3.50$ "
1.4	148	0.1284	4.79		Shallow Concentrated Flow,
					Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
5.2	153	0.0163	3.49	1.29	Trap/Vee/Rect Channel Flow,
					Bot.W=2.00' D=0.75' Z=2.0'/' Top.W=5.00' $\mathrm{n}=0.240$ Sheet flow over Dense Grass
14.7	401	Total			

Subcatchment 32S: FDA-2.3

Summary for Subcatchment 33S: XDA2

Runoff $=0.74$ cfs @ 12.42 hrs , Volume $=0.140$ af, Depth $=0.35{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 2 year Rainfall=3.50"

Area (sf)		CN	Description			
	$\begin{array}{r} \hline 09,785 \\ 2,178 \\ \hline \end{array}$	$\begin{array}{ll} \hline 55 & \mathrm{Y} \\ 98 & \mathrm{P} \\ \hline \end{array}$	oods, Go aved park	d, HSG B ng, HSG B		
	$\begin{array}{r} 11,963 \\ 09,785 \\ 2,178 \end{array}$	55	eighted A .03\% Imp	Average vious Area rvious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
10.6	100	0.1050	0.16		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=3.50{ }^{\prime \prime}$
0.8	106	0.2075	2.28		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
4.1	338	0.0740	1.36		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

Subcatchment 33S: XDA2

Summary for Subcatchment 34S: XDA3
Runoff $=0.09$ cfs @ 12.31 hrs , Volume $=0.015 \mathrm{af}$, Depth $=0.35{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 2 year Rainfall $=3.50$ "

Area (sf)		CN	Description			
	23,043	55	oods, Go	od, HSG B		
23,043		100.00\% Pervious Area				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description	
7.3	86	0.1977	0.20		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=3.50{ }^{\prime \prime}$
1.0	70	0.0571	1.19		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
8.3	156	Total				

Subcatchment 34S: XDA3

Summary for Subcatchment 35S: FDA-L3.2
Runoff $=\quad 0.08$ cfs @ 12.16 hrs, Volume $=\quad 0.007$ af, Depth $=0.90^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2 year Rainfall=3.50"

	Area (sf)	CN	Driveway, HSG B		
*	1,015	$\begin{aligned} & 98 \\ & 61 \end{aligned}$			
	1,875		>75\% Grass cover, Good, HSG B		
	1,396	55			
	4,286	68	Weighted Average		
	3,271		76.32\% Pervious Area		
	1,015		23.68\% Im	ervious Ar	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.0					Direct Entry,

Subcatchment 35S: FDA-L3.2

Summary for Reach 30R: Vegetated Swale

Inflow Area	$=$	1.956 ac,	1.54% Impervious, Inflow Depth $=0.42 " \quad$ for 2 year event	
Inflow	$=$	$0.41 \mathrm{cfs} @$	12.36 hrs, Volume $=$	0.068 af
Outflow	$=$	$0.37 \mathrm{cfs} @$	12.65 hrs, Volume $=$	0.068 af, Atten $=10 \%, \mathrm{Lag}=17.3 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Max. Velocity= 0.53 fps , Min. Travel Time $=9.0 \mathrm{~min}$
Avg. Velocity $=0.21 \mathrm{fps}$, Avg. Travel Time= 22.8 min
Peak Storage= 199 cf @ 12.50 hrs
Average Depth at Peak Storage=0.27
Bank-Full Depth= 1.25' Flow Area= 5.6 sf, Capacity= 6.76 cfs
$2.00^{\prime} \times 1.25$ deep channel, $n=0.240$ Sheet flow over Dense Grass
Side Slope Z-value= 2.0 '/' Top Width= 7.00'
Length=285.0' Slope=0.0561 '/'
Inlet Invert= 174.00', Outlet Invert= 158.00'

Reach 30R: Vegetated Swale
Hydrograph
 Outflow

Summary for Pond 15P: SWMF

Inflow Area		$5.984 \mathrm{ac}, 15.94 \%$ Impervious, Inflow Depth $=0.36 "$ for 2 year event		
Inflow	$=$	$1.23 \mathrm{cfs} @ 12.34 \mathrm{hrs}$, Volume $=$	0.181 af	
Outflow	$=$	$0.25 \mathrm{cfs} @$	14.18 hrs, Volume $=$	0.180 af, Atten $=80 \%$, Lag $=110.5 \mathrm{~min}$
Primary	$=$	$0.25 \mathrm{cfs} @$	14.18 hrs, Volume $=$	0.180 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Starting Elev=126.00' Surf.Area=2,806 sf Storage=3,133 cf
Peak Elev=126.93' @ 14.18 hrs Surf.Area=3,928 sf Storage= 6,251 cf (3,118 cf above start)
Plug-Flow detention time $=1,006.6 \mathrm{~min}$ calculated for 0.108 af (60% of inflow)
Center-of-Mass det. time $=517.6 \mathrm{~min}(1,437.4-919.9)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	121.50^{\prime}	$21,119 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
121.50	0	0	0
122.00	96	24	24
123.00	318	207	231
124.00	513	416	647
125.00	827	670	1,317
126.00	2,806	1,817	3,133
127.00	4,018	3,412	6,545
128.00	6,230	5,124	11,669
129.00	6,090	6,160	17,829
129.50	7,070	3,290	21,119

Device	Routing	Invert	Outlet Devices
\#1	Primary	125.00'	12.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#2	Device 1	126.00'	1.3" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#3	Device 1	126.75'	4.0" Vert. Orifice/Grate X $3.00 \quad \mathrm{C}=0.600$
\#4	Device 1	127.00'	8.0" Vert. Orifice/Grate X $2.00 \quad \mathrm{C}=0.600$
\#5	Primary	129.20'	6.0' long (Profile 7) Broad-Crested Rectangular Weir Head (feet) 0.490 .981 .48 Coef. (English) 2.993 .413 .62

Primary OutFlow Max=0.24 cfs @ 14.18 hrs HW=126.93' (Free Discharge)
-1 $=$ Orifice/Grate (Passes 0.24 cfs of 4.52 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 0.04 cfs @ 4.50 fps)
-3=Orifice/Grate (Orifice Controls 0.20 cfs @ 1.43 fps)
4=Orifice/Grate (Controls 0.00 cfs)
-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 15P: SWMF
Hydrograph

Summary for Pond 29P: SWMF-L1

Inflow	$=$	$0.67 \mathrm{cfs} @$	12.07 hrs, Volume $=$
Outflow	$=$	0.049 af	
Discarded $=$	$0.21 \mathrm{cts} @ 11.84 \mathrm{hrs}$, Volume=	0.049 af , Atten= 69%, Lag $=0.0 \mathrm{~min}$	
	$0.21 \mathrm{cfs} @$	11.84 hrs, Volume $=$	0.049 af

Routing by Stor-Ind method, Time Span= $0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=153.28' @ 12.37 hrs Surf.Area= 1,485 sf Storage= 332 cf
Plug-Flow detention time $=7.6 \mathrm{~min}$ calculated for 0.049 af (100% of inflow)
Center-of-Mass det. time $=7.6 \mathrm{~min}(785.0-777.3$)

Volume	Invert	Avail.Storage	Storage Description
\#1A	152.75'	1,069 cf	27.50'W x 54.00'L x 2.54 'H Field A 3,774 cf Overall - 1,102 cf Embedded $=2,672$ cf $\times 40.0 \%$ Voids
\#2A	153.25'	1,102 cf	Cultec R-150XLHD x 40 Inside \#1 Effective Size $=29.8^{\prime \prime} \mathrm{W} \times 18.0^{\prime \prime} \mathrm{H}=>2.65 \mathrm{sf} \times 10.25^{\prime} \mathrm{L}=27.2 \mathrm{cf}$ Overall Size $=33.0^{\prime \prime} \mathrm{W} \times 18.5^{\prime \prime} \mathrm{H} \times 11.00^{\prime} \mathrm{L}$ with 0.75^{\prime} Overlap Row Length Adjustment $=+0.75^{\prime} \times 2.65 \mathrm{sf} \times 8$ rows

2,171 cf Total Available Storage
Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	152.755^{\prime}	6.000 in/hr Exfiltration over Horizontal area

Discarded OutFlow Max=0.21 cfs @ 11.84 hrs HW=152.78' (Free Discharge)
L-Exfiltration (Exfiltration Controls 0.21 cfs) $^{\text {1 }}$

Pond 29P: SWMF-L1 - Chamber Wizard Field A

Chamber Model = Cultec R-150XLHD (Cultec Recharger® 150XLHD)

Effective Size $=29.8^{\prime \prime} \mathrm{W} \times 18.0^{\prime \prime} \mathrm{H}=>2.65 \mathrm{sf} \times 10.25^{\prime} \mathrm{L}=27.2 \mathrm{cf}$
Overall Size $=33.0^{\prime \prime} \mathrm{W} \times 18.5^{\prime \prime} \mathrm{H} \times 11.00^{\prime} \mathrm{L}$ with 0.75^{\prime} Overlap
Row Length Adjustment $=+0.75^{\prime} \times 2.65 \mathrm{sf} \times 8$ rows
33.0" Wide $+6.0^{\prime \prime}$ Spacing $=39.0$ " C-C Row Spacing

5 Chambers/Row x 10.25' Long $+0.75^{\prime}$ Row Adjustment $=52.00^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=54.00^{\prime}$ Base Length
8 Rows $\times 33.0$ " Wide $+6.0^{\prime \prime}$ Spacing $\times 7+12.0^{\prime \prime}$ Side Stone $\times 2=27.50^{\prime}$ Base Width
$6.0^{\prime \prime}$ Base $+18.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=2.54^{\prime}$ Field Height
40 Chambers x 27.2 cf $+0.75^{\prime}$ Row Adjustment $\times 2.65$ sf $\times 8$ Rows $=1,102.0$ cf Chamber Storage
3,774.4 cf Field - 1,102.0 cf Chambers $=2,672.4$ cf Stone $\times 40.0 \%$ Voids $=1,069.0$ cf Stone Storage
Chamber Storage + Stone Storage $=2,170.9 \mathrm{cf}=0.050$ af
Overall Storage Efficiency $=57.5 \%$
40 Chambers
139.8 cy Field
99.0 cy Stone

Pond 29P: SWMF-L1

Summary for Pond 30P: Div L1 (DS F.2)

[57] Hint: Peaked at 154.75' (Flood elevation advised)

Inflow Area $=$	$0.200 \mathrm{ac}, 91.00 \%$ Impervious, Inflow Depth $=2.94 "$ for 2 year event	
Inflow	$=$	$0.67 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=$
Outflow	$=$	$0.67 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=$
Primary	$=$	0.049 af
Secondary $=$	$0.00 \mathrm{cfs} @$	0.00 hrs , Volume $=$
	$0.67 \mathrm{cfs} @ 12.07 \mathrm{af}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 154.75' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
\#1 Primary 154.00 ' 12.0" Round Culvert to MH A. 9			
			$\mathrm{L}=25.0^{\prime} \quad$ CPP, square edge headwall, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 154.00 ' $/ 153.50 ' S=0.0200$ '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area $=0.79 \mathrm{sf}$ 8.0" Round Culvert to SWMF L1
\#2	Secondary	154.25'	
			$L=8.0{ }^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 154.25' / 154.00' S=0.0313 '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area $=0.35 \mathrm{sf}$
\#3	Device 1	154.79'	3.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=154.00' (Free Discharge)			
$L_{1}=$ Culvert to MH A. 9 (Controls 0.00 cfs)			
$L_{\text {3 }}$ Sharp-Crested Rectangular Weir (Controls 0.00 cfs)			
Secondary OutFlow Max=0.67 cfs @ $12.07 \mathrm{hrs} \mathrm{HW=154.75'}$ (Free Discharge)			

Pond 30P: Div L1 (DS F.2)
Hydrograph

Summary for Pond 31P: SWMF-1.1 Bioret

Inflow Area		0.672 ac,	0.00% Impervious, Inflow Depth $=0.49 "$	for 2 year event
Inflow	$=$	$0.19 \mathrm{cfs} @$	12.29 hrs, Volume $=$	0.028 af
Outflow	$=$	$0.03 \mathrm{cfs} @$	15.27 hrs, Volume $=$	0.028 af, Atten $=84 \%$, Lag $=179.0 \mathrm{~min}$
Discarded	$=$	$0.03 \mathrm{cfs} @$	15.27 hrs, Volume $=$	0.028 af
Primary	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 156.83' @ 15.27 hrs Surf.Area= 1,289 sf Storage= 400 cf
Plug-Flow detention time $=147.1 \mathrm{~min}$ calculated for 0.028 af (100% of inflow)
Center-of-Mass det. time $=147.1 \mathrm{~min}(1,069.4-922.3$)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	156.50	$1,373 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
156.50	1,133	0	0
157.00	1,370	626	626
157.50	1,620	748	1,373

Device	Routing	Invert	Outlet Devices
\#1	Primary	151.67'	12.0" Round Culvert L= 18.4' CPP, square edge headwall, $\mathrm{Ke}=0.5$
			Inlet / Outlet Invert= 151.67' / $151.40 \quad \mathrm{~S}=0.0147 \mathrm{l} / \mathrm{Cc}=0.900$
\#2	Device 1	157.00'	12.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#3	Discarded	156.50'	1.000 in/hr Exfiltration over Horizontal area

Discarded OutFlow Max=0.03 cfs @ 15.27 hrs HW=156.83' (Free Discharge)
$\leftarrow_{3=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~} 0.03 \mathrm{cfs}$)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=156.50' (Free Discharge)
$1=$ Culvert (Passes 0.00 cfs of 7.87 cfs potential flow)
$\mathcal{L}_{2=O}=$ Orifice/Grate (Controls 0.00 cfs)

Pond 31P: SWMF-1.1 Bioret

Summary for Pond 32P: Div 2.2 (DS D.2)

[57] Hint: Peaked at 152.94' (Flood elevation advised)

Inflow Area	0.655 ac, 43.66\% Impervious,	epth $=1.2$
Inflow	0.72 cfs @ 12.19 hrs, Volume=	0.068 af
Outflow	0.72 cfs @ 12.19 hrs, Volume=	0.068 af ,
Primary	0.07 cfs @ 12.19 hrs, Volume=	0.001 af
Secondary =	0.65 cfs @ 12.19 hrs, Volume=	0.067 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 152.94' @ 12.19 hrs

Device	Routing	Invert	Outlet Devices	
\#1	Primary	152.75'	15.0" Round Culvert to Level Spreader	
			$\mathrm{L}=30.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
			Inlet / Outlet Invert= 152.75' / 151.50' S=0.0417 //' Cc= 0.900	
			$\mathrm{n}=0.012$, Flow Area $=1.23 \mathrm{sf}$	
\#2	Secondary	152.50'	10.0" Round Culvert to SWMF-2.2	
			$\mathrm{L}=15.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$	
			Inlet / Outlet Invert= 152.50' / 152.00' S=0.0333 //' Cc= 0.900	
			$\mathrm{n}=0.012$, Flow Area $=0.55 \mathrm{sf}$	
\#3	Device 1	152.90'	3.0' long $\times 1.50$ ' rise Sharp-Crested Rectangular Weir 2 End Contraction(s)	
Primary OutFlow Max=0.07 cfs @ 12.19 hrs HW=152.94' (Free Discharge) $L_{1=C u l v e r t ~ t o ~ L e v e l ~ S p r e a d e r ~(P a s s e s ~}^{0.07} \mathrm{cfs}$ of 0.17 cfs potential flow) $\mathcal{L}_{3}=$ Sharp-Crested Rectangular Weir (Weir Controls 0.07 cfs @ 0.63 fps)				
Secondary OutFlow Max=0.65 cfs @ 12.19 hrs HW=152.94' (Free Discharge) L2=Culvert to SWMF-2.2 (Inlet Controls 0.65 cfs @ 2.25 fps)				

Pond 32P: Div 2.2 (DS D.2)

Hydrograph
 \square Outflow \square Primary
\square Secondary

Summary for Pond 33P: Div L2.1

[57] Hint: Peaked at 150.34' (Flood elevation advised)

Inflow Area	0.1	55.54\% Impervious, In	epth $=1.7$	nt
Inflow	0.28 cfs @	12.08 hrs, Volume=	0.020 af	
Outflow	0.28 cfs @	12.08 hrs , Volume=	0.020 af ,	Atten $=0 \%, L a g=0.0 \mathrm{~m}$
Primary	0.00 cfs @	0.00 hrs , Volume=	0.000 af	,
Secondary =	0.28 cfs @	12.08 hrs, Volume=	0.020 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 150.34' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices
\#1	Primary	150.00'	8.0" Round Culvert to Node EP E. 1 $\mathrm{L}=96.0^{\prime} \quad$ CPP, square edge headwall, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 150.00' / 146.00' S=0.0417 '// Cc= 0.900 $\mathrm{n}=0.012$, Flow Area $=0.35 \mathrm{sf}$
\#2	Secondary	150.00'	6.0" Round Culvert to PTF E. 1 \& SWMF L2. 1 $\mathrm{L}=12.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 150.00' / 149.70' S=0.0250 '/' Cc= 0.900 $\mathrm{n}=0.012$, Flow Area $=0.20 \mathrm{sf}$
\#3	Device 1	150.54'	3.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=150.00' (Free Discharge) $L_{1=C u l v e r t ~ t o ~ N o d e ~ E P ~ E . ~}^{1}$ (Controls 0.00 cfs) 			
Secondary OutFlow Max=0.28 cfs @ 12.08 hrs HW=150.34' (Free Discharge) 2=Culvert to PTF E. 1 \& SWMF L2.1 (Inlet Controls 0.28 cfs @ 1.99 fps)			

Pond 33P: Div L2.1
Hydrograph

Summary for Pond 34P: SWMF-L2.1

Inflow	$=$	$0.28 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume $=$
Outflow	$=$	0.020 af
Discarded $=$	$0.06 \mathrm{cfs} @ 11.82 \mathrm{hrs}$, Volume $=$	0.020 af, Atten $=78 \%$, Lag $=0.0 \mathrm{~min}$
	$0.06 \mathrm{cfs} @ 11.82 \mathrm{hrs}$, Volume $=$	0.020 af

Routing by Stor-Ind method, Time Span= $0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev= 148.30' @ 12.50 hrs Surf.Area= 449 sf Storage= 199 cf
Plug-Flow detention time $=18.4$ min calculated for 0.020 af (100% of inflow)
Center-of-Mass det. time $=18.4 \mathrm{~min}(849.5-831.1)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	147.50'	405 cf	25.67'W x 17.50'L x 3.54'H Field A
			1,591 cf Overall - 577 cf Embedded $=1,013$ cf $\times 40.0 \%$ Voids
\#2A	148.00'	577 cf	Cultec R-330XLHD $\times 10$ Inside \#1
			Effective Size $=47.8$ "W $\times 30.0{ }^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
			Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5{ }^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50' Overlap
			Row Length Adjustment $=+1.50$ ' 7.45 sf $\times 5$ rows
		983 cf	Total Available Storage
Stora	ge Group A	ated with Chamb	ber Wizard
Device	Routing	Invert Outle	et Devices
\#1	Discarded	147.50' 6.000	$0 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Discarded OutFlow Max=0.06 cfs @ 11.82 hrs HW=147.54' (Free Discharge)
L-Exfiltration (Exfiltration Controls 0.06 cfs) $^{\text {1 }}$

Pond 34P: SWMF-L2.1-Chamber Wizard Field A
Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger® 330XLHD)
Effective Size=47.8"W x $30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50 \times 7.45$ sf $\times 5$ rows
52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

2 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 15.50' Row Length +12.0" End Stone $\times 2=17.50$ ' Base Length
5 Rows x 52.0" Wide $+6.0^{\prime \prime}$ Spacing x $4+12.0^{\prime \prime}$ Side Stone $\times 2=25.67$ ' Base Width
6.0" Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.54$ ' Field Height

10 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45$ sf $\times 5$ Rows $=577.5$ cf Chamber Storage
$1,590.8$ cf Field -577.5 cf Chambers $=1,013.3$ cf Stone $\times 40.0 \%$ Voids $=405.3$ cf Stone Storage
Chamber Storage + Stone Storage $=982.8$ cf $=0.023$ af
Overall Storage Efficiency $=61.8 \%$
10 Chambers
58.9 cy Field
37.5 cy Stone

Pond 34P: SWMF-L2.1

Summary for Pond 35P: Div 1.2

[57] Hint: Peaked at 154.88' (Flood elevation advised)

Inflow Area =	$0.446 \mathrm{ac}, 65.47 \%$ Impervious, Inflow Depth $=1.94$ " for 2 year event			
Inflow	0.88 cfs @	12.14 hrs, Volume=	0.072 af	
Outflow	0.88 cfs @	12.14 hrs , Volume=	0.072 af,	Atten $=0 \%, L a g=0.0 \mathrm{~m}$
Primary	0.00 cfs @	0.00 hrs , Volume=	0.000 af	
Secondary =	0.88 cfs @	12.14 hrs , Volume=	0.072 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 154.88' @ 12.14 hrs

Device	Routing	Invert	Outlet Devices
\#1 Primary $153.92{ }^{\text {' }}$ 12.0" Round Culvert to MH A. 6			
L=18.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$			
Inlet / Outlet Invert $=153.92$ / $151.00 ' \quad S=0.1622$ '/' Cc= 0.900			
\#2	Secondary	153.75'	6.0" Round Culvert to SWMF-1.2
			$\mathrm{L}=6.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= $153.75 ' / 153.50 ' \quad \mathrm{~S}=0.0417 \mathrm{l} / \mathrm{Cc}=0.900$$\mathrm{n}=0.012$, Flow Area= 0.20 sf
\#3	Device 1	154.92'	3.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=153.75' (Free Discharge)			
$L_{1=C u l v e r t ~ t o ~ M H ~ A . ~}^{6}$ (Controls 0.00 cfs)			
$L_{3=S h a r p-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(~ C o n t r o l s ~}^{0.00 ~ c f s) ~}$			
Secondary OutFlow Max=0.88 cfs @ 12.14 hrs HW=154.88' (Free Discharge) —2=Culvert to SWMF-1.2 (Inlet Controls 0.88 cfs @ 4.51 fps)			

Pond 35P: Div 1.2

Summary for Pond 36P: Rain Garden \#1 Lot 3

Inflow Area $=$	$0.261 \mathrm{ac}, 19.99 \%$	Impervious, Inflow Depth $=0.80 "$	for 2 year event	
Inflow	$=$	$0.18 \mathrm{cfs} @$	12.16 hrs, Volume $=$	0.017 af
Outflow $=$	$0.03 \mathrm{cfs} @$	13.46 hrs, Volume $=$	0.017 af, Atten $=86 \%, \mathrm{Lag}=78.0 \mathrm{~min}$	
Discarded	$=$	$0.03 \mathrm{cfs} @$	13.46 hrs, Volume $=$	0.017 af
Primary $=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$	0.000 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= $0.01 \mathrm{hrs} / 2$
Peak Elev=144.72' @ 13.46 hrs Surf.Area= 1,124 sf Storage= 241 cf
Plug-Flow detention time $=88.6$ min calculated for 0.017 af (100% of inflow)
Center-of-Mass det. time $=88.6 \mathrm{~min}$ (975.6-886.9)

Discarded OutFlow Max=0.03 cfs @ 13.46 hrs HW=144.72' (Free Discharge)
②=Exfiltration (Exfiltration Controls 0.03 cfs)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=144.50' (Free Discharge)
—1=Orifice/Grate (Controls 0.00 cfs)

Pond 36P: Rain Garden \#1 Lot 3

Summary for Pond 37P: SWMF-1.2

[81] Warning: Exceeded Pond 35P by 0.04' @ 12.78 hrs

Inflow	$=$	$0.88 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume $=$	0.072 af
Outflow	$=$	$0.18 \mathrm{cfs} @$	11.82 hrs, Volume $=$
Discarded $=$	$0.18 \mathrm{cfs} @$	11.82 hrs, Volume $=$	0.072 af, Atten $=79 \%$, Lag $=0.0 \mathrm{~min}$

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=154.02' @ 12.63 hrs Surf.Area= 1,320 sf Storage= 846 cf
Plug-Flow detention time= 29.1 min calculated for 0.072 af (100% of inflow)
Center-of-Mass det. time= 29.1 min (858.3-829.2)

Volume	Invert	Avail.Storage	Storage Description
\#1A	153.00'	1,184 cf	23.50'W x 56.17'L x 3.67'H Field A
			4,840 cf Overall - 1,880 cf Embedded $=2,960$ cf $\times 40.0 \%$ Voids
\#2A	153.50'	1,880 cf	Cultec R-V8HD $\times 32$ Inside \#1
			Effective Size=55.2"W $\times 32.0$ "H => $8.68 \mathrm{sf} \times 7.50$ ' $\mathrm{L}=65.1 \mathrm{cf}$
			Overall Size $=60.0$ 'W $\times 32.0$ "H x 8.00'L with 0.50 ' Overlap
			Row Length Adjustment $=-5.83$ x 8.68 sf $\times 4$ rows
		3,064 cf	Total Available Storage
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Outl	D Devices
\#1	Discarded	153.00' 6.00	in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.18 cfs @ 11.82 hrs HW=153.04' (Free Discharge)
①=Exfiltration (Exfiltration Controls 0.18 cfs)

Pond 37P: SWMF-1.2 - Chamber Wizard Field A

Chamber Model = Cultec R-V8HD (Cultec Recharger® V8HD)

Effective Size=55.2"W x 32.0"H => $8.68 \mathrm{sf} \times 7.50^{\prime} \mathrm{L}=65.1 \mathrm{cf}$
Overall Size $=60.0^{\prime \prime} \mathrm{W} \times 32.0^{\prime \prime} \mathrm{H} \times 8.00^{\prime} \mathrm{L}$ with 0.50^{\prime} Overlap
Row Length Adjustment $=-5.83$ x 8.68 sf 4 rows
60.0" Wide +6.0 " Spacing $=66.0$ " C-C Row Spacing

8 Chambers/Row x 7.50' Long -5.83' Row Adjustment $=54.17^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=56.17^{\prime}$ Base Length
4 Rows $\times 60.0^{\prime \prime}$ Wide $+6.0^{\prime \prime}$ Spacing $\times 3+12.0^{\prime \prime}$ Side Stone $\times 2=23.50^{\prime}$ Base Width
6.0" Base $+32.0^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.67^{\prime}$ Field Height

32 Chambers x 65.1 cf -5.83 Row Adjustment $\times 8.68$ sf $\times 4$ Rows $=1,879.9$ cf Chamber Storage
$4,840.0$ cf Field $-1,879.9$ cf Chambers $=2,960.1$ cf Stone $\times 40.0 \%$ Voids $=1,184.0$ cf Stone Storage
Chamber Storage + Stone Storage $=3,063.9 \mathrm{cf}=0.070$ af
Overall Storage Efficiency $=63.3 \%$
32 Chambers
179.3 cy Field
109.6 cy Stone

Pond 37P: SWMF-1.2

Summary for Pond 38P: SWMF-2.2

Inflow	$=$	$0.65 \mathrm{cfs} @$	12.19 hrs, Volume $=$
Outflow	$=$	$0.16 \mathrm{cfs} @$	12.03 hrs, Volume $=$
Discarded	$=$	$0.16 \mathrm{cfs} @$	12.03 hrs, Volume $=$
Primary	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$
	0.067 af, atten $=75 \%$, Lag $=0.0 \mathrm{~min}$		

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=150.89' @ 12.78 hrs Surf.Area=1,160 sf Storage= 805 cf
Plug-Flow detention time $=36.4$ min calculated for 0.067 af (100% of inflow)
Center-of-Mass det. time= 36.4 min (901.1-864.7)

Discarded OutFlow Max=0.16 cfs @ 12.03 hrs HW=150.00' (Free Discharge)
$\boldsymbol{L}^{\mathbf{1}=\text { Exfiltration (Exfiltration Controls } 0.16 \mathrm{cfs}) ~}$
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=149.50' (Free Discharge)
L2=Culvert (Controls 0.00 cfs)

Pond 38P: SWMF-2.2 - Chamber Wizard Field A

Chamber Model = Cultec R-330XLHD (Cultec Recharger® ${ }^{\circledR}$ 330XLHD)

Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0$ "W x 30.5"H x 8.50'L with 1.50' Overlap
Row Length Adjustment $=+1.50$ x 7.45 sf $\times 3$ rows
52.0" Wide $+6.0^{\prime \prime}$ Spacing = 58.0" C-C Row Spacing

4 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 29.50' Row Length +12.0" End Stone $\times 2=31.50$ ' Base Length
3 Rows x 52.0" Wide $+6.0^{\prime \prime}$ Spacing x $2+12.0^{\prime \prime}$ Side Stone x $2=16.00$ ' Base Width
6.0" Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.54^{\prime}$ Field Height

12 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45 \mathrm{sf} \times 3$ Rows $=659.4$ cf Chamber Storage
$1,785.0$ cf Field -659.4 cf Chambers $=1,125.6$ cf Stone $\times 40.0 \%$ Voids $=450.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,109.6$ cf $=0.025$ af
Overall Storage Efficiency $=62.2 \%$
12 Chambers
66.1 cy Field
41.7 cy Stone

Pond 38P: SWMF-2.2 - Chamber Wizard Field B

Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger ${ }^{\circledR 3}$ 330XLHD)

Effective Size=47.8"W x $30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0$ "W x 30.5"H x 8.50'L with 1.50' Overlap
Row Length Adjustment $=+1.50$ x 7.45 sf $\times 4$ rows
52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

4 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 29.50' Row Length +12.0" End Stone $\times 2=31.50$ ' Base Length
4 Rows x 52.0" Wide $+6.0^{\prime \prime}$ Spacing x $3+12.0^{\prime \prime}$ Side Stone x $2=20.83^{\prime}$ Base Width
6.0" Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.54$ ' Field Height

16 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45 \mathrm{sf} \times 4$ Rows $=879.2$ cf Chamber Storage

$2,324.2$ cf Field -879.2 cf Chambers $=1,445.0$ cf Stone $\times 40.0 \%$ Voids $=578.0$ cf Stone Storage

Chamber Storage + Stone Storage $=1,457.2$ cf $=0.033$ af
Overall Storage Efficiency $=62.7 \%$
16 Chambers
86.1 cy Field
53.5 cy Stone

Pond 38P: SWMF-2.2

Summary for Pond 39P: SWMF-L2.2

Inflow	$=$	$0.35 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=$	0.027 af
Outflow	$=$	$0.07 \mathrm{cfs} @$	11.71 hrs, Volume $=$
Discarded $=$	$0.07 \mathrm{cfs} @$	11.71 hrs, Volume $=$	0.027 af, Atten $=80 \%, \mathrm{Lag}=0.0 \mathrm{~min}$
Din			

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=135.89' @ 12.48 hrs Surf.Area= 504 sf Storage= 262 cf
Plug-Flow detention time $=18.9$ min calculated for 0.027 af (100% of inflow)
Center-of-Mass det. time $=18.9 \mathrm{~min}(772.6-753.6$)

Volume	Invert	Avail.Storage	Storage Description
\#1A	135.00'	450 cf	$\begin{aligned} & \text { 16.00'W x 31.50'L } \times 3.54 \text { 'H Field A } \\ & 1,785 \mathrm{cf} \text { Overall }-659 \mathrm{cf} \text { Embedded }=1,126 \mathrm{cf} \times 40.0 \% \text { Voids } \end{aligned}$
\#2A	135.50'	659 cf	Cultec R-330XLHD x 12 Inside \#1 Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$ Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50^{\prime} Overlap Row Length Adjustment $=+1.50^{\prime} \times 7.45 \mathrm{sf} \times 3$ rows
1,110 cf Total Available Storage			
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Outl	et Devices
\#1	Discarded	135.00' 6.00	in/hr Exfiltration over Horizontal area

Discarded OutFlow Max=0.07 cfs @ 11.71 hrs HW=135.04' (Free Discharge)
L_1=Exfiltration (Exfiltration Controls 0.07 cfs)

Pond 39P: SWMF-L2.2 - Chamber Wizard Field A

Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger ${ }^{\circledR 3}$ 330XLHD)

Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50$ x $7.45 \mathrm{sf} \times 3$ rows
52.0" Wide $+6.0^{\prime \prime}$ Spacing $=58.0$ " C-C Row Spacing

4 Chambers/Row x 7.00' Long $+1.50^{\prime}$ Row Adjustment $=29.50^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=31.50^{\prime}$ Base Length
3 Rows $\times 52.0^{\prime \prime}$ Wide $+6.0^{\prime \prime}$ Spacing $\times 2+12.0^{\prime \prime}$ Side Stone $\times 2=16.00^{\prime}$ Base Width
6.0" Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.54^{\prime}$ Field Height

12 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45$ sf $\times 3$ Rows $=659.4$ cf Chamber Storage
1,785.0 cf Field -659.4 cf Chambers $=1,125.6$ cf Stone $\times 40.0 \%$ Voids $=450.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,109.6 \mathrm{cf}=0.025$ af
Overall Storage Efficiency $=62.2 \%$
12 Chambers
66.1 cy Field
41.7 cy Stone

Pond 39P: SWMF-L2. 2

Summary for Pond 40P: Div L2.2

[57] Hint: Peaked at 137.89' (Flood elevation advised)

flow Ar	$0.098 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth $=3.27^{\prime \prime}$ for 2 year event			
Inflow	0.35 cfs @	12.07 hrs, Volume=	0.027 af	
Outflow	0.35 cfs @	12.07 hrs , Volume=	0.027 af,	Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	0.00 cfs @	0.00 hrs , Volume=	0.000 af	
Secondary =	0.35 cfs @	12.07 hrs , Volume=	0.027 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 137.89' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices		
\#1	Primary	138.00'	12.0" Round Culvert to MH C. 1		
			$\mathrm{L}=50.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert $=138.00^{\prime} / 134.00$ ' $S=0.0800$ '/' $\quad C c=0.900$		
			$\mathrm{n}=0.012$, Flow Area $=0.79 \mathrm{sf}$ 6.0" Round Culvert to SWMF L2. 2		
\#2	Secondary	137.50'	$L=5.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 137.50' / 136.00' S=0.3000 '/' Cc= 0.900		
			$\mathrm{n}=0.012$, Flow Area $=0.20 \mathrm{sf}$		
\#3	Device 1	138.04'	3.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)		
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=137.50' (Free Discharge) $L_{1=C u l v e r t ~ t o ~ M H ~ C . ~}^{1}$ (Controls 0.00 cfs) 					
Secondary OutFlow Max=0.35 cfs @ 12.07 hrs HW=137.89' (Free Discharge) L2=Culvert to SWMF L2.2 (Inlet Controls 0.35 cfs @ 2.12 fps)					

Summary for Pond 41P: Rain Garden \#2 Lot 3

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=152.13' @ 12.81 hrs Surf.Area= 700 sf Storage= 88 cf
Plug-Flow detention time $=44.0 \mathrm{~min}$ calculated for 0.007 af (100% of inflow)
Center-of-Mass det. time $=43.9 \mathrm{~min}$ ($923.7-879.7$)

Discarded OutFlow Max=0.02 cfs @ 12.81 hrs HW=152.13' (Free Discharge)
$L_{2=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~}^{0.02} \mathrm{cfs}$)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=152.00' (Free Discharge)
L1=Orifice/Grate (Controls 0.00 cfs)

Pond 41P: Rain Garden \#2 Lot 3

Summary for Link 19L: Design Point 1

Primary outflow $=$ Inflow, Time Span= $0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 19L: Design Point 1

Hydrograph

Summary for Link 22L: Design Point 2

Inflow Area $=$	3.501 ac,	9.03% Impervious, Inflow Depth $=0.35 " \quad$ for 2 year event
Inflow	$=$	$0.46 \mathrm{cfs} @$
Primary	$=$	$0.46 \mathrm{cfs} @$
	12.62 hrs , Volume $=$	0.102 af

Primary outflow $=$ Inflow, Time Span= $0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 22L: Design Point 2

Summary for Link 25L: Design Point 3

Inflow Area $=$	0.529 ac,	0.00% Impervious, Inflow Depth $=0.42 " \quad$ for 2 year event	
Inflow	$=$	$0.13 \mathrm{cfs} @$	12.16 hrs , Volume $=$
Primary	$=$	$0.13 \mathrm{cfs} @$	12.16 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span= $0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 25L: Design Point 3

Hydrograph

Summary for Link 28L: Design Point 4

Inflow Area $=$	0.242 ac,	0.00% Impervious, Inflow Depth $=0.75 \mathrm{ln}$ for 2 year event
Inflow	$=$	$0.16 \mathrm{cfs} @$
Primary	$=$	$0.16 \mathrm{cfs} @$
	12.14 hrs , Volume $=$	0.015 af

Primary outflow $=$ Inflow, Time Span= $0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 28L: Design Point 4

Hydrograph

HydroCAD® 10.00-15 s/n 03392 (c) 2015 HydroCAD Software Solutions LLC_Page 128

Time span=0.00-96.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}, 9601$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: FDA-2.2

Subcatchment 2S: FDA-1.2

Subcatchment 4S: XDA4

Subcatchment 5S: FDA-L2.1

Subcatchment 6S: FDA-L3.1

Subcatchment 20S: FDA-1.3

Subcatchment 21S: FDA-1.4

Subcatchment 23S: FDA-L1

Subcatchment 24S: FDA-2.1

Subcatchment 26S: FDA-3

Subcatchment 27S: FDA-4

Subcatchment 29S: FDA-L2.2

Subcatchment 30S: XDA1

Subcatchment 31S: FDA-1.1

Subcatchment 32S: FDA-2.3

Subcatchment 33S: XDA2

Subcatchment 34S: XDA3

Subcatchment 35S: FDA-L3. 2

Runoff Area=28,532 sf 43.66% Impervious Runoff Depth=2.36"
Flow Length=483' Tc=13.2 $\mathrm{min} \quad \mathrm{CN}=74$ Runoff=1.43 cfs 0.129 af
Runoff Area=19,428 sf 65.47% Impervious Runoff Depth=3.27" $\mathrm{T}=10.0 \mathrm{~min} \mathrm{CN}=84$ Runoff=1.49 cfs 0.122 af

Runoff Area=10,541 sf 0.00% Impervious Runoff Depth=1.65"
Flow Length=100' Slope $=0.1900$ '/' Tc=8.3 min $\mathrm{CN}=65$ Runoff= 0.41 cfs 0.033 af
Runoff Area $=5,735$ sf 55.54% Impervious Runoff Depth=3.08" $\mathrm{Tc}=5.0 \mathrm{~min} \quad \mathrm{CN}=82$ Runoff=$=0.49 \mathrm{cfs} 0.034 \mathrm{af}$

Runoff Area=11,384 sf 19.99% Impervious Runoff Depth=1.73" $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=66$ Runoff $=0.44 \mathrm{cfs} 0.038$ af

Runoff Area $=177,542$ sf 5.71% Impervious Runoff Depth=1.30" Flow Length=974' $\mathrm{Tc}=17.9 \mathrm{~min} \quad \mathrm{CN}=60$ Runoff=3.89 cfs 0.442 af

Runoff Area=6,857 sf 0.00\% Impervious Runoff Depth=1.58" Flow Length=87' Tc=5.5 min $\mathrm{CN}=64$ Runoff=0.28 cfs 0.021 af

Runoff Area=8,712 sf 91.00% Impervious Runoff Depth=4.42" $\mathrm{Tc}=5.0 \mathrm{~min} \mathrm{CN}=95$ Runoff=$=0.99 \mathrm{cfs} 0.074$ af

Runoff Area $=38,768$ sf 0.00% Impervious Runoff Depth=1.17" Flow Length=141' $\mathrm{Tc}=6.3 \mathrm{~min} \quad \mathrm{CN}=58$ Runoff=1.04 cfs 0.087 af

Runoff Area=23,055 sf 0.00% Impervious Runoff Depth=1.10" Flow Length=156' Tc=7.6 min CN=57 Runoff=0.55 cfs 0.049 af

Runoff Area $=10,545$ sf 0.00% Impervious Runoff Depth=1.65" Flow Length=100' Slope=0.1900 '// Tc=8.3 min CN=65 Runoff=0.41 cfs 0.033 af

Runoff Area=4,285 sf 100.00% Impervious Runoff Depth=4.76" $\mathrm{Tc}=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=$=0.50 \mathrm{cfs} 0.039 \mathrm{af}$

Runoff Area=208,652 sf 1.02% Impervious Runoff Depth=1.04" Flow Length=1,046' Tc=25.6 min CN=56 Runoff=2.94 cfs 0.416 af

Runoff Area=29,272 sf 0.00% Impervious Runoff Depth=1.23" $\mathrm{Tc}=15.0 \mathrm{~min} \mathrm{CN}=59$ Runoff=0.64 cfs 0.069 af

Runoff Area=85,225 sf 1.54% Impervious Runoff Depth=1.10" Flow Length=401' $\mathrm{Tc}=14.7 \mathrm{~min} \quad \mathrm{CN}=57$ Runoff=1.61 cfs 0.180 af

Runoff Area=211,963 sf 1.03\% Impervious Runoff Depth=0.98" Flow Length=544' Tc=15.5 min $\quad \mathrm{CN}=55$ Runoff=3.30 cfs 0.397 af

Runoff Area=23,043 sf 0.00% Impervious Runoff Depth $=0.98$ " Flow Length=156' Tc=8.3 min $\mathrm{CN}=55$ Runoff=$=0.45 \mathrm{cfs} 0.043 \mathrm{af}$

Runoff Area=4,286 sf 23.68% Impervious Runoff Depth=1.88" $\mathrm{T}=10.0 \mathrm{~min} \mathrm{CN}=68$ Runoff $=0.18 \mathrm{cfs} 0.015$ af

Reach 30R: Vegetated Swale
Pond 15P: SWMF
Pond 29P: SWMF-L1
Pond 30P: Div L1 (DS F.2)
Pond 31P: SWMF-1.1 Bioret

Pond 32P: Div 2.2 (DS D.2)

Pond 33P: Div L2.1

Pond 34P: SWMF-L2.1

Pond 35P: Div 1.2

Pond 36P: Rain Garden \#1 Lot 3

Pond 37P: SWMF-1.2

Pond 38P: SWMF-2.2

Pond 39P: SWMF-L2. 2

Pond 40P: Div L2.2

Pond 41P: Rain Garden \#2 Lot 3

Link 19L: Design Point 1

Link 22L: Design Point 2

Link 25L: Design Point 3

Link 28L: Design Point 4

Avg. Flow Depth=0.58' Max Vel=0.79 fps Inflow=1.61 cfs 0.180 af $\mathrm{n}=0.240 \mathrm{~L}=285.0^{\prime} \mathrm{S}=0.0561$ '/' Capacity= 6.76 cfs Outflow=1.45 cfs 0.180 af

Peak Elev=127.47' Storage=8,677 cf Inflow=3.96 cfs 0.481 af Outflow=2.22 cfs 0.481 af

Peak Elev=153.58' Storage=686 cf Inflow=0.86 cfs 0.073 af Outflow $=0.21$ cfs 0.073 af

Peak Elev=154.84' Inflow=0.99 cfs 0.074 af Primary $=0.12$ cfs 0.001 af Secondary $=0.86$ cfs 0.073 af Outflow $=0.99$ cfs 0.074 af

Peak Elev=157.10' Storage=768 cf Inflow=0.64 cfs 0.069 af Discarded $=0.03$ cfs 0.042 af Primary $=0.34$ cfs 0.027 af Outflow= 0.37 cfs 0.069 af

Peak Elev=153.06' Inflow=1.43 cfs 0.129 af Primary $=0.44$ cfs 0.010 af Secondary= 0.99 cfs 0.119 af Outflow=1.43 cfs 0.129 af

Peak Elev=150.52' Inflow=0.49 cfs 0.034 af Primary $=0.00$ cfs 0.000 af Secondary $=0.49$ cfs 0.034 af Outflow $=0.49$ cfs 0.034 af

Peak Elev=149.09' Storage=476 cf Inflow=0.49 cfs 0.034 af Outflow=0.06 cfs 0.034 af

Peak Elev=155.06' Inflow=1.49 cfs 0.122 af Primary $=0.51$ cfs 0.006 af Secondary= 0.97 cfs 0.116 af Outflow=1.49 cfs 0.122 af

Peak Elev=145.03' Storage=611 cf Inflow=0.44 cfs 0.038 af Discarded $=0.03$ cfs 0.032 af Primary $=0.07$ cfs 0.005 af Outflow $=0.10$ cfs 0.038 af

Peak Elev=154.73' Storage=1,599 cf Inflow=0.97 cfs 0.116 af Outflow=0.18 cfs 0.116 af

Peak Elev=152.01' Storage=1,789 cf Inflow=0.99 cfs 0.119 af Discarded $=0.16$ cfs 0.119 af Primary $=0.00$ cfs 0.000 af Outflow= 0.16 cfs 0.119 af

Peak Elev=136.41' Storage=470 cf Inflow=0.50 cfs 0.039 af Outflow $=0.07$ cfs 0.039 af

Peak Elev=138.03' Inflow=0.50 cfs 0.039 af Primary $=0.00$ cfs 0.000 af Secondary $=0.50$ cfs 0.039 af Outflow $=0.50$ cfs 0.039 af

Peak Elev=152.37' Storage=267 cf Inflow=0.18 cfs 0.015 af Discarded $=0.02$ cfs 0.015 af Primary $=0.00$ cfs 0.000 af Outflow= 0.02 cfs 0.015 af Inflow=2.26 cfs 0.501 af Primary $=2.26$ cfs 0.501 af

Inflow=2.10 cfs 0.277 af Primary $=2.10$ cfs 0.277 af

Inflow=0.55 cfs 0.049 af Primary $=0.55$ cfs 0.049 af

Inflow= 0.41 cfs 0.033 af Primary $=0.41$ cfs 0.033 af

Total Runoff Area $=20.841$ ac \quad Runoff Volume $=2.220$ af \quad Average Runoff Depth $=1.28 "$
93.43% Pervious $=19.472$ ac $\quad 6.57 \%$ Impervious $=1.369 \mathrm{ac}$

Summary for Subcatchment 1S: FDA-2.2
Runoff $=1.43 \mathrm{cfs} @ 12.19 \mathrm{hrs}$, Volume $=0.129 \mathrm{af}$, Depth $=2.36^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall $=5.00$ "

	Area (sf)	CN	Description		
	11,021	98 S	Subdivision Road, HSG B		
	1,437	98 O	Off-site impervious road, HSG B		
	1,307	61	>75\% Grass cover, Good, HSG B		
	14,767	55	Woods, Good, HSG B		
	28,532	74	Weighted Average 56.34\% Pervious Area 43.66\% Impervious Are		
	16,074				
	12,458				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
12.1	100	0.0750	0.14		Sheet Flow,
					Woods: Light underbrush $\mathrm{n}=0.400 \mathrm{P} 2=3.50{ }^{\prime \prime}$
0.6	68	0.1250	1.77		Shallow Concentrated Flow,
					Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
0.2	65	0.1000	- 6.42		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
0.3	250	0.0750	13.46	10.57	Pipe Channel,
					12.0" Round Area= 0.8 sf Perim $=3.1^{\prime} r=0.25^{\prime}$
13.2	483	Total			

Subcatchment 1S: FDA-2.2

Summary for Subcatchment 2S: FDA-1.2
Runoff $=1.49$ cfs @ 12.14 hrs, Volume $=\quad 0.122$ af, Depth= $3.27^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=5.00"

	Area (sf)	CN	Description		
	12,720	98 P	Paved parking, HSG B		
	3,180	$61>$	>75\% Grass cover, Good, HSG B		
	3,528	55	Woods, Good, HSG B		
	19,428	84 V	Weighted Average		
	6,708		34.53\% Pervious Area		
	12,720		65.47\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
10.0					Direct Entry,

Subcatchment 2S: FDA-1.2

Summary for Subcatchment 4S: XDA4
Runoff $=0.41 \mathrm{cfs} @ 12.13 \mathrm{hrs}$, Volume $=0.033 \mathrm{af}$, Depth $=1.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall $=5.00$ "

Area (sf)	CN	Description	
4,225	55	Woods, Good, HSG B	
4,225	70	Woods, Good, HSG C	
2,091	77	Woods, Good, HSG D	

Subcatchment 4S: XDA4

Summary for Subcatchment 5S: FDA-L2.1

Runoff $=0.49$ cfs @ 12.07 hrs , Volume $=0.034$ af, Depth $=3.08{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 10 year Rainfall $=5.00$ "

Area (sf)		CN Description			
*	$\begin{aligned} & 3,185 \\ & 2,550 \\ & \hline \end{aligned}$	$\begin{aligned} & 98 \\ & 61 \\ & \hline \end{aligned}$	Driveway and roofs, HSG B $>75 \%$ Grass cover, Good, HSG B		
	$\begin{aligned} & 5,735 \\ & 2,550 \\ & 3,185 \end{aligned}$	82	eighted .46\% P $.54 \%$ Im	verage vious Area ervious A	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry,

Subcatchment 5S: FDA-L2.1

Summary for Subcatchment 6S: FDA-L3.1

Runoff $=0.44$ cfs @ 12.15 hrs, Volume $=0.038$ af, Depth= $1.73^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall $=5.00$ "

	Area (sf)	CN	Lot 3 Roof, HSG B		
	982	98			
	907	98	Lot 3 Roof, HSG B		
	387	98			
	5,387	61 >	>75\% Grass cover, Good, HSG B		
	3,721	55	Woods, Good, HSG B		
	11,384	66	Weighted Average		
	9,108		80.01\% Pervious Area		
	2,276		19.99\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{aligned} & \text { Length } \\ & \text { (feet) } \end{aligned}$	Slope (ft/ft)	Velocity $(\mathrm{ft} / \mathrm{sec})$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
10.0					Direct Entry,

Subcatchment 6S: FDA-L3.1

Summary for Subcatchment 20S: FDA-1.3

Runoff $=3.89$ cfs @ 12.27 hrs, Volume $=\quad 0.442$ af, Depth $=1.30^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall $=5.00$ "

[^4]Subcatchment 20S: FDA-1.3

Summary for Subcatchment 21S: FDA-1.4
Runoff $=0.28 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= 0.021 af, Depth $=1.58^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall $=5.00$ "

	ea (sf)	CN D	Description			
	478	$61>$	>75\% Grass cover, Good, HSG B			
	124	$74>$	>75\% Grass cover, Good, HSG C			
	62	$80>$	$>75 \%$ Grass cover, Good, HSG D			
	3,040	55 W	Woods, Good, HSG B			
	2,102	70 W	Woods, Good, HSG C			
	1,051	77 W	Woods, Good, HSG D			
	$\begin{aligned} & \hline 6,857 \\ & 6,857 \end{aligned}$	$64 \quad 1$	Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity \qquad	Description	
5.2	40	0.1000	0.13		Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400$	$\mathrm{P} 2=3.50{ }^{\prime \prime}$
0.3	47	0.2300	2.40		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

Subcatchment 21S: FDA-1.4

Summary for Subcatchment 23S: FDA-L1

Runoff $=0.99$ cfs @ 12.07 hrs , Volume $=0.074$ af, Depth= $4.42^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall $=5.00$ "

Subcatchment 23S: FDA-L1

Summary for Subcatchment 24S: FDA-2.1
Runoff $=1.04$ cfs @ 12.11 hrs , Volume $=0.087$ af, Depth= $1.1^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall $=5.00$ "

Subcatchment 24S: FDA-2.1

Summary for Subcatchment 26S: FDA-3

Runoff $=0.55 \mathrm{cfs} @ 12.13 \mathrm{hrs}$, Volume $=\quad 0.049 \mathrm{af}$, Depth= $1.10^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall $=5.00$ "

Area (sf)		CN Description			
	$\begin{array}{r} 5,955 \\ 17,100 \\ \hline \end{array}$	$\begin{array}{ll} 61 & > \\ 55 & V \\ \hline \end{array}$	>75\% Grass cover, Good, HSG B Woods, Good, HSG B		
$\begin{aligned} & 23,055 \\ & 23,055 \end{aligned}$		57	Weighted Average 100.00\% Pervious Area		
Tc (\min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.3	86	0.1977	0.20		Sheet Flow, Woods: Light underbrush $n=0.400 \quad \mathrm{P} 2=3.50$ "
0.3	70	0.0571	3.58		Shallow Concentrated Flow, Grassed Waterway Kv=15.0 fps
7.6	156	Total			

Subcatchment 26S: FDA-3

Summary for Subcatchment 27S: FDA-4
Runoff $=0.41 \mathrm{cfs} @ 12.13 \mathrm{hrs}$, Volume $=0.033 \mathrm{af}$, Depth= $1.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall $=5.00$ "

Area (sf)	CN	Description	
4,220	55	Woods, Good, HSG B	
4,220	70	Woods, Good, HSG C	
2,105	77	Woods, Good, HSG D	

Subcatchment 27S: FDA-4

Summary for Subcatchment 29S: FDA-L2.2

Runoff $=0.50 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume= $\quad 0.039 \mathrm{af}$, Depth $=4.76^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall $=5.00$ "

Area (sf)		CN Description			
	4,285	98	Roofs, HSG		
4,285		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
5.0					Direct Entry,

Subcatchment 29S: FDA-L2.2

Summary for Subcatchment 30S: XDA1

Runoff $=2.94$ cfs @ 12.43 hrs , Volume $=0.416 \mathrm{af}$, Depth= $1.04{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall $=5.00$ "

[^5]Subcatchment 30S: XDA1

Summary for Subcatchment 31S: FDA-1.1
Runoff $=0.64$ cfs @ 12.23 hrs , Volume $=0.069 \mathrm{af}$, Depth= $1.23^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall=5.00"

	Area (sf)	CN	Description		
	18,513	$61>$	>75\% Grass cover, Good, HSG B		
	7,020	55 W	Woods, Good, HSG B		
*	3,739	55 W	Woods (off-site), Good, HSG B		
	29,272	59 W	Weighted Average		
	29,272		100.00\% Pervious Area		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
15.0					Direct Entry

Subcatchment 31S: FDA-1.1

Summary for Subcatchment 32S: FDA-2.3
Runoff $=1.61 \mathrm{cfs} @ 12.23 \mathrm{hrs}$, Volume $=\quad 0.180 \mathrm{af}$, Depth= $1.10{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall $=5.00$ "

	Area (sf)	CN	Description		
*	715	98	Off-Site Road, HSG B		
	315	98	Unconnected pavement, HSG B		
	280	98	Unconnected pavement, HSG B		
	23,051	61 >	>75\% Grass cover, Good, HSG B		
	60,864	55	Woods, Good, HSG B		
	85,225	57	Weighted Average 98.46\% Pervious Area 1.54\% Impervious Area 45.42\% Unconnected		
	83,915				
	1,310				
	595				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
8.1	100	0.2050	0.21		Sheet Flow,
					Woods: Light underbrush $\mathrm{n}=0.400 \mathrm{P} 2=3.50$ "
1.4	148	0.1284	1.79		Shallow Concentrated Flow,
					Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
5.2	153	0.0163	0.49	1.29	Trap/Vee/Rect Channel Flow,
					Bot.W=2.00' D=0.75' Z=2.0 '/' Top.W=5.00'
14.7					$\mathrm{n}=0.240$ Sheet flow over Dense Grass

Subcatchment 32S: FDA-2.3

Summary for Subcatchment 33S: XDA2
Runoff $=\quad 3.30 \mathrm{cfs} @ 12.25 \mathrm{hrs}$, Volume $=0.397$ af, Depth $=0.98{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 10 year Rainfall $=5.00$ "

Subcatchment 33S: XDA2

Summary for Subcatchment 34S: XDA3
Runoff $=0.45$ cfs @ 12.14 hrs , Volume $=0.043 \mathrm{af}$, Depth $=0.98{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall $=5.00$ "

Area (sf)		CN	Description			
	23,043	55	oods, Go	od, HSG B		
23,043		100.00\% Pervious Area				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description	
7.3	86	0.1977	0.20		Sheet Flow, Woods: Light underbrush $n=0.400$	$\mathrm{P} 2=3.50{ }^{\prime \prime}$
1.0	70	0.0571	1.19		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
8.3	156	Total				

Subcatchment 34S: XDA3

Summary for Subcatchment 35S: FDA-L3.2

Runoff $=\quad 0.18$ cfs @ 12.15 hrs, Volume $=\quad 0.015 \mathrm{af}$, Depth $=1.88^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10 year Rainfall $=5.00$ "

	ea (sf)	CN D	Description		
*	1,015	98 D	Driveway, HSG B $>75 \%$ Grass cover, Good, HSG B Woods, Good, HSG B		
	1,875	$61>$			
	1,396	55 W			
	4,286	68 W	Weighted Average 76.32\% Pervious Area 23.68\% Impervious Area		
	3,271				
	1,015				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
10.0					Direct Entry,

Subcatchment 35S: FDA-L3. 2

Summary for Reach 30R: Vegetated Swale

Inflow Area	$=$	1.956 ac,	1.54% Impervious, Inflow Depth $=1.10 "$	for 10 year event
Inflow	$=$	$1.61 \mathrm{cfs} @$	12.23 hrs, Volume $=$	0.180 af
Outflow	$=$	$1.45 \mathrm{cfs} @$	12.42 hrs, Volume $=$	0.180 af, Atten $=10 \%$, Lag $=11.4 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Max. Velocity= 0.79 fps , Min. Travel Time $=6.0 \mathrm{~min}$
Avg. Velocity $=0.27 \mathrm{fps}$, Avg. Travel Time $=17.7 \mathrm{~min}$
Peak Storage= 522 cf @ 12.32 hrs
Average Depth at Peak Storage $=0.58$
Bank-Full Depth= 1.25' Flow Area= 5.6 sf, Capacity= 6.76 cfs
$2.00^{\prime} \times 1.25$ deep channel, $n=0.240$ Sheet flow over Dense Grass
Side Slope Z-value= 2.0 '/' Top Width= 7.00'
Length=285.0' Slope= 0.0561 '/'
Inlet Invert= 174.00', Outlet Invert= 158.00'

Reach 30R: Vegetated Swale

Summary for Pond 15P: SWMF

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Starting Elev=126.00' Surf.Area=2,806 sf Storage= 3,133 cf
Peak Elev=127.47' @ 12.66 hrs Surf.Area=5,058 sf Storage= 8,677 cf (5,544 cf above start)
Plug-Flow detention time $=347.6 \mathrm{~min}$ calculated for 0.409 af (85% of inflow)
Center-of-Mass det. time $=220.6 \mathrm{~min}(1,100.1-879.5)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	121.50	$21,119 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
121.50	0	0	0
122.00	96	24	24
123.00	318	207	231
124.00	513	416	647
125.00	827	670	1,317
126.00	2,806	1,817	3,133
127.00	4,018	3,412	6,545
128.00	6,230	5,124	11,669
129.00	6,090	6,160	17,829
129.50	7,070	3,290	21,119

Device	Routing	Invert	Outlet Devices
\#1	Primary	125.00'	12.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#2	Device 1	126.00'	1.3" Vert. Orifice/Grate $\mathrm{C}=0.600$
\#3	Device 1	126.75'	4.0" Vert. Orifice/Grate X $3.00 \quad \mathrm{C}=0.600$
\#4	Device 1	127.00^{\prime}	8.0" Vert. Orifice/Grate X $2.00 \quad \mathrm{C}=0.600$
\#5	Primary	129.20'	6.0' long (Profile 7) Broad-Crested Rectangular Weir Head (feet) 0.490 .981 .48 Coef. (English) 2.993 .413 .62

Primary OutFlow Max=2.22 cfs @ 12.66 hrs HW=127.47' (Free Discharge)
-1 $=$ Orifice/Grate (Passes 2.22 cfs of 5.31 cfs potential flow)
—2=Orifice/Grate (Orifice Controls 0.05 cfs @ 5.73 fps)
3=Orifice/Grate (Orifice Controls 0.94 cfs @ 3.58 fps)
4=Orifice/Grate (Orifice Controls 1.23 cfs @ 2.33 fps)
5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 15P: SWMF

Summary for Pond 29P: SWMF-L1

Inflow	$=$	$0.86 \mathrm{cfs} @$	12.07 hrs, Volume $=$
Outflow	$=$	0.073 af	
Discarded $=$	$0.21 \mathrm{cts} @ 11.72 \mathrm{hrs}$, Volume=	0.073 af , Atten $=76 \%$, Lag $=0.0 \mathrm{~min}$	
	$0.21 \mathrm{cfs} @$	11.72 hrs, Volume $=$	0.073 af

Routing by Stor-Ind method, Time Span= $0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Peak Elev=153.58' @ 12.48 hrs Surf.Area= 1,485 sf Storage= 686 cf

Plug-Flow detention time $=16.7 \mathrm{~min}$ calculated for 0.073 af (100% of inflow)
Center-of-Mass det. time $=16.7 \mathrm{~min}(784.4-767.7)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	152.75'	1,069 cf	27.50'W x 54.00'L x 2.54'H Field A
			3,774 cf Overall - 1,102 cf Embedded $=2,672$ cf $\times 40.0 \%$ Voids
\#2A	153.25'	1,102 cf	Cultec R-150XLHD x 40 Inside \#1
			Effective Size $=29.8$ " $\mathrm{W} \times 18.0$ " $\mathrm{H}=>2.65 \mathrm{sf} \times 10.25^{\prime} \mathrm{L}=27.2 \mathrm{cf}$
			Overall Size $=33.0$ 'W x 18.5"H x 11.00'L with 0.75 ' Overlap
			Row Length Adjustment $=+0.75{ }^{\prime} \times 2.65 \mathrm{sf} \times 8$ rows
		2,171 cf	Total Available Storage
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Outl	et Devices
\#1	Discarded	152.75' 6.00	in/hr Exfiltration over Horizontal area

Discarded OutFlow Max=0.21 cfs @ 11.72 hrs HW=152.78' (Free Discharge)
L1=Exfiltration (Exfiltration Controls 0.21 cfs)

Pond 29P：SWMF－L1－Chamber Wizard Field A

Chamber Model＝Cultec R－150XLHD（Cultec Recharger® 150XLHD）

Effective Size $=29.8^{\prime \prime} \mathrm{W} \times 18.0^{\prime \prime} \mathrm{H}=>2.65 \mathrm{sf} \times 10.25^{\prime} \mathrm{L}=27.2 \mathrm{cf}$
Overall Size $=33.0^{\prime \prime} \mathrm{W} \times 18.5^{\prime \prime} \mathrm{H} \times 11.00^{\prime} \mathrm{L}$ with 0.75^{\prime} Overlap
Row Length Adjustment $=+0.75^{\prime} \times 2.65 \mathrm{sf} \times 8$ rows
33．0＂Wide $+6.0^{\prime \prime}$ Spacing $=39.0$＂C－C Row Spacing
5 Chambers／Row x 10．25＇Long $+0.75^{\prime}$ Row Adjustment $=52.00^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=54.00^{\prime}$ Base Length
8 Rows $\times 33.0$＂Wide $+6.0^{\prime \prime}$ Spacing $\times 7+12.0^{\prime \prime}$ Side Stone $\times 2=27.50^{\prime}$ Base Width
$6.0^{\prime \prime}$ Base $+18.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=2.54^{\prime}$ Field Height
40 Chambers x 27.2 cf $+0.75^{\prime}$ Row Adjustment $\times 2.65$ sf $\times 8$ Rows $=1,102.0$ cf Chamber Storage
3，774．4 cf Field $-1,102.0$ cf Chambers $=2,672.4$ cf Stone $\times 40.0 \%$ Voids $=1,069.0$ cf Stone Storage
Chamber Storage + Stone Storage $=2,170.9 \mathrm{cf}=0.050$ af
Overall Storage Efficiency $=57.5 \%$
40 Chambers
139.8 cy Field
99.0 cy Stone

Pond 29P: SWMF-L1

Summary for Pond 30P: Div L1 (DS F.2)

[57] Hint: Peaked at 154.84' (Flood elevation advised)

Inflow Area	0.	91.00\% Impervious, In	epth $=4$.	.42" for 10 year event
Inflow	0.99 cfs @	12.07 hrs , Volume=	0.074 af	
Outflow	0.99 cfs @	12.07 hrs , Volume=	0.074 af,	, Atten $=0 \%, L a g=0.0 \mathrm{mi}$
Primary	0.12 cfs @	12.07 hrs , Volume=	0.001 af	
Secondary =	0.86 cfs @	12.07 hrs , Volume=	0.073 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 154.84' @ 12.07 hrs

Pond 30P: Div L1 (DS F.2)
Hydrograph

Summary for Pond 31P: SWMF-1.1 Bioret

Inflow Area $=$	0.672 ac,	0.00% Impervious, Inflow Depth $=1.23 "$ for 10 year event		
Inflow $=$	$0.64 \mathrm{cfs} @$	12.23 hrs, Volume $=$	0.069 af	
Outflow $=$	$0.37 \mathrm{cfs} @$	12.54 hrs, Volume $=$	0.069 af, Atten $=42 \%$, Lag $=18.7 \mathrm{~min}$	
Discarded	$=$	$0.03 \mathrm{cfs} @$	12.54 hrs, Volume $=$	0.042 af
Primary $=$	$0.34 \mathrm{cfs} @$	12.54 hrs, Volume $=$	0.027 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=157.10' @ 12.54 hrs Surf.Area= 1,421 sf Storage= 768 cf
Plug-Flow detention time $=164.2$ min calculated for 0.069 af (100% of inflow)
Center-of-Mass det. time= $164.2 \mathrm{~min}(1,051.1-886.9)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	156.50	$1,373 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
156.50	1,133	0	0
157.00	1,370	626	626
157.50	1,620	748	1,373

Device	Routing	Invert	Outlet Devices
\#1	Primary	151.67'	12.0' Round Culvert L= 18.4' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 151.67' / 151.40' S=0.0147 '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area=0.79 sf
\#2	Device 1	157.00'	12.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#3	Discarded	156.50'	1.000 in/hr Exfiltration over Horizontal area

Discarded OutFlow Max=0.03 cfs @ 12.54 hrs HW=157.10' (Free Discharge)
$\leftarrow^{-} \mathbf{3}=$ Exfiltration (Exfiltration Controls 0.03 cfs)
Primary OutFlow Max=0.34 cfs @ 12.54 hrs HW=157.10' (Free Discharge)
1=Culvert (Passes 0.34 cfs of 8.40 cfs potential flow)
L-2=Orifice/Grate (Weir Controls 0.34 cfs @ 1.05 fps)

Pond 31P: SWMF-1.1 Bioret

Summary for Pond 32P: Div 2.2 (DS D.2)

[57] Hint: Peaked at 153.06' (Flood elevation advised)

Inflow Area =	0.655 ac, 43.66% Impervious, Inflow Depth = 2.36" for 10 year event			
Inflow	1.43 cfs @	12.19 hrs , Volume=	0.129 af	
Outflow	1.43 cfs @	12.19 hrs , Volume=	0.129 af ,	Atten $=0 \%$, Lag= 0.0 m
Primary	0.44 cfs @	12.19 hrs , Volume=	0.010 af	,
Secondary =	0.99 cfs @	12.19 hrs , Volume=	0.119 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 153.06' @ 12.19 hrs

Device	Routing	Invert	Outlet Devices	
\#1	Primary	152.75'	15.0" Round Culvert to Level Spreader	
			$\mathrm{L}=30.0{ }^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
			Inlet / Outlet Invert= 152.75' / $151.50{ }^{\prime} \mathrm{S}=0.0417^{\prime} / / \mathrm{Cc}=0.900$	
			$\mathrm{n}=0.012$, Flow Area $=1.23$ sf	
\#2	Secondary	152.50'	10.0" Round Culvert to SWMF-2.2	
			$\mathrm{L}=15.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$	
			Inlet / Outlet Invert= 152.50' / 152.00' S=0.0333 //' Cc=0.900	
			$\mathrm{n}=0.012$, Flow Area $=0.55 \mathrm{sf}$	
\#3	Device 1	152.90'	3.0' long x 1.50' rise Sharp-Crested Rectangular Weir 2 End Contraction(s)	
Primary OutFlow Max=0.44 cfs @ 12.19 hrs HW=153.06' (Free Discharge) $L_{1=C u l v e r t ~ t o ~ L e v e l ~ S p r e a d e r ~(I n l e t ~ C o n t r o l s ~}^{0.44}$ cfs @ 1.89 fps)				

Pond 32P: Div 2.2 (DS D.2)

Summary for Pond 33P: Div L2.1

[57] Hint: Peaked at 150.52' (Flood elevation advised)

low	$0.132 \mathrm{ac}, 55.54 \%$ Impervious, Inflow Depth $=3.08$ " for 10 year event			
Inflow	0.49 cfs @	12.07 hrs , Volume=	0.034 af	
Outflow	0.49 cfs @	12.07 hrs , Volume=	0.034 af,	Atten $=0 \%, L a g=0.0 \mathrm{~m}$
Primary	0.00 cfs @	0.00 hrs , Volume=	0.000 af	,
Secondary =	0.49 cfs @	12.07 hrs , Volume=	0.034 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 150.52' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
\#1	Primary	150.00'	8.0" Round Culvert to Node EP E. 1 $\mathrm{L}=96.0^{\prime} \quad$ CPP, square edge headwall, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 150.00' / 146.00' S=0.0417 '/' Cc= 0.900 $\mathrm{n}=0.012$, Flow Area $=0.35 \mathrm{sf}$
\#2	Secondary	150.00'	6.0" Round Culvert to PTF E. 1 \& SWMF L2.1 $\mathrm{L}=12.0^{\prime} \quad$ CPP, square edge headwall, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 150.00' / 149.70' S=0.0250 '/' Cc= 0.900 $\mathrm{n}=0.012$, Flow Area $=0.20 \mathrm{sf}$
\#3	Device 1	150.54'	3.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=150.00' (Free Discharge) $L_{1=C u l v e r t ~ t o ~ N o d e ~ E P ~ E . ~}^{1}$ (Controls 0.00 cfs) $\mathcal{L}_{3}=$ Sharp-Crested Rectangular Weir (Controls 0.00 cfs)			
Secondary OutFlow Max=0.49 cfs @ 12.07 hrs HW=150.52' (Free Discharge) $\leftarrow_{2=C u l v e r t ~ t o ~ P T F ~ E . ~}^{1} \&$ SWMF L2.1 (Inlet Controls 0.49 cfs @ 2.50 fps)			

Pond 33P: Div L2.1

Hydrograph

Summary for Pond 34P: SWMF-L2. 1

Inflow	$=$	$0.49 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=$	0.034 af
Outflow	$=$	$0.06 \mathrm{cts} @ 11.66 \mathrm{hrs}$, Volume=	0.034 af, Atten $=87 \%$, Lag $=0.0 \mathrm{~min}$
Discarded	$=$	$0.06 \mathrm{cfs} @ 11.66 \mathrm{hrs}$, Volume $=$	0.034 af

Routing by Stor-Ind method, Time Span $=0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev= 149.09' @ 12.65 hrs Surf.Area= 449 sf Storage= 476 cf
Plug-Flow detention time $=54.4 \mathrm{~min}$ calculated for 0.034 af (100% of inflow)
Center-of-Mass det. time $=54.4 \min (869.8-815.4)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	147.50'	405 cf	25.67'W x 17.50'L x 3.54'H Field A
			1,591 cf Overall - 577 cf Embedded $=1,013$ cf $\times 40.0 \%$ Voids
\#2A	148.00'	577 cf	Cultec R-330XLHD $\times 10$ Inside \#1
			Effective Size $=47.8$ "W $\times 30.0{ }^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
			Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5{ }^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50' Overlap
			Row Length Adjustment $=+1.50$ ' 7.45 sf $\times 5$ rows
		983 cf	Total Available Storage
Stora	ge Group A	ated with Chamb	ber Wizard
Device	Routing	Invert Outle	et Devices
\#1	Discarded	147.50' 6.000	$0 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Discarded OutFlow Max=0.06 cfs @ 11.66 hrs HW=147.54' (Free Discharge)
L-Exfiltration (Exfiltration Controls 0.06 cfs) $^{\text {1 }}$

Pond 34P: SWMF-L2.1 - Chamber Wizard Field A

Chamber Model = Cultec R-330XLHD (Cultec Recharger ${ }^{\circledR}$ 330XLHD)

Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0$ "W x 30.5"H x 8.50'L with 1.50' Overlap
Row Length Adjustment $=+1.50 \times 7.45$ sf $\times 5$ rows
52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

2 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 15.50' Row Length +12.0" End Stone $\times 2=17.50$ ' Base Length
5 Rows x 52.0" Wide $+6.0^{\prime \prime}$ Spacing x $4+12.0^{\prime \prime}$ Side Stone $\times 2=25.67$ ' Base Width
6.0" Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.54$ ' Field Height

10 Chambers $\times 52.2$ cf $+1.50^{\prime}$ Row Adjustment $\times 7.45$ sf $\times 5$ Rows $=577.5$ cf Chamber Storage
$1,590.8$ cf Field -577.5 cf Chambers $=1,013.3$ cf Stone $\times 40.0 \%$ Voids $=405.3$ cf Stone Storage
Chamber Storage + Stone Storage $=982.8$ cf $=0.023$ af
Overall Storage Efficiency $=61.8 \%$
10 Chambers
58.9 cy Field
37.5 cy Stone

Pond 34P: SWMF-L2.1

Summary for Pond 35P: Div 1.2

[57] Hint: Peaked at 155.06' (Flood elevation advised)

Inflow Area	0.	5.47\% Impervious, In	epth $=3$	nt
Inflow	1.49 cfs @	12.14 hrs , Volume=	0.122 af	
Outflow	1.49 cfs @	12.14 hrs , Volume=	0.122 af,	Atten= 0\%, Lag= 0.0 mi
Primary	0.51 cfs @	12.14 hrs , Volume=	0.006 af	
Secondary =	0.97 cfs @	12.14 hrs , Volume=	0.116 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 155.06' @ 12.14 hrs

Device	Routing	Invert	Outlet Devices	
\#1 Primary $153.92{ }^{\text {' }}$ 12.0" Round Culvert to MH A. 6				
$\mathrm{L}=18.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$				
nnet $\mathrm{n}=0.012$, Flow Area $=0.79 \mathrm{sf} \quad \mathrm{S}=0.1622^{\prime \prime} \quad \mathrm{Cc}=0.900$				
\#2	Secondary	153.75'	6.0" Round Culvert to SWMF-1.2	
			$\mathrm{L}=6.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
			Inlet / Outlet Invert= $153.75 ' / 153.50 ' \quad \mathrm{~S}=0.0417 \mathrm{l} / \mathrm{Cc}=0.900$$\mathrm{n}=0.012$, Flow Area= 0.20 sf	
\#3	Device 1	154.92'	3.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)	
Primary OutFlow Max=0.51 cfs @ 12.14 hrs HW=155.06' (Free Discharge)				
$L_{1}=$ Culvert to MH A. 6 (Passes 0.51 cfs of 3.03 cfs potential flow)				
$L_{3=S h a r p-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(W e i r ~ C o n t r o l s ~}^{0.51}$ cfs @ 1.22 fps)				
Secondary OutFlow Max=0.97 cfs @ 12.14 hrs HW=155.06' (Free Discharge) L2=Culvert to SWMF-1.2 (Inlet Controls 0.97 cfs @ 4.96 fps)				

Pond 35P: Div 1.2
Hydrograph

Summary for Pond 36P: Rain Garden \#1 Lot 3

Inflow Area $=$	$0.261 \mathrm{ac}, 19.99 \%$ Impervious, Inflow Depth $=1.73 "$ for 10 year event			
Inflow $=$	$0.44 \mathrm{cfs} @$	12.15 hrs, Volume $=$	0.038 af	
Outflow $=$	$0.10 \mathrm{cfs} @$	12.67 hrs, Volume $=$	0.038 af, Atten $=78 \%, \mathrm{Lag}=31.6 \mathrm{~min}$	
Discarded	$=$	$0.03 \mathrm{cfs} @$	12.67 hrs, Volume $=$	0.032 af
Primary $=$	$0.07 \mathrm{cfs} @ 12.67 \mathrm{hrs}$, Volume $=$	0.005 af		

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2
Peak Elev=145.03' @ 12.67 hrs Surf.Area= 1,273 sf Storage= 611 cf
Plug-Flow detention time $=196.6$ min calculated for 0.038 af (100% of inflow)
Center-of-Mass det. time $=196.6 \mathrm{~min}(1,058.5-861.9)$

Discarded OutFlow Max=0.03 cfs @ 12.67 hrs HW=145.03' (Free Discharge)
②=Exfiltration (Exfiltration Controls 0.03 cfs)
Primary OutFlow Max=0.07 cfs @ 12.67 hrs HW=145.03' (Free Discharge)
—1=Orifice/Grate (Weir Controls 0.07 cfs @ 0.61 fps)

Pond 36P: Rain Garden \#1 Lot 3

Summary for Pond 37P: SWMF-1.2

[81] Warning: Exceeded Pond 35P by 0.73' @ 13.11 hrs

Inflow	$=$	$0.97 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume $=$	0.116 af
Outflow	$=$	$0.18 \mathrm{cfs} @ 11.67 \mathrm{hrs}$, Volume $=$	0.116 af, Atten $=81 \%, \mathrm{Lag}=0.0 \mathrm{~min}$
Discarded $=$	$0.18 \mathrm{cfs} @ 11.67 \mathrm{hrs}$, Volume $=$	0.116 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=154.73' @ 12.93 hrs Surf.Area=1,320 sf Storage= 1,599 cf
Plug-Flow detention time $=64.3$ min calculated for 0.115 af (100% of inflow)
Center-of-Mass det. time= $64.3 \mathrm{~min}(883.0-818.7)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	153.00'	1,184 cf	23.50'W x 56.17'L x 3.67'H Field A
			4,840 cf Overall - 1,880 cf Embedded $=2,960$ cf $\times 40.0 \%$ Voids
\#2A	153.50'	1,880 cf	Cultec R-V8HD $\times 32$ Inside \#1
			Effective Size=55.2"W $\times 32.0$ "H => $8.68 \mathrm{sf} \times 7.50$ ' $\mathrm{L}=65.1 \mathrm{cf}$
			Overall Size $=60.0$ 'W $\times 32.0$ "H x 8.00'L with 0.50 ' Overlap
			Row Length Adjustment $=-5.83$ x 8.68 sf $\times 4$ rows
		3,064 cf	Total Available Storage
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Outl	D Devices
\#1	Discarded	153.00' 6.00	in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.18 cfs @ 11.67 hrs HW=153.04' (Free Discharge)
①=Exfiltration (Exfiltration Controls 0.18 cfs)

Pond 37P: SWMF-1.2 - Chamber Wizard Field A

Chamber Model $=$ Cultec R-V8HD (Cultec Recharger ${ }^{\circledR}$ V8HD)

Effective Size=55.2"W x 32.0"H => $8.68 \mathrm{sf} \times 7.50^{\prime} \mathrm{L}=65.1 \mathrm{cf}$
Overall Size $=60.0^{\prime \prime} \mathrm{W} \times 32.0^{\prime \prime} \mathrm{H} \times 8.00^{\prime} \mathrm{L}$ with 0.50^{\prime} Overlap
Row Length Adjustment $=-5.83$ x 8.68 sf 4 rows
60.0" Wide +6.0 " Spacing $=66.0$ " C-C Row Spacing

8 Chambers/Row x 7.50' Long -5.83' Row Adjustment $=54.17^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=56.17^{\prime}$ Base Length
4 Rows $\times 60.0^{\prime \prime}$ Wide $+6.0^{\prime \prime}$ Spacing $\times 3+12.0^{\prime \prime}$ Side Stone $\times 2=23.50^{\prime}$ Base Width
6.0" Base $+32.0^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.67^{\prime}$ Field Height

32 Chambers x 65.1 cf -5.83 Row Adjustment $\times 8.68$ sf $\times 4$ Rows $=1,879.9$ cf Chamber Storage
$4,840.0$ cf Field $-1,879.9$ cf Chambers $=2,960.1$ cf Stone $\times 40.0 \%$ Voids $=1,184.0$ cf Stone Storage
Chamber Storage + Stone Storage $=3,063.9 \mathrm{cf}=0.070$ af
Overall Storage Efficiency $=63.3 \%$
32 Chambers
179.3 cy Field
109.6 cy Stone

Pond 37P: SWMF-1.2
Hydrograph

Summary for Pond 38P: SWMF-2.2

[79] Warning: Submerged Pond 32P Secondary device \# 2 OUTLET by 0.01^{\prime}

Inflow	$=$	$0.99 \mathrm{cfs} @$	12.19 hrs, Volume $=$
Outflow	$=$	$0.16 \mathrm{cfs} @$	11.80 hrs, Volume $=$
Discarded	$=$	$0.16 \mathrm{cfs} @$	11.80 hrs, Volume $=$
Primary	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=152.01' @ 13.43 hrs Surf.Area= 1,160 sf Storage= $1,789 \mathrm{cf}$
Plug-Flow detention time= 98.7 min calculated for 0.119 af (100% of inflow)
Center-of-Mass det. time $=98.7 \mathrm{~min}(952.2-853.5)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	149.50'	450 cf	16.00'W x 31.50'L x 3.54'H Field A
			1,785 cf Overall - 659 cf Embedded $=1,126$ cf $\times 40.0 \%$ Voids
\#2A	150.00'	659 cf	Cultec R-330XLHD x 12 Inside \#1
			Effective Size $=47.8$ "W $\times 30.0{ }^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
			Overall Size=52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment= +1.50' $\times 7.45$ sf $\times 3$ rows
\#3B	150.00'	578 cf	20.83'W x 31.50'L x 3.54'H Field B
			2,324 cf Overall - 879 cf Embedded $=1,445$ cf $\times 40.0 \%$ Voids
\#4B	150.50'	879 cf	Cultec R-330XLHD x 16 Inside \#3
			Effective Size $=47.8$ "W $\times 30.0{ }^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
			Overall Size $=52.0$ "W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment $=+1.50$ x $7.45 \mathrm{sf} \times 4$ rows
		2,567 cf	Total Available Storage

Storage Group A created with Chamber Wizard
Storage Group B created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	149.50'	$6.000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Horizontal area
\#2	Primary	153.00'	8.0" Round Culvert L=15.0' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert $=153.00$ ' $151.50^{\prime} \quad \mathrm{S}=0.1000 \mathrm{l} / \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$. Flow Area $=0.35 \mathrm{sf}$

Discarded OutFlow Max=0.16 cfs @ 11.80 hrs HW=150.00' (Free Discharge)
$亡_{1=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~}^{0.16 ~ c f s) ~}$
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=149.50' (Free Discharge)
$\mathcal{L}_{2}=$ Culvert (Controls 0.00 cfs)

Pond 38P: SWMF-2.2 - Chamber Wizard Field A

Chamber Model = Cultec R-330XLHD (Cultec Recharger® ${ }^{\circledR}$ 330XLHD)

Effective Size=47.8"W x $30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5$ "H $^{\prime} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50$ x 7.45 sf $\times 3$ rows
52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

4 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 29.50' Row Length +12.0" End Stone $\times 2=31.50$ ' Base Length
3 Rows x 52.0" Wide $+6.0^{\prime \prime}$ Spacing x $2+12.0^{\prime \prime}$ Side Stone $\times 2$ = 16.00' Base Width
6.0" Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.54$ ' Field Height

12 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45 \mathrm{sf} \times 3$ Rows $=659.4$ cf Chamber Storage
$1,785.0$ cf Field -659.4 cf Chambers $=1,125.6$ cf Stone $\times 40.0 \%$ Voids $=450.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,109.6$ cf $=0.025$ af
Overall Storage Efficiency $=62.2 \%$
12 Chambers
66.1 cy Field
41.7 cy Stone

Pond 38P: SWMF-2.2 - Chamber Wizard Field B

Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger ${ }^{\circledR 3}$ 330XLHD)

Effective Size=47.8"W x $30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0$ "W x 30.5"H x 8.50'L with 1.50' Overlap
Row Length Adjustment $=+1.50$ x 7.45 sf $\times 4$ rows
52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

4 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 29.50' Row Length +12.0" End Stone $\times 2=31.50$ ' Base Length
4 Rows x 52.0" Wide $+6.0^{\prime \prime}$ Spacing x $3+12.0^{\prime \prime}$ Side Stone x $2=20.83^{\prime}$ Base Width
6.0" Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.54$ ' Field Height

16 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45 \mathrm{sf} \times 4$ Rows $=879.2$ cf Chamber Storage

$2,324.2$ cf Field -879.2 cf Chambers $=1,445.0$ cf Stone $\times 40.0 \%$ Voids $=578.0$ cf Stone Storage

Chamber Storage + Stone Storage $=1,457.2$ cf $=0.033$ af
Overall Storage Efficiency $=62.7 \%$
16 Chambers
86.1 cy Field
53.5 cy Stone

Pond 38P: SWMF-2.2

Summary for Pond 39P: SWMF-L2.2

[79] Warning: Submerged Pond 40P Secondary device \# 2 OUTLET by 0.41^{\prime}

Inflow	$=$	$0.50 \mathrm{cfs} @$	12.07 hrs, Volume $=$
Outflow	$=$	0.039 af	
Discarded $=$	$0.07 \mathrm{cfs} @ 11.63 \mathrm{hrs}$, Volume=	0.039 af, Atten $=86 \%$, Lag $=0.0 \mathrm{~min}$	
	$0.07 \mathrm{cfs} @ 1.63 \mathrm{hrs}$, Volume $=$	0.039 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 136.41' @ 12.56 hrs Surf.Area= 504 sf Storage= 470 cf
Plug-Flow detention time $=38.1 \mathrm{~min}$ calculated for 0.039 af (100% of inflow)
Center-of-Mass det. time $=38.1 \mathrm{~min}(785.2-747.1)$

Storage Group A created with Chamber Wizard
Device Routing Invert Outlet Devices
\#1 Discarded 135.00 ' 6.000 in/hr Exfiltration over Horizontal area
Discarded OutFlow Max=0.07 cfs @ 11.63 hrs HW=135.04' (Free Discharge)
L-Exfiltration (Exfiltration Controls 0.07 cfs) 1

Pond 39P: SWMF-L2.2 - Chamber Wizard Field A

Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger ${ }^{\circledR 3}$ 330XLHD)

Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50$ x $7.45 \mathrm{sf} \times 3$ rows
52.0" Wide $+6.0^{\prime \prime}$ Spacing $=58.0$ " C-C Row Spacing

4 Chambers/Row x 7.00' Long $+1.50^{\prime}$ Row Adjustment $=29.50^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=31.50^{\prime}$ Base Length
3 Rows $\times 52.0^{\prime \prime}$ Wide $+6.0^{\prime \prime}$ Spacing $\times 2+12.0^{\prime \prime}$ Side Stone $\times 2=16.00^{\prime}$ Base Width
6.0" Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.54^{\prime}$ Field Height

12 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45$ sf $\times 3$ Rows $=659.4$ cf Chamber Storage
1,785.0 cf Field -659.4 cf Chambers $=1,125.6$ cf Stone $\times 40.0 \%$ Voids $=450.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,109.6 \mathrm{cf}=0.025$ af
Overall Storage Efficiency $=62.2 \%$
12 Chambers
66.1 cy Field
41.7 cy Stone

Pond 39P: SWMF-L2. 2

Summary for Pond 40P: Div L2.2

[57] Hint: Peaked at 138.03' (Flood elevation advised)

Inflow Area =	$0.098 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth $=4.76$ " for 10 year event			
Inflow	0.50 cfs @	12.07 hrs , Volume=	0.039 af	
Outflow	0.50 cfs @	12.07 hrs, Volume=	0.039 af,	Atten $=0 \%, L a g=0.0 \mathrm{~m}$
Primary	0.00 cfs @	0.00 hrs , Volume=	0.000 af	
Secondary =	0.50 cfs @	12.07 hrs , Volume=	0.039	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 138.03' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices		
\#1	Primary	$138.00{ }^{\prime}$	12.0" Round Culvert to MH C. 1		
			$\mathrm{L}=50.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 138.00' / 134.00' S=0.0800 '// Cc= 0.900		
			$\mathrm{n}=0.012$, Flow Area $=0.79$ sf 6.0" Round Culvert to SWMF L2.2		
\#2	Secondary		$\mathrm{L}=5.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 137.50' / 136.00' $\mathrm{S}=0.3000$ //' Cc= 0.900		
			$\mathrm{n}=0.012$, Flow Area $=0.20 \mathrm{sf}$		
\#3	Device 1	138.04'	3.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)		
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=137.50' (Free Discharge) $L_{1=C u l v e r t ~ t o ~ M H ~ C . ~}^{1}$ (Controls 0.00 cfs) $\mathcal{L}_{3}=$ Sharp-Crested Rectangular Weir (Controls 0.00 cfs)					
Secondary OutFlow Max=0.50 cfs @ 12.07 hrs HW=138.03' (Free Discharge) 					

Pond 40P: Div L2.2

Hydrograph
 \square Outflow \square Primary \square Secondary

Summary for Pond 41P: Rain Garden \#2 Lot 3

Inflow Area	0.098 ac, 23.68\% Impervious, Inflow Depth $=1.88$ " for 10 year event			
Inflow	0.18 cfs @	12.15 hrs, Volume=	0.015 af	
Outflow	0.02 cfs @	13.57 hrs , Volume=	0.015 af,	Atten $=89 \%, L a g=85.6$ m
Discarded	0.02 cfs @	13.57 hrs, Volume=	0.015 af	
Primary	0.00 cfs @	0.00 hrs , Volume $=$	0.000	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=152.37' @ 13.57 hrs Surf.Area= 839 sf Storage= 267 cf
Plug-Flow detention time $=140.8 \mathrm{~min}$ calculated for 0.015 af (100% of inflow)
Center-of-Mass det. time $=140.8 \mathrm{~min}(997.3-856.6)$

Discarded OutFlow Max=0.02 cfs @ 13.57 hrs HW=152.37' (Free Discharge)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=152.00' (Free Discharge)
L1=Orifice/Grate (Controls 0.00 cfs)

Pond 41P: Rain Garden \#2 Lot 3

Summary for Link 19L: Design Point 1

Inflow Area $=$	$6.141 \mathrm{ac}, 15.53 \%$ Impervious, Inflow Depth $=0.98 "$ for 10 year event	
Inflow	$=$	$2.26 \mathrm{cfs} @ 12.66 \mathrm{hrs}$, Volume $=$
Primary	$=$	$2.26 \mathrm{cfs} @ 12.66 \mathrm{hrs}$, Volume $=$

Primary outflow $=$ Inflow, Time Span= $0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 19L: Design Point 1

Hydrograph

Summary for Link 22L: Design Point 2

Primary outflow $=$ Inflow, Time Span $=0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 22L: Design Point 2

Hydrograph

Summary for Link 25L: Design Point 3

Inflow Area $=$	0.529 ac,	0.00% Impervious, Inflow Depth $=1.10 " \quad$ for 10 year event	
Inflow	$=$	$0.55 \mathrm{cfs} @$	12.13 hrs , Volume $=$
Primary	$=$	$0.55 \mathrm{cfs} @$	12.13 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span $=0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 25L: Design Point 3

Hydrograph

Summary for Link 28L: Design Point 4

Inflow Area $=$	0.242 ac,	0.00% Impervious, Inflow Depth $=1.65 " \quad$ for 10 year event	
Inflow	$=$	$0.41 \mathrm{cfs} @$	12.13 hrs , Volume $=$
Primary	$=$	$0.41 \mathrm{cfs} @$	12.13 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span= $0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 28L: Design Point 4

Hydrograph

HydroCAD® 10.00-15 s/n 03392 (c) 2015 HydroCAD Software Solutions LLC_Page 190

Time span=0.00-96.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}, 9601$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: FDA-2.2

Subcatchment 2S: FDA-1.2

Subcatchment 4S: XDA4

Subcatchment 5S: FDA-L2.1

Subcatchment 6S: FDA-L3.1

Subcatchment 20S: FDA-1.3

Subcatchment 21S: FDA-1.4

Subcatchment 23S: FDA-L1

Subcatchment 24S: FDA-2.1

Subcatchment 26S: FDA-3

Subcatchment 27S: FDA-4

Subcatchment 29S: FDA-L2.2

Subcatchment 30S: XDA1

Subcatchment 31S: FDA-1.1

Subcatchment 32S: FDA-2.3

Subcatchment 33S: XDA2

Subcatchment 34S: XDA3

Subcatchment 35S: FDA-L3. 2

Runoff Area=28,532 sf 43.66% Impervious Runoff Depth=3.18" Flow Length=483' Tc=13.2 $\mathrm{min} \quad \mathrm{CN}=74$ Runoff=1.94 cfs 0.174 af

Runoff Area=19,428 sf 65.47% Impervious Runoff Depth=4.20" $\mathrm{T}=10.0 \mathrm{~min} \mathrm{CN}=84$ Runoff=1.89 cfs 0.156 af

Runoff Area=10,541 sf 0.00% Impervious Runoff Depth=2.35"
Flow Length=100' Slope $=0.1900$ '/' Tc=8.3 min $\mathrm{CN}=65$ Runoff= 0.60 cfs 0.047 af
Runoff Area $=5,735$ sf 55.54% Impervious Runoff Depth=3.99" $\mathrm{Tc}=5.0 \mathrm{~min} \quad \mathrm{CN}=82$ Runoff $=0.63 \mathrm{cfs} 0.044 \mathrm{af}$

Runoff Area=11,384 sf 19.99% Impervious Runoff Depth=2.44" $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=66$ Runoff $=0.64 \mathrm{cfs} 0.053$ af

Runoff Area $=177,542$ sf 5.71% Impervious Runoff Depth $=1.92^{\prime \prime}$ Flow Length=974' Tc=17.9 min CN=60 Runoff=6.08 cfs 0.653 af

Runoff Area=6,857 sf 0.00% Impervious Runoff Depth=2.26" Flow Length=87' Tc=5.5 min CN=64 Runoff=0.41 cfs 0.030 af

Runoff Area $=8,712$ sf 91.00% Impervious Runoff Depth=5.41" $\mathrm{Tc}=5.0 \mathrm{~min} \mathrm{CN}=95$ Runoff=1.19 cfs 0.090 af

Runoff Area=38,768 sf 0.00% Impervious Runoff Depth=1.76" Flow Length=141' TC=6.3 min $\quad \mathrm{CN}=58$ Runoff=1.68 cfs 0.130 af

Runoff Area=23,055 sf 0.00% Impervious Runoff Depth=1.68" Flow Length=156' Tc=7.6 min $\mathrm{CN}=57$ Runoff=$=0.90 \mathrm{cfs} 0.074 \mathrm{af}$

Runoff Area $=10,545$ sf 0.00% Impervious Runoff Depth=2.35" Flow Length=100' Slope $=0.1900 \mathrm{l} / \mathrm{Tc}=8.3 \mathrm{~min} \mathrm{CN}=65$ Runoff=$=0.60 \mathrm{cfs} 0.047 \mathrm{af}$

Runoff Area=4,285 sf 100.00% Impervious Runoff Depth=5.76" $\mathrm{Tc}=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.60 \mathrm{cfs} 0.047$ af

Runoff Area=208,652 sf 1.02% Impervious Runoff Depth=1.60" Flow Length=1,046' $\mathrm{Tc}=25.6 \mathrm{~min} \mathrm{CN}=56$ Runoff=$=4.89 \mathrm{cfs} 0.637$ af

Runoff Area=29,272 sf 0.00% Impervious Runoff Depth $=1.84$ " $\mathrm{Tc}=15.0 \mathrm{~min} \mathrm{CN}=59$ Runoff=1.02 cfs 0.103 af

Runoff Area=85,225 sf 1.54% Impervious Runoff Depth=1.68" Flow Length=401' $\mathrm{Tc}=14.7 \mathrm{~min} \quad \mathrm{CN}=57$ Runoff $=2.65 \mathrm{cfs} 0.273$ af

Runoff Area=211,963 sf 1.03% Impervious Runoff Depth=1.52" Flow Length=544' Tc=15.5 min CN=55 Runoff=5.68 cfs 0.615 af

Runoff Area=23,043 sf 0.00% Impervious Runoff Depth=1.52" Flow Length=156' Tc=8.3 min $\mathrm{CN}=55$ Runoff=$=0.77 \mathrm{cfs} 0.067$ af

Runoff Area=4,286 sf 23.68% Impervious Runoff Depth=2.62" $\mathrm{T}=10.0 \mathrm{~min} \mathrm{CN}=68$ Runoff $=0.26 \mathrm{cfs} 0.021$ af

Reach 30R: Vegetated Swale
Pond 15P: SWMF
Pond 29P: SWMF-L1
Pond 30P: Div L1 (DS F.2)
Pond 31P: SWMF-1.1 Bioret

Pond 32P: Div 2.2 (DS D.2)

Pond 33P: Div L2.1

Pond 34P: SWMF-L2.1

Pond 35P: Div 1.2

Pond 36P: Rain Garden \#1 Lot 3

Pond 37P: SWMF-1.2

Pond 38P: SWMF-2.2

Pond 39P: SWMF-L2. 2

Pond 40P: Div L2.2

Pond 41P: Rain Garden \#2 Lot 3

Link 19L: Design Point 1

Link 22L: Design Point 2

Link 25L: Design Point 3

Link 28L: Design Point 4

Avg. Flow Depth=0.76' Max Vel=0.92 fps Inflow=2.65 cfs 0.273 af $\mathrm{n}=0.240 \mathrm{~L}=285.0^{\prime} \mathrm{S}=0.0561 \mathrm{I} / \mathrm{Capacity=} 6.76 \mathrm{cfs}$ Outflow=2.44 cfs 0.273 af

Peak Elev=127.94' Storage=11,291 cf Inflow=6.97 cfs 0.743 af Outflow $=3.95$ cfs 0.743 af

Peak Elev=153.77' Storage=907 cf Inflow=0.92 cfs 0.088 af Outflow $=0.21$ cfs 0.088 af

Peak Elev=154.88' Inflow=1.19 cfs 0.090 af Primary $=0.27$ cfs 0.002 af Secondary= 0.92 cfs 0.088 af Outflow $=1.19$ cfs 0.090 af

Peak Elev=157.18' Storage=874 cf Inflow=1.02 cfs 0.103 af Discarded $=0.03$ cfs 0.047 af Primary $=0.75$ cfs 0.056 af Outflow $=0.79$ cfs 0.103 af

Peak Elev=153.14' Inflow=1.94 cfs 0.174 af Primary $=0.71$ cfs 0.019 af Secondary=1.23 cfs 0.155 af Outflow=1.94 cfs 0.174 af

Peak Elev=150.58' Inflow=0.63 cfs 0.044 af Primary $=0.09$ cfs 0.000 af Secondary $=0.55$ cfs 0.043 af Outflow $=0.63$ cfs 0.044 af

Peak Elev=149.66' Storage=667 cf Inflow=0.55 cfs 0.043 af Outflow $=0.06$ cfs 0.043 af

Peak Elev=155.12' Inflow=1.89 cfs 0.156 af Primary $=0.89$ cfs 0.014 af Secondary= 1.00 cfs 0.142 af Outflow=1.89 cfs 0.156 af

Peak Elev=145.09' Storage=685 cf Inflow=0.64 cfs 0.053 af Discarded $=0.03$ cfs 0.036 af Primary $=0.28$ cfs 0.017 af Outflow $=0.32$ cfs 0.053 af

Peak Elev=155.17' Storage=2,037 cf Inflow=1.00 cfs 0.142 af Outflow $=0.18$ cfs 0.142 af

Peak Elev=153.13' Storage=2,460 cf Inflow=1.23 cfs 0.155 af Discarded $=0.16$ cfs 0.151 af Primary $=0.06$ cfs 0.004 af Outflow= 0.22 cfs 0.155 af

Peak Elev=136.76' Storage=607 cf Inflow=0.56 cfs 0.047 af Outflow $=0.07$ cfs 0.047 af

Peak Elev=138.10' Inflow=0.60 cfs 0.047 af Primary $=0.04$ cfs 0.000 af Secondary= 0.56 cfs 0.047 af Outflow $=0.60$ cfs 0.047 af

Peak Elev=152.51' Storage=395 cf Inflow=0.26 cfs 0.021 af Discarded $=0.02$ cfs 0.021 af Primary $=0.01$ cfs 0.001 af Outflow=0.03 cfs 0.021 af

Inflow=4.02 cfs 0.772 af Primary $=4.02$ cfs 0.772 af

Inflow=3.59 cfs 0.426 af Primary $=3.59$ cfs 0.426 af

Inflow=0.90 cfs 0.074 af Primary $=0.90$ cfs 0.074 af

Inflow=0.60 cfs 0.047 af Primary $=0.60$ cfs 0.047 af

Total Runoff Area $=20.841$ ac Runoff Volume $=3.263$ af Average Runoff Depth $=1.88^{\prime \prime}$
 93.43% Pervious = 19.472 ac 6.57% Impervious = 1.369 ac

Summary for Subcatchment 1S: FDA-2.2
Runoff $=1.94$ cfs @ 12.19 hrs, Volume $=0.174$ af, Depth= $3.18^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=6.00"

	Area (sf)	CN	Subdivision Road, HSG B Off-site impervious road, HSG B >75\% Grass cover, Good, HSG B Woods, Good, HSG B		
11,021					
1,437					
1,307		61			
	14,767	55			
28,532		74	Weighted Average		
16,074		56.34\% Pervious Area43.66\% Impervious Are			
12,458					
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
12.1	100	0.0750	0.14		Sheet Flow,
					Woods: Light underbrush $\mathrm{n}=0.400 \mathrm{P} 2=3.50 "$
0.6	68	0.1250	- 1.77		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.2	265	0.1000	- 6.42		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
0.3	3250	0.0750	13.46	10.57	Pipe Channel,
					12.0' Round $n=0.012$ Area $=0.8 \mathrm{sf}$ Perim $=3.1^{\prime} \mathrm{r}=0.25^{\prime}$
					n=0.012

Subcatchment 1S: FDA-2.2

Summary for Subcatchment 2S: FDA-1.2
Runoff $=1.89 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume= $\quad 0.156 \mathrm{af}$, Depth= $4.20^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 25 year Rainfall=6.00"

Area (sf)	CN	Description
12,720	98	Paved parking, HSG B
3,180	61	>55\% Grass cover, Good, HSG B
3,528	55	Woods, Good, HSG B

Subcatchment 2S: FDA-1.2

Summary for Subcatchment 4S: XDA4
Runoff $=\quad 0.60$ cfs @ 12.12 hrs, Volume $=\quad 0.047$ af, Depth $=2.35^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 25 year Rainfall=6.00"

Area (sf)	CN	Description	
4,225	55	Woods, Good, HSG B	
4,225	70	Woods, Good, HSG C	
2,091	77	Woods, Good, HSG D	

Subcatchment 4S: XDA4

Summary for Subcatchment 5S: FDA-L2.1

Runoff $=0.63 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume= 0.044 af, Depth= 3.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 25 year Rainfall=6.00"

Subcatchment 5S: FDA-L2.1

Summary for Subcatchment 6S: FDA-L3.1

Runoff $=0.64$ cfs @ 12.15 hrs , Volume $=0.053 \mathrm{af}$, Depth= $2.44{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=6.00"

	Area (sf)	CN	Lot 3 Roof, HSG B		
	982	98			
	907	98	Lot 3 Roof, HSG B Lot 3 Roof, HSG B		
	387	98			
	5,387	61	Walks, Entry Steps, HSG B >75\% Grass cover, Good, HSG B		
	3,721	55	Woods, Good, HSG B		
	11,384	66	Weighted Average		
	9,108		80.01\% Pervious Area		
	2,276		19.99\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.0					Direct Entry,

Subcatchment 6S: FDA-L3.1

Summary for Subcatchment 20S: FDA-1.3

Runoff $=6.08$ cfs @ 12.27 hrs , Volume $=0.653 \mathrm{af}$, Depth= $1.92{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=6.00"

	Area (sf)	CN	Description Impervious Surfaces, HSG B		
	9,958	98			
	1,720	85	Impervious Surfaces, HSG B Maintenance Path, HSG B		
	185	98 R	Retaining Wall, HSG B		
	60,200	$61>$	>75\% Grass cover, Good, HSG B		
	2,190	$74>$	$>75 \%$ Grass cover, Good, HSG C		
	523	$80>$	$>75 \%$ Grass cover, Good, HSG D		
	12,069	48 B	Brush, Good, HSG B		
	34,260	55	Woods (on-site), Good, HSG B		
	51,994	55	Woods (off-site), Good, HSG B		
	2,962	70	Woods, Good, HSG C		
	1,481	77 W	Woods, Good, HSG D		
	$\begin{array}{r} 177,542 \\ 167,399 \\ 10,143 \end{array}$	60	Weighted Average 94.29\% Pervious Area 5.71\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	$\begin{aligned} & \text { Length } \\ & \text { (feet) } \end{aligned}$	Slope (ft/ft)	Velocity $(\mathrm{ft} / \mathrm{sec})$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
8.7	100	0.1700	0.19		Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400 \quad \mathrm{P} 2=3.50^{\prime \prime}$
1.0	133	0.1880	- 2.17		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
3.1	183	0.0383	- 0.98		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
0.4	57	0.0219	- 2.22		Shallow Concentrated Flow, Grassed Waterway Kv=15.0 fps
0.1	91	0.1000	- 15.54	12.21	Pipe Channel, 12.0" Round Area $=0.8$ sf Perim=3.1' $\mathrm{r}=0.25^{\prime}$ $\mathrm{n}=0.012$
1.6	274	0.0299	- 2.78		Shallow Concentrated Flow, Unpaved Kv=16.1 fps
3.0	136	0.0022	- 0.76		Shallow Concentrated Flow, Unpaved $\mathrm{Kv}=16.1 \mathrm{fps}$

[^6]Subcatchment 20S: FDA-1.3

Summary for Subcatchment 21S: FDA-1.4
Runoff $=0.41$ cfs @ 12.09 hrs , Volume $=0.030$ af, Depth $=2.26$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=6.00"

	ea (sf)	CN D	Description			
	478	$61>$	>75\% Grass cover, Good, HSG B			
	124	$74>$	>75\% Grass cover, Good, HSG C			
	62	$80>$	$>75 \%$ Grass cover, Good, HSG D			
	3,040	55 W	Woods, Good, HSG B			
	2,102	70 W	Woods, Good, HSG C			
	1,051	77 W	Woods, Good, HSG D			
	$\begin{aligned} & \hline 6,857 \\ & 6,857 \end{aligned}$	$64 \quad 1$	Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity \qquad	Description	
5.2	40	0.1000	0.13		Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400$	$\mathrm{P} 2=3.50{ }^{\prime \prime}$
0.3	47	0.2300	2.40		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

Subcatchment 21S: FDA-1.4

Summary for Subcatchment 23S: FDA-L1

Runoff $=1.19$ cfs @ 12.07 hrs , Volume $=0.090$ af, Depth $=5.41^{1 "}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=6.00"

Subcatchment 23S: FDA-L1

Summary for Subcatchment 24S: FDA-2.1
Runoff $=1.68$ cfs @ 12.10 hrs , Volume $=0.130 \mathrm{af}$, Depth= $1.76{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 25 year Rainfall=6.00"

Subcatchment 24S: FDA-2.1

Summary for Subcatchment 26S: FDA-3

Runoff $=0.90$ cfs @ 12.12 hrs , Volume $=0.074$ af, Depth $=1.68{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=6.00"

Subcatchment 26S: FDA-3

Summary for Subcatchment 27S: FDA-4
Runoff $=0.60$ cfs @ 12.12 hrs , Volume $=0.047$ af, Depth= $2.35^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 25 year Rainfall=6.00"

Area (sf)	CN	Description	
4,220	55	Woods, Good, HSG B	
4,220	70	Woods, Good, HSG C	
2,105	77	Woods, Good, HSG D	

Subcatchment 27S: FDA-4

Summary for Subcatchment 29S: FDA-L2.2

Runoff $=0.60 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=0.047$ af, Depth $=5.76^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=6.00"

Area (sf)		CN Description			
$4,285$		98 Roofs, HSG B			
	$4,285$	100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.0					Direct Entry

Summary for Subcatchment 30S: XDA1

Runoff $=4.89$ cfs @ 12.40 hrs , Volume $=0.637 \mathrm{af}$, Depth= $1.60^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=6.00"

[^7]Subcatchment 30S: XDA1

Summary for Subcatchment 31S: FDA-1.1
Runoff $=1.02$ cfs @ 12.22 hrs, Volume $=0.103$ af, Depth= $1.84{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 25 year Rainfall $=6.00$ "

Subcatchment 31S: FDA-1.1

Summary for Subcatchment 32S: FDA-2.3
Runoff $=\quad 2.65$ cfs @ 12.22 hrs , Volume $=0.273 \mathrm{af}$, Depth= $1.68{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=6.00"

	Area (sf)	CN	Description		
*	715	98	Off-Site Road, HSG B		
	315	98	Unconnected pavement, HSG B		
	280	98	Unconnected pavement, HSG B		
	23,051	61 >	>75\% Grass cover, Good, HSG B		
	60,864	55	Woods, Good, HSG B		
	85,225	57	Weighted Average 98.46\% Pervious Area 1.54\% Impervious Area 45.42\% Unconnected		
	83,915				
	1,310				
	595				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
8.1	100	0.2050	0.21		Sheet Flow,
					Woods: Light underbrush $\mathrm{n}=0.400 \mathrm{P} 2=3.50$ "
1.4	148	0.1284	1.79		Shallow Concentrated Flow,
					Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
5.2	153	0.0163	0.49	1.29	Trap/Vee/Rect Channel Flow,
					Bot.W=2.00' D=0.75' Z=2.0 '/' Top.W=5.00'
14.7					$\mathrm{n}=0.240$ Sheet flow over Dense Grass

Subcatchment 32S: FDA-2.3

Summary for Subcatchment 33S: XDA2
Runoff $=5.68 \mathrm{cfs} @ 12.24 \mathrm{hrs}$, Volume $=0.615 \mathrm{af}$, Depth= $1.52{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 25 year Rainfall=6.00"

Area (sf)	CN	escription		
$\begin{array}{r} 209,785 \\ 2,178 \\ \hline \end{array}$	$\begin{array}{ll} \hline 55 & V \\ 98 & F \\ \hline \end{array}$	Woods, Good, HSG B Paved parking, HSG B		
$\begin{array}{r} 211,963 \\ 209,785 \\ 2,178 \end{array}$	$55 \quad \begin{array}{rr}\text { W } \\ & 9 \\ & 1\end{array}$	Weighted Average 98.97\% Pervious Area 1.03\% Impervious Area		
$\begin{array}{rr} \text { Tc } & \begin{array}{r} \text { Length } \\ (\mathrm{min}) \end{array} \\ \hline \end{array}$	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
10.6100	0.1050	0.16		Sheet Flow, Woods: Light underbrush $n=0.400 \quad \mathrm{P} 2=3.50$ "
0.8106	0.2075	2.28		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
4.1338	0.0740	1.36		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$

Subcatchment 33S: XDA2

Summary for Subcatchment 34S: XDA3
Runoff $=0.77$ cfs @ 12.13 hrs , Volume $=0.067$ af, Depth= $1.52{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 25 year Rainfall=6.00"

Area (sf) CN Description					
23,043		55 Woods, Good, HSG B			
23,043		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
7.3	86	0.1977	0.20		Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400 \mathrm{P} 2=3.50$ "
1.0	70	0.0571	1.19		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
8.3	156	Total			

Subcatchment 34S: XDA3

Summary for Subcatchment 35S: FDA-L3.2

Runoff $=\quad 0.26$ cfs @ 12.14 hrs, Volume $=\quad 0.021 \mathrm{af}$, Depth $=2.62{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Type III 24-hr 25 year Rainfall=6.00"

Subcatchment 35S: FDA-L3. 2

Summary for Reach 30R: Vegetated Swale

Inflow Area $=$	1.956 ac,	1.54% Impervious, Inflow Depth $=1.68 "$	for 25 year event
Inflow	$=$	$2.65 \mathrm{cfs} @$	12.22 hrs , Volume $=$
Outflow	$=$	$2.44 \mathrm{cfs} @$	12.38 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Max. Velocity $=0.92 \mathrm{fps}$, Min. Travel Time $=5.2 \mathrm{~min}$
Avg. Velocity $=0.30 \mathrm{fps}$, Avg. Travel Time $=16.0 \mathrm{~min}$
Peak Storage= 759 cf @ 12.29 hrs
Average Depth at Peak Storage $=0.76^{\prime}$
Bank-Full Depth= 1.25' Flow Area= 5.6 sf, Capacity= 6.76 cfs
$2.00^{\prime} \times 1.25$ ' deep channel, $n=0.240$ Sheet flow over Dense Grass
Side Slope Z-value= 2.0 '/' Top Width= 7.00 '
Length $=285.0^{\prime} \quad$ Slope $=0.0561$ '/'
Inlet Invert= 174.00', Outlet Invert= 158.00'

Reach 30R: Vegetated Swale

Summary for Pond 15P: SWMF

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Starting Elev=126.00' Surf.Area=2,806 sf Storage=3,133 cf
Peak Elev= 127.94' @ 12.60 hrs Surf.Area= 6,094 sf Storage= 11,291 cf (8,158 cf above start)
Plug-Flow detention time= 229.3 min calculated for 0.671 af (90% of inflow)
Center-of-Mass det. time $=153.0 \mathrm{~min}(1,017.3-864.3)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	121.50	$21,119 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
121.50	0	0	0
122.00	96	24	24
123.00	318	207	231
124.00	513	416	647
125.00	827	670	1,317
126.00	2,806	1,817	3,133
127.00	4,018	3,412	6,545
128.00	6,230	5,124	11,669
129.00	6,090	6,160	17,829
129.50	7,070	3,290	21,119

Device	Routing	Invert	Outlet Devices
\#1	Primary	125.00'	12.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#2	Device 1	126.00'	1.3" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#3	Device 1	126.75'	4.0" Vert. Orifice/Grate X $3.00 \quad \mathrm{C}=0.600$
\#4	Device 1	127.00'	8.0" Vert. Orifice/Grate X $2.00 \quad \mathrm{C}=0.600$
\#5	Primary	129.20'	6.0' long (Profile 7) Broad-Crested Rectangular Weir Head (feet) 0.490 .981 .48 Coef. (English) 2.993 .413 .62

Primary OutFlow Max=3.95 cfs @ 12.60 hrs HW=127.94' (Free Discharge)
-1 $=$ Orifice/Grate (Passes 3.95 cfs of 5.91 cfs potential flow)
—2=Orifice/Grate (Orifice Controls 0.06 cfs @ 6.61 fps)
-3=Orifice/Grate (Orifice Controls 1.27 cfs @ 4.87 fps)
4=Orifice/Grate (Orifice Controls 2.62 cfs @ 3.75 fps)
5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 15P: SWMF

Summary for Pond 29P: SWMF-L1

Inflow	$=$	$0.92 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=$	0.088 af
Outflow	$=$	$0.21 \mathrm{cts} @ 11.67 \mathrm{hrs}$, Volume=	0.088 af , Atten= 78%, Lag $=0.0 \mathrm{~min}$
Discarded	$=$	$0.21 \mathrm{cfs} @ 11.67 \mathrm{hrs}$, Volume $=$	0.088 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Peak Elev=153.77' @ 12.52 hrs Surf.Area= 1,485 sf Storage= 907 cf

Plug-Flow detention time $=23.0$ min calculated for 0.088 af (100% of inflow)
Center-of-Mass det. time $=23.0 \mathrm{~min}(786.6-763.6)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	152.75'	1,069 cf	27.50'W x 54.00'L x 2.54'H Field A
			3,774 cf Overall - 1,102 cf Embedded = 2,672 cf x 40.0\% Voids
\#2A	153.25'	1,102 cf	Cultec R-150XLHD $\times 40$ Inside \#1
			Effective Size=29.8"W $\times 18.0$ " $\mathrm{H}=>2.65 \mathrm{sf} \times 10.25^{\prime} \mathrm{L}=27.2 \mathrm{cf}$
			Overall Size $=33.0$ " $\mathrm{W} \times 18.5$ "H x 11.00'L with 0.75 ' Overlap
			Row Length Adjustment $=+0.75{ }^{\prime} \times 2.65 \mathrm{sf} \times 8$ rows
		2,171 cf	Total Available Storage
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Outl	t Devices
\#1	Discarded	152.75' 6.00	in/hr Exfiltration over Horizontal area

Discarded OutFlow Max=0.21 cfs @ 11.67 hrs HW=152.78' (Free Discharge)
1 ${1=\text { Exfiltration (Exfiltration Controls } 0.21 \mathrm{cfs})}$

Pond 29P: SWMF-L1 - Chamber Wizard Field A

Chamber Model $=$ Cultec R-150XLHD (Cultec Recharger® 150XLHD)

Effective Size $=29.8^{\prime \prime} \mathrm{W} \times 18.0^{\prime \prime} \mathrm{H}=>2.65 \mathrm{sf} \times 10.25^{\prime} \mathrm{L}=27.2 \mathrm{cf}$
Overall Size $=33.0^{\prime \prime} \mathrm{W} \times 18.5^{\prime \prime} \mathrm{H} \times 11.00^{\prime} \mathrm{L}$ with 0.75^{\prime} Overlap
Row Length Adjustment $=+0.75^{\prime} \times 2.65 \mathrm{sf} \times 8$ rows
33.0" Wide $+6.0^{\prime \prime}$ Spacing $=39.0$ " C-C Row Spacing

5 Chambers/Row x 10.25' Long $+0.75^{\prime}$ Row Adjustment $=52.00^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=54.00^{\prime}$ Base Length
8 Rows $\times 33.0^{\prime \prime}$ Wide $+6.0^{\prime \prime}$ Spacing $\times 7+12.0^{\prime \prime}$ Side Stone $\times 2=27.50^{\prime}$ Base Width
6.0" Base $+18.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=2.54^{\prime}$ Field Height

40 Chambers $\times 27.2$ cf $+0.75^{\prime}$ Row Adjustment $\times 2.65$ sf $\times 8$ Rows $=1,102.0$ cf Chamber Storage
3,774.4 cf Field $-1,102.0$ cf Chambers $=2,672.4$ cf Stone $\times 40.0 \%$ Voids $=1,069.0$ cf Stone Storage
Chamber Storage + Stone Storage $=2,170.9 \mathrm{cf}=0.050$ af
Overall Storage Efficiency = 57.5\%
40 Chambers
139.8 cy Field
99.0 cy Stone

Pond 29P: SWMF-L1

Summary for Pond 30P: Div L1 (DS F.2)

[57] Hint: Peaked at 154.88' (Flood elevation advised)

Inflow Area =	$0.200 \mathrm{ac}, 91.00 \%$ Impervious, Inflow Depth $=5.41 \mathrm{\prime} \mathrm{\prime}$ for 25 year event			
Inflow	1.19 cfs @	12.07 hrs , Volume=	0.090 af	
Outflow	1.19 cfs @	12.07 hrs , Volume=	0.090 af,	Atten $=0 \%$, Lag= 0.0 m
Primary	0.27 cfs @	12.07 hrs , Volume=	0.002 af	,
Secondary =	0.92 cfs @	12.07 hrs , Volume=	0.088 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 154.88' @ 12.07 hrs

Pond 30P: Div L1 (DS F.2)
Hydrograph

Summary for Pond 31P: SWMF-1.1 Bioret

Inflow Area $=$	0.672 ac,	0.00% Impervious, Inflow Depth $=1.84 "$ for 25 year event		
Inflow	$=$	$1.02 \mathrm{cfs} @$	12.22 hrs, Volume $=$	0.103 af
Outflow $=$	$0.79 \mathrm{cfs} @$	12.38 hrs, Volume $=$	0.103 af, Atten $=23 \%$, Lag $=9.5 \mathrm{~min}$	
Discarded	$=$	$0.03 \mathrm{cfs} @$	12.38 hrs, Volume $=$	0.047 af
Primary	$=$	$0.75 \mathrm{cfs} @$	12.38 hrs, Volume $=$	0.056 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=157.18' @ 12.38 hrs Surf.Area= 1,458 sf Storage= 874 cf
Plug-Flow detention time $=126.2$ min calculated for 0.103 af (100% of inflow)
Center-of-Mass det. time= $126.2 \mathrm{~min}(1,000.1-873.9)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	156.50	$1,373 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
156.50	1,133	0	0
157.00	1,370	626	626
157.50	1,620	748	1,373

Device	Routing	Invert	Outlet Devices
\#1	Primary	151.67'	12.0' Round Culvert L= 18.4' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 151.67' / 151.40' S=0.0147 '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area=0.79 sf
\#2	Device 1	157.00'	12.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#3	Discarded	156.50'	1.000 in/hr Exfiltration over Horizontal area

Discarded OutFlow Max=0.03 cfs @ 12.38 hrs HW=157.18' (Free Discharge)
$\leftarrow^{-} \mathbf{3}=$ Exfiltration (Exfiltration Controls 0.03 cfs)
Primary OutFlow Max=0.75 cfs @ 12.38 hrs HW=157.18' (Free Discharge)
-1=Culvert (Passes 0.75 cfs of 8.46 cfs potential flow)
L-2=Orifice/Grate (Weir Controls 0.75 cfs @ 1.37 fps)

Pond 31P: SWMF-1.1 Bioret

Summary for Pond 32P: Div 2.2 (DS D.2)

[57] Hint: Peaked at 153.14' (Flood elevation advised)

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 153.14' @ 12.19 hrs

Device	Routing	Invert	Outlet Devices	
\#1	Primary	152.75'	15.0" Round Culvert to Level Spreader	
			$\mathrm{L}=30.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
			Inlet / Outlet Invert= 152.75' / 151.50' S=0.0417 '/' Cc= 0.900	
			$\mathrm{n}=0.012$, Flow Area $=1.23 \mathrm{sf}$	
\#2	Secondary	152.50'	10.0" Round Culvert to SWMF-2.2	
			$\mathrm{L}=15.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$	
			Inlet / Outlet Invert= 152.50' / 152.00' S=0.0333 '/' Cc= 0.900	
			$\mathrm{n}=0.012$, Flow Area $=0.55 \mathrm{sf}$	
\#3	Device 1	152.90'	3.0' long $\times 1.50$ ' rise Sharp-Crested Rectangular Weir 2 End Contraction(s)	
$L_{1=C u l v e r t ~ t o ~ L e v e l ~ S p r e a d e r ~(I n l e t ~ C o n t r o l s ~}^{0.71} \mathrm{cfs}$ @ 2.13 fps) - 3=Sharp-Crested Rectangular Weir (Passes 0.71 cfs of 1.16 cfs potential flow)				

Pond 32P: Div 2.2 (DS D.2)
Hydrograph

Summary for Pond 33P: Div L2.1

[57] Hint: Peaked at 150.58' (Flood elevation advised)

Inflow Area =	$0.132 \mathrm{ac}, 55.54 \%$ Impervious, Inflow Depth $=3.99$ " for 25 year event			
Inflow	0.63 cfs @	12.07 hrs , Volume=	0.044 af	
Outflow	0.63 cfs @	12.07 hrs , Volume=	0.044 af,	Atten $=0 \%, L a g=0.0 \mathrm{~m}$
Primary	0.09 cfs @	12.07 hrs , Volume=	0.000 af	,
Secondary =	0.55 cfs @	12.07 hrs , Volume=	0.043 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 150.58' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
\#1	Primary	150.00'	8.0" Round Culvert to Node EP E. 1 $\mathrm{L}=96.0^{\prime} \quad$ CPP, square edge headwall, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 150.00' / 146.00' S=0.0417 '// Cc= 0.900 $\mathrm{n}=0.012$, Flow Area $=0.35 \mathrm{sf}$
\#2	Secondary	150.00'	6.0" Round Culvert to PTF E. 1 \& SWMF L2. 1 $\mathrm{L}=12.0^{\prime} \quad$ CPP, square edge headwall, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 150.00' / 149.70' S=0.0250 '/' Cc= 0.900 $\mathrm{n}=0.012$, Flow Area $=0.20 \mathrm{sf}$
\#3	Device 1	150.54'	3.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
Primary OutFlow Max=0.09 cfs @ 12.07 hrs HW=150.58' (Free Discharge) $L_{1}=$ Culvert to Node EP E. 1 (Passes 0.09 cfs of 0.84 cfs potential flow) $\mathcal{L}_{3}=$ Sharp-Crested Rectangular Weir (Weir Controls $0.09 \mathrm{cfs} @ 0.67 \mathrm{fps}$)			
Secondary OutFlow Max=0.55 cfs @ 12.07 hrs HW=150.58' (Free Discharge) L2=Culvert to PTF E. 1 \& SWMF L2.1 (Inlet Controls 0.55 cfs @ 2.78 fps)			

Pond 33P: Div L2.1
Hydrograph

Summary for Pond 34P: SWMF-L2.1

Inflow $=$	$0.55 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=$	0.043 af
Outflow	$=$	$0.06 \mathrm{cfs} @ 11.60 \mathrm{hrs}$, Volume $=$
Discarded $=$	$0.06 \mathrm{cfs} @ 11.60 \mathrm{hrs}$, Volume $=$	0.043 af, Atten $=89 \%$, Lag $=0.0 \mathrm{~min}$
	0.043 af	

Routing by Stor-Ind method, Time Span $=0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=149.66' @ 12.90 hrs Surf.Area= 449 sf Storage= 667 cf
Plug-Flow detention time= 82.2 min calculated for 0.043 af (100% of inflow)
Center-of-Mass det. time $=82.2 \mathrm{~min}(891.1-808.9)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	147.50'	405 cf	25.67'W x 17.50'L x 3.54'H Field A
			1,591 cf Overall - 577 cf Embedded $=1,013$ cf $\times 40.0 \%$ Voids
\#2A	148.00'	577 cf	Cultec R-330XLHD $\times 10$ Inside \#1
			Effective Size $=47.8$ "W $\times 30.0{ }^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
			Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5{ }^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50' Overlap
			Row Length Adjustment $=+1.50$ ' 7.45 sf $\times 5$ rows
		983 cf	Total Available Storage
Stora	ge Group A	ated with Chamb	ber Wizard
Device	Routing	Invert Outle	et Devices
\#1	Discarded	147.50' 6.000	$0 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Discarded OutFlow Max=0.06 cfs @ 11.60 hrs HW=147.54' (Free Discharge)
L-Exfiltration (Exfiltration Controls 0.06 cfs) $^{\text {1 }}$

Pond 34P: SWMF-L2.1 - Chamber Wizard Field A

Chamber Model = Cultec R-330XLHD (Cultec Recharger ${ }^{\circledR}$ 330XLHD)

Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50 \times 7.45$ sf $\times 5$ rows
52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

2 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 15.50' Row Length +12.0" End Stone $\times 2=17.50$ ' Base Length
5 Rows x 52.0" Wide $+6.0^{\prime \prime}$ Spacing x $4+12.0^{\prime \prime}$ Side Stone $\times 2=25.67$ ' Base Width
6.0" Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.54$ ' Field Height

10 Chambers $\times 52.2$ cf $+1.50^{\prime}$ Row Adjustment $\times 7.45$ sf $\times 5$ Rows $=577.5$ cf Chamber Storage
$1,590.8$ cf Field -577.5 cf Chambers $=1,013.3$ cf Stone $\times 40.0 \%$ Voids $=405.3$ cf Stone Storage
Chamber Storage + Stone Storage $=982.8$ cf $=0.023$ af
Overall Storage Efficiency $=61.8 \%$
10 Chambers
58.9 cy Field
37.5 cy Stone

Pond 34P: SWMF-L2.1

Summary for Pond 35P: Div 1.2

[57] Hint: Peaked at 155.12' (Flood elevation advised)

low	$0.446 \mathrm{ac}, 65.47 \%$ Impervious, Inflow Depth $=4.20$ " for 25 year event			
Inflow	1.89 cfs @	12.14 hrs , Volume=	0.156 af	
Outflow	1.89 cfs @	12.14 hrs , Volume=	0.156 af,	Atten $=0 \%$, Lag= 0.0 m
Primary	0.89 cfs @	12.14 hrs , Volume=	0.014 af	
Secondary	1.00 cfs @	12.14 hrs , Volume=	0.142 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 155.12' @ 12.14 hrs

Device	Routing	Invert	Outlet Devices		
\#1	Primary	153.92'	12.0" Round Culvert to MH A. 6		
			$\mathrm{L}=18.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 153.92' / 151.00' S=0.1622 '/' Cc= 0.900		
\#2	Secondary	153.75'	6.0" Round Culvert to SWMF-1.2		
			$\mathrm{L}=6.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 153.75' / 153.50' S=0.0417 '// Cc= 0.900		
			$\mathrm{n}=0.012$, Flow Area $=0.20 \mathrm{sf}$		
\#3	Device 1	154.92'	3.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)		
Primary OutFlow Max=0.89 cfs @ 12.14 hrs HW=155.12' (Free Discharge) $亡_{1}=$ Culvert to MH A. 6 (Passes 0.89 cfs of 3.17 cfs potential flow) $\mathcal{L}_{3}=$ Sharp-Crested Rectangular Weir (Weir Controls $0.89 \mathrm{cfs} @ 1.47 \mathrm{fps}$)					
Secondary OutFlow Max=1.00 cfs @ 12.14 hrs HW=155.12' (Free Discharge) $L_{2=C u l v e r t ~ t o ~ S W M F-1.2 ~(I n l e t ~ C o n t r o l s ~} 1.00 \mathrm{cfs} @ 5.10 \mathrm{fps}$)					

Pond 35P: Div 1.2
Hydrograph

Summary for Pond 36P: Rain Garden \#1 Lot 3

Inflow Area $=$	$0.261 \mathrm{ac}, 19.99 \%$ Impervious, Inflow Depth $=2.44 " \quad$ for 25 year event			
Inflow $=$	$0.64 \mathrm{cfs} @$	12.15 hrs, Volume $=$	0.053 af	
Outflow $=$	$0.32 \mathrm{cfs} @$	12.41 hrs, Volume $=$	0.053 af, Atten $=51 \%$, Lag $=15.8 \mathrm{~min}$	
Discarded	$=$	$0.03 \mathrm{cfs} @$	12.41 hrs, Volume $=$	0.036 af
Primary $=$	$0.28 \mathrm{cfs} @$	12.41 hrs, Volume $=$	0.017 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= $0.01 \mathrm{hrs} / 2$
Peak Elev=145.09' @ 12.41 hrs Surf.Area=1,320 sf Storage= 685 cf
Plug-Flow detention time $=162.8$ min calculated for 0.053 af (100% of inflow)
Center-of-Mass det. time $=162.8 \mathrm{~min}(1,014.3-851.5)$

Discarded OutFlow Max=0.03 cfs @ 12.41 hrs HW=145.09' (Free Discharge)
②=Exfiltration (Exfiltration Controls 0.03 cfs)
Primary OutFlow Max=0.28 cfs @ 12.41 hrs HW=145.09' (Free Discharge)
—1=Orifice/Grate (Weir Controls 0.28 cfs @ 0.99 fps)

Pond 36P: Rain Garden \#1 Lot 3

Summary for Pond 37P: SWMF-1.2

[81] Warning: Exceeded Pond 35P by 1.16' @ 13.31 hrs

Inflow	$=$	$1.00 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume $=$	0.142 af
Outflow	$=$	$0.18 \mathrm{cfs} @ 11.53 \mathrm{hrs}$, Volume $=$	0.142 af, Atten $=82 \%, L a g=0.0 \mathrm{~min}$
Discarded $=$	$0.18 \mathrm{cfs} @ 11.53 \mathrm{hrs}$, Volume $=$	0.142 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=155.17' @ 13.14 hrs Surf.Area=1,320 sf Storage= 2,037 cf
Plug-Flow detention time $=86.4$ min calculated for 0.142 af (100% of inflow)
Center-of-Mass det. time $=86.4 \mathrm{~min}$ (901.0-814.6)

Volume	Invert	Avail.Storage	Storage Description
\#1A	153.00'	1,184 cf	23.50'W x 56.17'L x 3.67'H Field A
			4,840 cf Overall - 1,880 cf Embedded $=2,960$ cf $\times 40.0 \%$ Voids
\#2A	153.50'	1,880 cf	Cultec R-V8HD $\times 32$ Inside \#1
			Effective Size=55.2"W $\times 32.0$ "H => $8.68 \mathrm{sf} \times 7.50$ ' $\mathrm{L}=65.1 \mathrm{cf}$
			Overall Size $=60.0$ 'W $\times 32.0$ "H x 8.00'L with 0.50 ' Overlap
			Row Length Adjustment $=-5.83$ x 8.68 sf $\times 4$ rows
		3,064 cf	Total Available Storage
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Outl	D Devices
\#1	Discarded	153.00' 6.00	in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.18 cfs @ 11.53 hrs HW=153.04' (Free Discharge)
①=Exfiltration (Exfiltration Controls 0.18 cfs)

Pond 37P: SWMF-1.2 - Chamber Wizard Field A

Chamber Model = Cultec R-V8HD (Cultec Recharger® V8HD)

Effective Size=55.2"W x 32.0"H => $8.68 \mathrm{sf} \times 7.50^{\prime} \mathrm{L}=65.1 \mathrm{cf}$
Overall Size $=60.0^{\prime \prime} \mathrm{W} \times 32.0^{\prime \prime} \mathrm{H} \times 8.00^{\prime} \mathrm{L}$ with 0.50^{\prime} Overlap
Row Length Adjustment $=-5.83$ x 8.68 sf 4 rows
60.0" Wide +6.0 " Spacing $=66.0$ " C-C Row Spacing

8 Chambers/Row x 7.50' Long -5.83' Row Adjustment $=54.17^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=56.17^{\prime}$ Base Length
4 Rows $\times 60.0^{\prime \prime}$ Wide $+6.0^{\prime \prime}$ Spacing $\times 3+12.0^{\prime \prime}$ Side Stone $\times 2=23.50^{\prime}$ Base Width
6.0" Base $+32.0^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.67^{\prime}$ Field Height

32 Chambers x 65.1 cf -5.83 Row Adjustment $\times 8.68$ sf $\times 4$ Rows $=1,879.9$ cf Chamber Storage
$4,840.0$ cf Field $-1,879.9$ cf Chambers $=2,960.1$ cf Stone $\times 40.0 \%$ Voids $=1,184.0$ cf Stone Storage
Chamber Storage + Stone Storage $=3,063.9 \mathrm{cf}=0.070$ af
Overall Storage Efficiency $=63.3 \%$
32 Chambers
179.3 cy Field
109.6 cy Stone

Pond 37P: SWMF-1.2
Hydrograph

Summary for Pond 38P: SWMF-2.2

[81] Warning: Exceeded Pond 32P by 0.39' @ 13.29 hrs

Inflow	$=$	$1.23 \mathrm{cfs} @$	12.19 hrs, Volume $=$	0.155 af
Outflow	$=$	$0.22 \mathrm{cfs} @$	13.24 hrs, Volume $=$	0.155 af, Atten $=82 \%$, Lag $=63.6 \mathrm{~min}$
Discarded	$=$	$0.16 \mathrm{cfs} @$	11.59 hrs, Volume $=$	0.151 af
Primary	$=$	$0.06 \mathrm{cfs} @$	13.24 hrs, Volume $=$	0.004 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=153.13' @ 13.24 hrs Surf.Area=1,160 sf Storage= 2,460 cf
Plug-Flow detention time $=139.6$ min calculated for 0.155 af (100% of inflow)
Center-of-Mass det. time $=139.6 \mathrm{~min}(987.5-848.0)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	149.50'	450 cf	16.00'W x 31.50'L x 3.54'H Field A
			1,785 cf Overall - 659 cf Embedded $=1,126$ cf $\times 40.0 \%$ Voids
\#2A	150.00'	659 cf	Cultec R-330XLHD x 12 Inside \#1
			Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
			Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50^{\prime} Overlap
			Row Length Adjustment=+1.50' x 7.45 sf $\times 3$ rows
\#3B	150.00'	578 cf	20.83'W x 31.50'L x 3.54'H Field B
			2,324 cf Overall - 879 cf Embedded $=1,445$ cf $\times 40.0 \%$ Voids
\#4B	150.50'	879 cf	Cultec R-330XLHD $\times 16$ Inside \#3
			Effective Size $=47.8$ "W $\times 30.0$ "H $=>7.45 \mathrm{sf} \times 7.00{ }^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
			Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50^{\prime} Overlap Row Length Adjustment $=+1.50$ x $7.45 \mathrm{sf} \times 4$ rows
		2,567 cf	Total Available Storage

2,567 cf Total Available Storage

Storage Group A created with Chamber Wizard
Storage Group B created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
$\# 1$	Discarded	$149.50 '$	6.000 in/hr Exfiltration over Horizontal area
\#2	Primary	153.00^{\prime}	$\mathbf{8 . 0 "}$ Round Culvert $L=15.0^{\prime} \quad$ CPP, square edge headwall, Ke= $=0.500$
			Inlet / Outlet Invert=153.00' / 151.50' $\quad \mathrm{S}=0.1000 \mathrm{Cc}=0.900$
		$\mathrm{n}=0.012$, Flow Area=0.35 sf	

Discarded OutFlow Max=0.16 cfs @ 11.59 hrs HW=150.00' (Free Discharge)
\&-1=Exfiltration (Exfiltration Controls 0.16 cfs)
Primary OutFlow Max=0.06 cfs @ 13.24 hrs HW=153.13' (Free Discharge)
L2=Culvert (Inlet Controls 0.06 cfs @ 1.25 fps)

Pond 38P: SWMF-2.2 - Chamber Wizard Field A

Chamber Model = Cultec R-330XLHD (Cultec Recharger® ${ }^{\circledR}$ 330XLHD)

Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5$ "H $^{\prime} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50$ x 7.45 sf $\times 3$ rows
52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

4 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 29.50' Row Length +12.0" End Stone $\times 2=31.50$ ' Base Length
3 Rows x 52.0" Wide $+6.0^{\prime \prime}$ Spacing x $2+12.0^{\prime \prime}$ Side Stone $\times 2$ = 16.00' Base Width
6.0" Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.54$ ' Field Height

12 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45 \mathrm{sf} \times 3$ Rows $=659.4$ cf Chamber Storage
$1,785.0$ cf Field -659.4 cf Chambers $=1,125.6$ cf Stone $\times 40.0 \%$ Voids $=450.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,109.6$ cf $=0.025$ af
Overall Storage Efficiency $=62.2 \%$
12 Chambers
66.1 cy Field
41.7 cy Stone

Pond 38P: SWMF-2.2 - Chamber Wizard Field B

Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size=47.8"W x $30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0$ "W x 30.5"H x 8.50'L with 1.50' Overlap
Row Length Adjustment $=+1.50$ x 7.45 sf $\times 4$ rows
52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

4 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 29.50' Row Length +12.0" End Stone $\times 2=31.50$ ' Base Length
4 Rows $\times 52.0$ " Wide +6.0 " Spacing x $3+12.0^{\prime \prime}$ Side Stone $\times 2=20.83$ ' Base Width
6.0" Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.54$ ' Field Height

16 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45 \mathrm{sf} \times 4$ Rows $=879.2$ cf Chamber Storage

$2,324.2$ cf Field -879.2 cf Chambers $=1,445.0$ cf Stone $\times 40.0 \%$ Voids $=578.0$ cf Stone Storage

Chamber Storage + Stone Storage $=1,457.2$ cf $=0.033$ af
Overall Storage Efficiency $=62.7 \%$
16 Chambers
86.1 cy Field
53.5 cy Stone

Pond 38P: SWMF-2.2

Summary for Pond 39P: SWMF-L2.2

[79] Warning: Submerged Pond 40P Secondary device \# 2 OUTLET by 0.76 '

Inflow	$=$	$0.56 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=$	0.047 af
Oufflow	$=$	$0.07 \mathrm{cfs} @$	11.58 hrs, Volume=
Discarded $=$	$0.07 \mathrm{cfs} @ 11.58 \mathrm{hrs}$, Volume $=$	0.047 af, Atten $=87 \%, \mathrm{Lag}=0.0 \mathrm{~min}$	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=136.76' @ 12.62 hrs Surf.Area= 504 sf Storage= 607 cf
Plug-Flow detention time $=52.4$ min calculated for 0.047 af (100% of inflow)
Center-of-Mass det. time= 52.4 min ($796.7-744.3$)

Storage Group A created with Chamber Wizard
Device Routing Invert Outlet Devices
\#1 Discarded 135.00 ' 6.000 in/hr Exfiltration over Horizontal area
Discarded OutFlow Max=0.07 cfs @ 11.58 hrs HW=135.04' (Free Discharge)
L1 $_{1=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~} 0.07$ cfs)

Pond 39P: SWMF-L2.2 - Chamber Wizard Field A

Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50$ x $7.45 \mathrm{sf} \times 3$ rows
52.0" Wide $+6.0^{\prime \prime}$ Spacing $=58.0$ " C-C Row Spacing

4 Chambers/Row $\times 7.00^{\prime}$ Long $+1.50^{\prime}$ Row Adjustment $=29.50^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=31.50^{\prime}$ Base Length
3 Rows $\times 52.0^{\prime \prime}$ Wide $+6.0^{\prime \prime}$ Spacing $\times 2+12.0^{\prime \prime}$ Side Stone $\times 2=16.00^{\prime}$ Base Width
6.0" Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.54^{\prime}$ Field Height

12 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45$ sf $\times 3$ Rows $=659.4$ cf Chamber Storage
1,785.0 cf Field -659.4 cf Chambers $=1,125.6$ cf Stone $\times 40.0 \%$ Voids $=450.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,109.6 \mathrm{cf}=0.025$ af
Overall Storage Efficiency $=62.2 \%$
12 Chambers
66.1 cy Field
41.7 cy Stone

Pond 39P: SWMF-L2. 2

Summary for Pond 40P: Div L2.2

[57] Hint: Peaked at 138.10' (Flood elevation advised)

Inflow Area =	$0.098 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth $=5.76$ " for 25 year event			
Inflow	0.60 cfs @	12.07 hrs , Volume=	0.047 af	
Outflow	0.60 cfs @	12.07 hrs , Volume=	0.047 af,	Atten $=0 \%, L a g=0.0 \mathrm{~m}$
Primary	0.04 cfs @	12.07 hrs , Volume=	0.000 af	
Secondary =	0.56 cfs @	12.07 hrs , Volume=	0.047 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 138.10' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices		
\#1	Primary	138.00'	12.0" Round Culvert to MH C. 1		
			$\mathrm{L}=50.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 138.00' / 134.00' S=0.0800 '/' Cc= 0.900		
			$\mathrm{n}=0.012$, Flow Area $=0.79$ sf		
\#2	Secondary	137.50'	6.0" Round Culvert to SWMF L2.2		
			$\mathrm{L}=5.0{ }^{\prime} \quad$ CPP, square edge headwall, $\mathrm{Ke}=0.500 \quad 1$.		
			Inlet / Outlet Invert= 137.50' $/ 136.00 ' \mathrm{~S}=0.3000 \mathrm{l} / \mathrm{Cc}=0.900$		
	Device 1	13804'	$\mathrm{n}=0.012$, Flow Area $=0.20 \mathrm{sf}$ 3.0' long Sharp-Crested Rectangular Weir 2 End Contraction		
Primary OutFlow Max=0.04 cfs @ 12.07 hrs HW=138.10' (Free Discharge) $亡_{1=C u l v e r t ~ t o ~ M H ~ C . ~}^{1}$ (Inlet Controls 0.04 cfs @ 1.06 fps) 					
Secondary OutFlow Max=0.56 cfs @ 12.07 hrs HW=138.10' (Free Discharge) +2=Culvert to SWMF L2.2 (Inlet Controls 0.56 cfs @ 2.84 fps)					

Pond 40P: Div L2.2

Summary for Pond 41P: Rain Garden \#2 Lot 3

Inflow Area	0.098 ac, 23.68\% Impervious, Inflow Depth = 2.62" for 25 year event			
Inflow	0.26 cfs @	12.14 hrs, Volume=	0.021 af	
Outflow	0.03 cfs @	13.06 hrs, Volume=	0.021 af,	ten= $87 \%, L a g=55.0 \mathrm{~m}$
Discarded	0.02 cfs @	13.06 hrs, Volume=	0.021 af	
Primary	0.01 cfs @	13.06 hrs, Volume=	0.001	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=152.51' @ 13.06 hrs Surf.Area= 922 sf Storage= 395 cf
Plug-Flow detention time $=191.1 \mathrm{~min}$ calculated for 0.021 af (100% of inflow)
Center-of-Mass det. time $=191.1 \mathrm{~min}(1,037.8-846.7)$

Discarded OutFlow Max=0.02 cfs @ 13.06 hrs HW=152.51' (Free Discharge)
L2=Exfiltration (Exfiltration Controls 0.02 cfs)
Primary OutFlow Max=0.01 cfs @ 13.06 hrs HW=152.51' (Free Discharge)
$L_{1=O r i f i c e / G r a t e ~(W e i r ~ C o n t r o l s ~} 0.01$ cfs @ 0.34 fps)

Pond 41P: Rain Garden \#2 Lot 3

Summary for Link 19L: Design Point 1

Inflow Area $=$	$6.141 \mathrm{ac}, 15.53 \%$ Impervious, Inflow Depth $=1.51 " \quad$ for 25 year event	
Inflow	$=$	$4.02 \mathrm{cfs} @ 12.59 \mathrm{hrs}$, Volume $=$
Primary	$=$	$4.02 \mathrm{cfs} @ 12.59 \mathrm{hrs}$, Volume $=$
		0.772 af, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= $0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 19L: Design Point 1

Hydrograph

Summary for Link 22L: Design Point 2

Inflow Area $=$	3.501 ac,	9.03% Impervious, Inflow Depth $=1.46 " \quad$ for 25 year event
Inflow	$=$	$3.59 \mathrm{cfs} @$
Primary	$=$	$3.59 \mathrm{cfs} @$
	12.34 hrs , Volume $=$	0.426 af

Primary outflow $=$ Inflow, Time Span= $0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 22L: Design Point 2

Hydrograph

Summary for Link 25L: Design Point 3

Inflow Area $=$	0.529 ac,	0.00% Impervious, Inflow Depth $=1.68 "$	for 25 year event
Inflow	$=$	$0.90 \mathrm{cfs} @$	12.12 hrs , Volume $=$
Primary	$=$	$0.90 \mathrm{cfs} @$	12.12 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span $=0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 25L: Design Point 3

Hydrograph

Summary for Link 28L: Design Point 4

Inflow Area $=$	0.242 ac,	0.00% Impervious, Inflow Depth $=2.35 " \quad$ for 25 year event	
Inflow	$=$	$0.60 \mathrm{cfs} @$	12.12 hrs , Volume $=$
Primary	$=$	$0.60 \mathrm{cfs} @$	12.12 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span= $0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 28L: Design Point 4

HydroCAD® 10.00-15 s/n 03392 (c) 2015 HydroCAD Software Solutions LLC_Page 252

Time span=0.00-96.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}, 9601$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: FDA-2.2

Subcatchment 2S: FDA-1.2

Subcatchment 4S: XDA4

Subcatchment 5S: FDA-L2.1

Subcatchment 6S: FDA-L3.1

Subcatchment 20S: FDA-1.3

Subcatchment 21S: FDA-1.4

Subcatchment 23S: FDA-L1

Subcatchment 24S: FDA-2.1

Subcatchment 26S: FDA-3

Subcatchment 27S: FDA-4

Subcatchment 29S: FDA-L2.2

Subcatchment 30S: XDA1

Subcatchment 31S: FDA-1.1

Subcatchment 32S: FDA-2.3

Subcatchment 33S: XDA2

Subcatchment 34S: XDA3

Subcatchment 35S: FDA-L3. 2

Runoff Area=28,532 sf 43.66% Impervious Runoff Depth=4.48" Flow Length=483' Tc=13.2 $\mathrm{min} \quad \mathrm{CN}=74$ Runoff=2.73 cfs 0.245 af

Runoff Area=19,428 sf 65.47% Impervious Runoff Depth=5.62" $\mathrm{T}=10.0 \mathrm{~min} \mathrm{CN}=84$ Runoff= 2.50 cfs 0.209 af

Runoff Area=10,541 sf 0.00% Impervious Runoff Depth=3.49"
Flow Length=100' Slope=0.1900 '// Tc=8.3 min CN=65 Runoff=0.91 cfs 0.070 af
Runoff Area $=5,735$ sf 55.54% Impervious Runoff Depth=5.39" $\mathrm{Tc}=5.0 \mathrm{~min} \quad \mathrm{CN}=82$ Runoff $=0.85 \mathrm{cfs} 0.059 \mathrm{af}$

Runoff Area=11,384 sf 19.99% Impervious Runoff Depth=3.60" $\mathrm{Tc}=10.0 \mathrm{~min} \mathrm{CN}=66$ Runoff $=0.96 \mathrm{cfs} 0.078$ af

Runoff Area=177,542 sf 5.71% Impervious Runoff Depth=2.96" Flow Length=974' $\mathrm{Tc}=17.9 \mathrm{~min} \quad \mathrm{CN}=60$ Runoff=9.71 cfs 1.006 af

Runoff Area=6,857 sf 0.00\% Impervious Runoff Depth=3.39" Flow Length=87' Tc=5.5 min $\mathrm{CN}=64$ Runoff=0.63 cfs 0.044 af

Runoff Area=8,712 sf 91.00% Impervious Runoff Depth=6.90" $\mathrm{TC}=5.0 \mathrm{~min} \mathrm{CN}=95$ Runoff=1.50 cfs 0.115 af

Runoff Area $=38,768$ sf 0.00% Impervious Runoff Depth=2.76" Flow Length=141' $\mathrm{Tc}=6.3 \mathrm{~min} \quad \mathrm{CN}=58$ Runoff=2.76 cfs 0.204 af

Runoff Area=23,055 sf 0.00\% Impervious Runoff Depth=2.65" Flow Length=156' Tc=7.6 min $\mathrm{CN}=57$ Runoff=1.50 cfs 0.117 af

Runoff Area $=10,545$ sf 0.00% Impervious Runoff Depth=3.49" Flow Length=100' Slope $=0.1900 \mathrm{l} / \mathrm{Tc}=8.3 \mathrm{~min} \mathrm{CN}=65$ Runoff=$=0.91 \mathrm{cfs} 0.070$ af

Runoff Area=4,285 sf 100.00% Impervious Runoff Depth $=7.26$ " $\mathrm{Tc}=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.75 \mathrm{cfs} 0.060$ af

Runoff Area=208,652 sf 1.02% Impervious Runoff Depth=2.55" Flow Length=1,046' Tc=25.6 min CN=56 Runoff=8.27 cfs 1.018 af

Runoff Area=29,272 sf 0.00% Impervious Runoff Depth=2.86" $\mathrm{T}=15.0 \mathrm{~min} \mathrm{CN}=59$ Runoff=1.65 cfs 0.160 af

Runoff Area=85,225 sf 1.54% Impervious Runoff Depth=2.65" Flow Length=401' $\mathrm{Tc}=14.7 \mathrm{~min} \quad \mathrm{CN}=57$ Runoff=4.43 cfs 0.432 af

Runoff Area=211,963 sf 1.03\% Impervious Runoff Depth=2.45" Flow Length=544' Tc=15.5 min CN=55 Runoff=9.81 cfs 0.993 af

Runoff Area=23,043 sf 0.00% Impervious Runoff Depth=2.45" Flow Length=156' Tc=8.3 min $\mathrm{CN}=55$ Runoff=1.33 cfs 0.108 af

Runoff Area=4,286 sf 23.68% Impervious Runoff Depth=3.82" $\mathrm{T}=10.0 \mathrm{~min} \mathrm{CN}=68$ Runoff $=0.38 \mathrm{cfs} 0.031$ af

Reach 30R: Vegetated Swale
Pond 15P: SWMF
Pond 29P: SWMF-L1
Pond 30P: Div L1 (DS F.2)
Pond 31P: SWMF-1.1 Bioret
Pond 32P: Div 2.2 (DS D.2)
Pond 33P: Div L2.1

Pond 34P: SWMF-L2.1

Pond 35P: Div 1.2

Pond 36P: Rain Garden \#1 Lot 3

Pond 37P: SWMF-1.2

Pond 38P: SWMF-2.2

Pond 39P: SWMF-L2. 2

Pond 40P: Div L2.2

Pond 41P: Rain Garden \#2 Lot 3

Link 19L: Design Point 1

Link 22L: Design Point 2

Link 25L: Design Point 3

Link 28L: Design Point 4

Avg. Flow Depth=0.99' Max Vel=1.06 fps Inflow=4.43 cfs 0.432 af $\mathrm{n}=0.240 \mathrm{~L}=285.0^{\prime} \mathrm{S}=0.0561$ '/' Capacity= 6.76 cfs Outflow= 4.14 cfs 0.432 af

Peak Elev=128.91' Storage=17,299 cf Inflow=12.58 cfs 1.197 af Outflow=6.08 cfs 1.197 af

Peak Elev=154.05' Storage=1,219 cf Inflow=0.99 cfs 0.110 af Outflow $=0.21$ cfs 0.110 af

Peak Elev=154.93' Inflow=1.50 cfs 0.115 af Primary $=0.51$ cfs 0.005 af Secondary= 0.99 cfs 0.110 af Outflow= 1.50 cfs 0.115 af

Peak Elev=157.27' Storage=1,021 cf Inflow=1.65 cfs 0.160 af Discarded $=0.03$ cfs 0.050 af Primary $=1.48$ cfs 0.110 af Outflow=1.52 cfs 0.160 af

Peak Elev=153.27' Inflow=2.73 cfs 0.245 af Primary $=1.17$ cfs 0.035 af Secondary=1.56 cfs 0.209 af Outflow=2.73 cfs 0.245 af

Peak Elev=150.63' Inflow=0.85 cfs 0.059 af Primary $=0.26$ cfs 0.002 af Secondary $=0.58$ cfs 0.057 af Outflow $=0.85$ cfs 0.059 af

Peak Elev=150.81' Storage=941 cf Inflow=0.58 cfs 0.057 af Outflow=0.06 cfs 0.057 af

Peak Elev=155.20' Inflow=2.50 cfs 0.209 af Primary $=1.46$ cfs 0.028 af Secondary=1.04 cfs 0.181 af Outflow=2.50 cfs 0.209 af

Peak Elev=145.16' Storage=782 cf Inflow=0.96 cfs 0.078 af Discarded $=0.03$ cfs 0.041 af Primary $=0.68$ cfs 0.037 af Outflow $=0.71$ cfs 0.078 af

Peak Elev=155.97' Storage=2,688 cf Inflow=1.04 cfs 0.181 af Outflow $=0.18$ cfs 0.181 af

Peak Elev=153.49' Storage=2,554 cf Inflow=1.56 cfs 0.209 af Discarded $=0.16$ cfs 0.175 af Primary $=0.66$ cfs 0.034 af Outflow $=0.83$ cfs 0.209 af

Peak Elev=137.32' Storage=810 cf Inflow=0.62 cfs 0.059 af Outflow $=0.07$ cfs 0.059 af

Peak Elev=138.18' Inflow=0.75 cfs 0.060 af Primary $=0.13$ cfs 0.001 af Secondary= 0.62 cfs 0.059 af Outflow $=0.75$ cfs 0.060 af

Peak Elev=152.56' Storage=442 cf Inflow=0.38 cfs 0.031 af Discarded $=0.02$ cfs 0.024 af Primary $=0.16$ cfs 0.008 af Outflow= 0.18 cfs 0.031 af

Total Runoff Area $=20.841$ ac Runoff Volume $=5.021$ af Average Runoff Depth $=2.89 "$ 93.43% Pervious = 19.472 ac 6.57% Impervious = 1.369 ac

Summary for Subcatchment 1S: FDA-2.2
Runoff $=\quad 2.73 \mathrm{cfs} @ 12.18 \mathrm{hrs}$, Volume $=0.245 \mathrm{af}$, Depth $=4.48^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall $=7.50$ "

	Area (sf)	CN	Description		
*	11,021	98	Subdivision Road, HSG B		
*	1,437	98	Off-site impervious road, HSG B $>75 \%$ Grass cover Good, HSG B		
	1,307				
	14,767	55	>75\% Grass cover, Good, HSG B		
	28,532	74	Weighted Average		
	16,074		56.34\% Pervious Area43.66% Impervious Area		
	12,458				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { c } \begin{array}{r} \text { Length } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
12.1	100	0.0750	0.14		Sheet Flow,
					Woods: Light underbrush $\mathrm{n}=0.400 \mathrm{P} 2=3.50{ }^{\prime \prime}$
0.6	68	0.1250	- 1.77		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.2	265	0.1000	- 6.42		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
0.3	3250	0.0750	- 13.46	10.57	Pipe Channel,
					12.0" Round Area $=0.8$ sf Perim=3.1' $r=0.25^{\prime}$
13.2	283	Total			

Subcatchment 1S: FDA-2.2

Summary for Subcatchment 2S: FDA-1.2
Runoff $=\quad 2.50$ cfs @ 12.14 hrs, Volume $=\quad 0.209 \mathrm{af}$, Depth $=5.62{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall $=7.50$ "

	Area (sf)	CN	Description		
	12,720	98 P	Paved parking, HSG B		
	3,180	$61>$	>75\% Grass cover, Good, HSG B		
	3,528	55	Woods, Good, HSG B		
	19,428	84	Weighted Average		
	6,708		34.53\% Pervious Area		
	12,720		65.47\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
10.0					Direct Entry,

Subcatchment 2S: FDA-1.2

Summary for Subcatchment 4S: XDA4
Runoff $=0.91$ cfs @ 12.12 hrs , Volume $=0.070 \mathrm{af}$, Depth= 3.49

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=7.50"

Area (sf)	CN	Description	
4,225	55	Woods, Good, HSG B	
4,225	70	Woods, Good, HSG C	
2,091	77	Woods, Good, HSG D	

Subcatchment 4S: XDA4

Summary for Subcatchment 5S: FDA-L2.1

Runoff $=0.85$ cfs @ 12.07 hrs , Volume $=0.059 \mathrm{af}$, Depth= $5.39{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall $=7.50$ "

Area (sf)		CN Description			
*	3,185	98 D	Driveway and roofs, HSG B $>75 \%$ Grass cover, Good, HSG B		
	2,550	$61>$			
	5,735	82	eighted A	verage	
	2,550		.46\% Pervir	vious Area	
	3,185		.54\% Imp	ervious Ar	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
5.0					Direct Entry

Subcatchment 5S: FDA-L2.1

Summary for Subcatchment 6S: FDA-L3.1

Runoff $=0.96$ cfs @ 12.14 hrs , Volume $=0.078$ af, Depth= $3.60^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=7.50"

	Area (sf)	CN	Lot 3 Roof, HSG B		
	982	98			
	907	98	Lot 3 Roof, HSG B		
	387	98			
	5,387	61 >	>75\% Grass cover, Good, HSG B		
	3,721	55	Woods, Good, HSG B		
	11,384	66	Weighted Average		
	9,108		80.01\% Pervious Area		
	2,276		19.99\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{aligned} & \text { Length } \\ & \text { (feet) } \end{aligned}$	Slope (ft/ft)	Velocity $(\mathrm{ft} / \mathrm{sec})$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
10.0					Direct Entry,

Subcatchment 6S: FDA-L3.1

Summary for Subcatchment 20S: FDA-1.3

Runoff $=\quad 9.71$ cfs @ 12.26 hrs, Volume $=1.006$ af, Depth= $2.96{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall $=7.50$ "

	Area (sf)	CN D	Description		
*	9,958	98 Im	Impervious Surfaces, HSG B		
*	1,720	85 M	Maintenance Path, HSG B		
*	185	98 R	Retaining Wall, HSG B		
	60,200	61 >	>75\% Grass cover, Good, HSG B		
	2,190	$74>$	>75\% Grass cover, Good, HSG C		
	523	$80>$	>75\% Grass cover, Good, HSG D		
	12,069	48 B	Brush, Good, HSG B		
*	34,260	55	Woods (on-site), Good, HSG B		
*	51,994	55 W	Woods (off-site), Good, HSG B		
	2,962	70 W	Woods, Good, HSG C		
	1,481	77 W	Woods, Good, HSG D		
	$\begin{array}{r} 177,542 \\ 167,399 \\ 10,143 \end{array}$	60	Weighted Average 94.29\% Pervious Area 5.71\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
8.7	100	0.1700	0.19		Sheet Flow, Woods: Light underbrush $n=0.400 \quad P 2=3.50 "$
1.0	133	0.1880	- 2.17		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
3.1	183	0.0383	- 0.98		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
0.4	57	0.0219	2.22		Shallow Concentrated Flow, Grassed Waterway $\mathrm{Kv}=15.0 \mathrm{fps}$
0.1	91	0.1000	- 15.54	12.21	Pipe Channel, 12.0" Round Area= 0.8 sf Perim=3.1'r=0.25' $\mathrm{n}=0.012$
1.6	274	0.0299	- 2.78		Shallow Concentrated Flow, Unpaved $K v=16.1 \mathrm{fps}$
3.0	136	0.0022	- 0.76		Shallow Concentrated Flow, Unpaved Kv=16.1 fps

[^8]Subcatchment 20S: FDA-1.3

Summary for Subcatchment 21S: FDA-1.4
Runoff $=0.63 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume $=0.044 \mathrm{af}$, Depth= $3.39{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall $=7.50$ "

	ea (sf)	CN D	Description			
	478	$61>$	>75\% Grass cover, Good, HSG B			
	124	$74>$	>75\% Grass cover, Good, HSG C			
	62	$80>$	$>75 \%$ Grass cover, Good, HSG D			
	3,040	55 W	Woods, Good, HSG B			
	2,102	70 W	Woods, Good, HSG C			
	1,051	77 W	Woods, Good, HSG D			
	$\begin{aligned} & \hline 6,857 \\ & 6,857 \end{aligned}$	$64 \quad 1$	Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity \qquad	Description	
5.2	40	0.1000	0.13		Sheet Flow, Woods: Light underbrush $\mathrm{n}=0.400$	$\mathrm{P} 2=3.50{ }^{\prime \prime}$
0.3	47	0.2300	2.40		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	

Subcatchment 21S: FDA-1.4

Summary for Subcatchment 23S: FDA-L1

Runoff $=1.50$ cfs @ 12.07 hrs , Volume $=0.115 \mathrm{af}$, Depth= 6.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall $=7.50$ "

Subcatchment 23S: FDA-L1

Summary for Subcatchment 24S: FDA-2.1
Runoff $=2.76$ cfs @ 12.10 hrs , Volume $=0.204 \mathrm{af}$, Depth= $2.76{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=7.50"

Subcatchment 24S: FDA-2.1

Summary for Subcatchment 26S: FDA-3

Runoff $=1.50$ cfs @ 12.12 hrs , Volume $=0.117$ af, Depth= $2.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall $=7.50$ "

Area (sf)		CN Description			
$\begin{array}{r} 5,955 \\ 17,100 \\ \hline \end{array}$		$\begin{aligned} & \hline 61 \\ & 55 \\ & \hline \end{aligned}$	$>75 \%$ Grass cover, Good, HSG B Woods, Good, HSG B		
$\begin{aligned} & 23,055 \\ & 23,055 \end{aligned}$		57	Weighted Average 100.00\% Pervious Area		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
7.3	86	0.1977	0.20		Sheet Flow, Woods: Light underbrush $n=0.400 \quad \mathrm{P} 2=3.50$
0.3	70	0.0571	3.58		Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
7.6	156	Total			

Subcatchment 26S: FDA-3

Summary for Subcatchment 27S: FDA-4
Runoff $=\quad 0.91$ cfs @ 12.12 hrs, Volume $=\quad 0.070$ af, Depth $=3.49^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall $=7.50$ "

Area (sf)	CN	Description	
4,220	55	Woods, Good, HSG B	
4,220	70	Woods, Good, HSG C	
2,105	77	Woods, Good, HSG D	

Subcatchment 27S: FDA-4

Summary for Subcatchment 29S: FDA-L2.2

Runoff $=0.75$ cfs @ 12.07 hrs, Volume $=0.060$ af, Depth $=7.26^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall $=7.50$ "

	Area (sf)	CN Description			
	4,285	98 Roofs, HSG B			
4,285		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{aligned} & \text { Length } \\ & \text { (feet) } \end{aligned}$	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry,

Subcatchment 29S: FDA-L2.2

Summary for Subcatchment 30S: XDA1

Runoff $=8.27$ cfs @ 12.38 hrs , Volume $=1.018 \mathrm{af}$, Depth= $2.55^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=7.50"

[^9]Subcatchment 30S: XDA1

Summary for Subcatchment 31S: FDA-1.1
Runoff $=1.65 \mathrm{cfs} @ 12.22 \mathrm{hrs}$, Volume $=0.160 \mathrm{af}$, Depth $=2.86^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=7.50"

	Area (sf)	CN	Description		
	18,513	$61>$	>75\% Grass cover, Good, HSG B		
	7,020	55 W	Woods, Good, HSG B		
*	3,739	55 W	Woods (off-site), Good, HSG B		
	29,272	59 W	Weighted Average		
	29,272		100.00\% Pervious Area		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
15.0					Direct Entry

Subcatchment 31S: FDA-1.1

Summary for Subcatchment 32S: FDA-2.3
Runoff $=\quad 4.43$ cfs @ 12.21 hrs , Volume $=0.432 \mathrm{af}$, Depth= $2.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=7.50"

	Area (sf)	CN	Description		
*	715	98	Off-Site Road, HSG B		
	315	98	Unconnected pavement, HSG B		
	280	98	Unconnected pavement, HSG B		
	23,051	61 >	>75\% Grass cover, Good, HSG B		
	60,864	55	Woods, Good, HSG B		
	85,225	57	Weighted Average 98.46\% Pervious Area 1.54\% Impervious Area 45.42\% Unconnected		
	83,915				
	1,310				
	595				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
8.1	100	0.2050	0.21		Sheet Flow,
					Woods: Light underbrush $\mathrm{n}=0.400 \mathrm{P} 2=3.50$ "
1.4	148	0.1284	1.79		Shallow Concentrated Flow,
					Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
5.2	153	0.0163	0.49	1.29	Trap/Vee/Rect Channel Flow,
					Bot.W=2.00' D=0.75' Z=2.0 '/' Top.W=5.00'
14.7					$\mathrm{n}=0.240$ Sheet flow over Dense Grass

Subcatchment 32S: FDA-2.3

Summary for Subcatchment 33S: XDA2
Runoff $=9.81$ cfs @ 12.23 hrs , Volume $=0.993$ af, Depth= $2.45^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall $=7.50$ "

Subcatchment 33S: XDA2

Summary for Subcatchment 34S: XDA3
Runoff $=\quad 1.33$ cfs @ 12.13 hrs, Volume $=\quad 0.108$ af, Depth $=2.45^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall=7.50"

Area (sf)		CN Description			
	23,043	55	oods, Go	d, HSG B	
23,043		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.3	86	0.1977	0.20		Sheet Flow, Woods: Light underbrush $n=0.400 \quad \mathrm{P} 2=3.50$ "
1.0	70	0.0571	1.19		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
8.3	156	Total			

Subcatchment 34S: XDA3

Summary for Subcatchment 35S: FDA-L3.2

Runoff $=0.38$ cfs @ 12.14 hrs , Volume $=0.031$ af, Depth $=3.82^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100 year Rainfall $=7.50$ "

Area (sf)	CN	Description
*	1,015	98
Driveway, HSG B		
1,875	61	>55\% Grass cover, Good, HSG B
1,396	55	Woods, Good, HSG B

Subcatchment 35S: FDA-L3. 2

Summary for Reach 30R: Vegetated Swale

Inflow Area $=$	1.956 ac,	1.54%	Impervious, Inflow Depth $=2.65 "$	for 100 year event
Inflow	$=$	$4.43 \mathrm{cfs} @$	12.21 hrs, Volume $=$	0.432 af
Outflow	$=$	$4.14 \mathrm{cfs} @$	12.35 hrs, Volume $=$	0.432 af, Atten $=6 \%$, Lag $=8.2 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Max. Velocity= 1.06 fps , Min. Travel Time $=4.5 \mathrm{~min}$
Avg. Velocity $=0.33 \mathrm{fps}$, Avg. Travel Time $=14.3 \mathrm{~min}$
Peak Storage=1,118 cf @ 12.27 hrs
Average Depth at Peak Storage=0.99'
Bank-Full Depth= 1.25' Flow Area= 5.6 sf, Capacity= 6.76 cfs
$2.00^{\prime} \times 1.25$ deep channel, $n=0.240$ Sheet flow over Dense Grass
Side Slope Z-value= 2.0 '/' Top Width= 7.00'
Length=285.0' Slope=0.0561 '/'
Inlet Invert= 174.00', Outlet Invert= 158.00'

Reach 30R: Vegetated Swale

Summary for Pond 15P: SWMF

Inflow Area $=$	$5.984 \mathrm{ac}, 15.94 \%$ Impervious, Inflow Depth $=2.40 "$	for 100 year event	
Inflow	$=$	$12.58 \mathrm{cfs} @$	12.25 hrs , Volume $=$
Outflow	$=$	$6.08 \mathrm{cfs} @$	12.60 hrs, Volume $=$
Primary	$=$	$6.08 \mathrm{cfs} @$	12.60 hrs, Volume $=$

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Starting Elev=126.00' Surf.Area=2,806 sf Storage=3,133 cf
Peak Elev= 128.91' @ 12.60 hrs Surf.Area= 6,102 sf Storage= 17,299 cf (14,166 cf above start)
Plug-Flow detention time= 153.6 min calculated for 1.125 af (94% of inflow)
Center-of-Mass det. time $=108.0 \mathrm{~min}$ (958.7-850.6)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	121.50	$21,119 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
121.50	0	0	0
122.00	96	24	24
123.00	318	207	231
124.00	513	416	647
125.00	827	670	1,317
126.00	2,806	1,817	3,133
127.00	4,018	3,412	6,545
128.00	6,230	5,124	11,669
129.00	6,090	6,160	17,829
129.50	7,070	3,290	21,119

Device	Routing	Invert	Outlet Devices
\#1	Primary	125.00'	12.0" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#2	Device 1	126.00'	1.3" Vert. Orifice/Grate $\quad \mathrm{C}=0.600$
\#3	Device 1	126.75'	4.0" Vert. Orifice/Grate X $3.00 \quad \mathrm{C}=0.600$
\#4	Device 1	127.00'	8.0" Vert. Orifice/Grate X $2.00 \quad \mathrm{C}=0.600$
\#5	Primary	129.20'	6.0' long (Profile 7) Broad-Crested Rectangular Weir Head (feet) 0.490 .981 .48 Coef. (English) 2.993 .413 .62

Primary OutFlow Max=6.08 cfs @ 12.60 hrs HW=128.91' (Free Discharge)
-1 $=$ Orifice/Grate (Passes 6.08 cfs of 6.99 cfs potential flow)
—2=Orifice/Grate (Orifice Controls 0.08 cfs @ 8.14 fps)
-3=Orifice/Grate (Orifice Controls 1.78 cfs @ 6.80 fps)
4=Orifice/Grate (Orifice Controls 4.22 cfs @ 6.05 fps)
5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 15P: SWMF

Hydrograph

Summary for Pond 29P: SWMF-L1

[79] Warning: Submerged Pond 30P Secondary device \# 2 OUTLET by 0.05^{\prime}

Inflow	$=$	$0.99 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=$	0.110 af
Oufflow	$=$	$0.21 \mathrm{cfs} @$	11.62 hrs, Volume=
Discarded	$=$	$0.21 \mathrm{cfs} @ 11.62 \mathrm{hrs}$, Volume=	0.110 af, Atten $=79 \%, \mathrm{Lag}=0.0 \mathrm{~min}$
		0.110 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=154.05' @ 12.56 hrs Surf.Area= 1,485 sf Storage= 1,219 cf
Plug-Flow detention time $=32.9 \mathrm{~min}$ calculated for 0.110 af (100% of inflow)
Center-of-Mass det. time $=32.9 \mathrm{~min}$ ($791.9-759.0$)

Volume	Invert	Avail.Storage	Storage Description
\#1A	152.75'	1,069 cf	27.50'W x 54.00'L x 2.54 'H Field A 3,774 cf Overall - 1,102 cf Embedded = 2,672 cf $\times 40.0 \%$ Voids
\#2A	153.25'	1,102 cf	Cultec R-150XLHD x 40 Inside \#1 Effective Size $=29.8^{\prime \prime} \mathrm{W} \times 18.0^{\prime \prime} \mathrm{H}=>2.65 \mathrm{sf} \times 10.25^{\prime} \mathrm{L}=27.2 \mathrm{cf}$ Overall Size $=33.0^{\prime \prime} \mathrm{W} \times 18.5^{\prime \prime} \mathrm{H} \times 11.00^{\prime} \mathrm{L}$ with 0.75^{\prime} Overlap Row Length Adjustment $=+0.75^{\prime} \times 2.65 \mathrm{sf} \times 8$ rows
2,171 cf			Total Available Storage

Storage Group A created with Chamber Wizard
Device Routing Invert Outlet Devices
\#1 Discarded 152.75 ' 6.000 in/hr Exfiltration over Horizontal area
Discarded OutFlow Max=0.21 cfs @ 11.62 hrs HW=152.78' (Free Discharge)
$\left.L_{1=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~} 0.21 \mathrm{cfs}\right)$

Pond 29P：SWMF－L1－Chamber Wizard Field A

Chamber Model＝Cultec R－150XLHD（Cultec Recharger® 150XLHD）

Effective Size $=29.8^{\prime \prime} \mathrm{W} \times 18.0^{\prime \prime} \mathrm{H}=>2.65 \mathrm{sf} \times 10.25^{\prime} \mathrm{L}=27.2 \mathrm{cf}$
Overall Size $=33.0^{\prime \prime} \mathrm{W} \times 18.5^{\prime \prime} \mathrm{H} \times 11.00^{\prime} \mathrm{L}$ with 0.75^{\prime} Overlap
Row Length Adjustment $=+0.75^{\prime} \times 2.65 \mathrm{sf} \times 8$ rows
33．0＂Wide $+6.0^{\prime \prime}$ Spacing $=39.0$＂C－C Row Spacing
5 Chambers／Row x 10．25＇Long $+0.75^{\prime}$ Row Adjustment $=52.00^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=54.00^{\prime}$ Base Length
8 Rows $\times 33.0$＂Wide $+6.0^{\prime \prime}$ Spacing $\times 7+12.0^{\prime \prime}$ Side Stone $\times 2=27.50^{\prime}$ Base Width
$6.0^{\prime \prime}$ Base $+18.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=2.54^{\prime}$ Field Height
40 Chambers x 27.2 cf $+0.75^{\prime}$ Row Adjustment $\times 2.65$ sf $\times 8$ Rows $=1,102.0$ cf Chamber Storage
$3,774.4$ cf Field $-1,102.0$ cf Chambers $=2,672.4$ cf Stone $\times 40.0 \%$ Voids $=1,069.0$ cf Stone Storage
Chamber Storage + Stone Storage $=2,170.9 \mathrm{cf}=0.050$ af
Overall Storage Efficiency $=57.5 \%$
40 Chambers
139.8 cy Field
99.0 cy Stone

Pond 29P: SWMF-L1

Summary for Pond 30P: Div L1 (DS F.2)

[57] Hint: Peaked at 154.93' (Flood elevation advised)

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 154.93' @ 12.07 hrs

Pond 30P: Div L1 (DS F.2)
Hydrograph

Summary for Pond 31P: SWMF-1.1 Bioret

Inflow Area $=$	0.672 ac,	0.00% Impervious, Inflow Depth $=2.86^{\prime \prime}$	for 100 year event	
Inflow	$=$	$1.65 \mathrm{cfs} @$	12.22 hrs, Volume $=$	0.160 af
Outflow	$=$	$1.52 \mathrm{cfs} @$	12.29 hrs, Volume $=$	0.160 af , Atten $=8 \%$, Lag $=4.1 \mathrm{~min}$
Discarded	$=$	$0.03 \mathrm{cfs} @$	12.29 hrs, Volume $=$	0.050 af
Primary $=$	$1.48 \mathrm{cfs} @$	12.29 hrs, Volume $=$	0.110 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=157.27' @ 12.29 hrs Surf.Area= $1,507 \mathrm{sf}$ Storage= $1,021 \mathrm{cf}$
Plug-Flow detention time $=87.8 \mathrm{~min}$ calculated for 0.160 af (100% of inflow)
Center-of-Mass det. time $=87.8 \mathrm{~min}(948.1-860.3$)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	156.50	$1,373 \mathrm{cf}$	Custom Stage Data (Prismatic) Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
156.50	1,133	0	0
157.00	1,370	626	626
157.50	1,620	748	1,373

Device	Routing	Invert	Outlet Devices
\#1	Primary	151.67'	12.0" Round Culvert L= 18.4' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 151.67' / 151.40' S=0.0147 '/' Cc= 0.900
\#2	Device 1	157.00'	12.0" Horiz. Orifice/Grate $\mathrm{C}=0.600$ Limited to weir flow at low heads
\#3	Discarded	156.50'	1.000 in/hr Exfiltration over Horizontal area

Discarded OutFlow Max=0.03 cfs @ 12.29 hrs HW=157.27' (Free Discharge)
$L_{3=\text { Exfiltration (Exfiltration Controls } 0.03 \mathrm{cfs} \text {) }}$
Primary OutFlow Max=1.48 cfs @ 12.29 hrs HW=157.27' (Free Discharge)
-1=Culvert (Passes 1.48 cfs of 8.54 cfs potential flow)

Pond 31P: SWMF-1.1 Bioret

Summary for Pond 32P: Div 2.2 (DS D.2)

[57] Hint: Peaked at 153.27' (Flood elevation advised)

Inflow Area $=$	$0.655 \mathrm{ac}, 43.66 \%$ Impervious, Inflow Depth $=4.48 \mathrm{ln}$	for 100 year event	
Inflow	$=$	$2.73 \mathrm{cfs} @ 12.18 \mathrm{hrs}$, Volume $=$	0.245 af
Outflow	$=$	$2.73 \mathrm{cfs} @ 12.18 \mathrm{hrs}$, Volume $=$	0.245 aff , Atten $=0 \%$, Lag= 0.0 min
Primary	$=$	$1.17 \mathrm{cfs} @ 12.18 \mathrm{hrs}$, Volume $=$	0.035 af
Secondary $=$	$1.56 \mathrm{cfs} @ 12.18 \mathrm{hrs}$, Volume $=$	0.209 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 153.27' @ 12.18 hrs

Device	Routing	Invert	Outlet Devices	
\#1	Primary	152.75'	15.0" Round Culvert to Level Spreader	
			$\mathrm{L}=30.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
			Inlet / Outlet Invert= 152.75' / 151.50' S=0.0417 //' Cc= 0.900	
			$\mathrm{n}=0.012$, Flow Area $=1.23 \mathrm{sf}$	
\#2	Secondary	152.50'	10.0" Round Culvert to SWMF-2.2	
			$\mathrm{L}=15.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
			Inlet / Outlet Invert= 152.50' / 152.00' S=0.0333 //' Cc= 0.900	
			$\mathrm{n}=0.012$, Flow Area $=0.55 \mathrm{sf}$	
\#3	Device 1	152.90'	3.0' long $\times 1.50$ ' rise Sharp-Crested Rectangular Weir 2 End Contraction(s)	
Primary	OutFlow Ma	1.17 cfs	$12.18 \mathrm{hrs} \mathrm{HW=153.27'} \mathrm{(Free} \mathrm{Discharge)}$	
Secondary OutFlow Max=1.56 cfs @ 12.18 hrs HW=153.27' (Free Discharge) L2=Culvert to SWMF-2.2 (Inlet Controls 1.56 cfs @ 2.98 fps)				

Pond 32P: Div 2.2 (DS D.2)

Hydrograph

Summary for Pond 33P: Div L2.1

[57] Hint: Peaked at 150.63' (Flood elevation advised)

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 150.63' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
\#1	Primary	150.00'	8.0" Round Culvert to Node EP E. 1 $\mathrm{L}=96.0^{\prime} \quad$ CPP, square edge headwall, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 150.00' / 146.00' S=0.0417 '/' Cc= 0.900 $\mathrm{n}=0.012$, Flow Area $=0.35 \mathrm{sf}$
\#2	Secondary	150.00'	6.0" Round Culvert to PTF E. 1 \& SWMF L2.1 $\mathrm{L}=12.0^{\prime} \quad$ CPP, square edge headwall, $\mathrm{Ke}=0.500$ Inlet / Outlet Invert= 150.00' / 149.70' S=0.0250 '/' Cc= 0.900 $\mathrm{n}=0.012$, Flow Area $=0.20 \mathrm{sf}$
\#3	Device 1	150.54'	3.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
Primary OutFlow Max=0.26 cfs @ 12.07 hrs HW=150.63' (Free Discharge) $L_{1=C u l v e r t ~ t o ~ N o d e ~ E P ~ E . ~}^{1}$ (Passes 0.26 cfs of 0.92 cfs potential flow) L-3=Sharp-Crested Rectangular Weir (Weir Controls 0.26 cfs @ 0.98 fps)			
Secondary OutFlow Max=0.58 cfs @ 12.07 hrs HW=150.63' (Free Discharge) L2=Culvert to PTF E. 1 \& SWMF L2.1 (Inlet Controls 0.58 cfs @ 2.97 fps)			

Pond 33P: Div L2.1
Hydrograph

Summary for Pond 34P: SWMF-L2.1

[81] Warning: Exceeded Pond 33P by 0.67 ' @ 13.32 hrs

Inflow	$=$	$0.58 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=$	0.057 af
Outflow	$=$	$0.06 \mathrm{cfs} @$	11.34 hrs, Volume=
Discarded	$=$	$0.06 \mathrm{cfs} @$	11.34 hrs, Volume $=$

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 150.81' @ 13.26 hrs Surf.Area= 449 sf Storage= 941 cf
Plug-Flow detention time $=123.8 \mathrm{~min}$ calculated for 0.057 af (100% of inflow)
Center-of-Mass det. time $=123.8 \mathrm{~min}(926.1-802.4)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	147.50'	405 cf	25.67'W x 17.50'L x 3.54'H Field A 1,591 cf Overall -577 cf Embedded $=1,013$ cf $\times 40.0 \%$ Voids
\#2A	148.00'	577 cf	Cultec R-330XLHD $\times 10$ Inside \#1 Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$ Overall Size= $52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50^{\prime} Overlap Row Length Adjustment $=+1.50$ ' $\times 7.45$ sf $\times 5$ rows
983 cf			Total Available Storage

Storage Group A created with Chamber Wizard
Device Routing Invert Outlet Devices
\#1 Discarded $147.50^{\prime} \quad 6.000$ in/hr Exfiltration over Surface area
Discarded OutFlow Max=0.06 cfs @ 11.34 hrs HW=147.54' (Free Discharge)
L-Exfiltration (Exfiltration Controls 0.06 cfs$) ~_{\text {(}}$

Pond 34P: SWMF-L2.1-Chamber Wizard Field A
Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger ${ }^{\circledR}$ 330XLHD)
Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0$ "W x 30.5"H x 8.50'L with 1.50' Overlap
Row Length Adjustment $=+1.50$ x 7.45 sf $\times 5$ rows
52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

2 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 15.50' Row Length +12.0" End Stone $\times 2=17.50$ ' Base Length
5 Rows x 52.0" Wide $+6.0^{\prime \prime}$ Spacing x $4+12.0^{\prime \prime}$ Side Stone $\times 2=25.67$ ' Base Width
6.0" Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.54$ ' Field Height

10 Chambers $\times 52.2$ cf +1.50 Row Adjustment $\times 7.45$ sf $\times 5$ Rows $=577.5$ cf Chamber Storage
$1,590.8$ cf Field -577.5 cf Chambers $=1,013.3$ cf Stone $\times 40.0 \%$ Voids $=405.3$ cf Stone Storage
Chamber Storage + Stone Storage $=982.8 \mathrm{cf}=0.023$ af
Overall Storage Efficiency $=61.8 \%$
10 Chambers
58.9 cy Field
37.5 cy Stone

Pond 34P: SWMF-L2.1

Summary for Pond 35P: Div 1.2

[57] Hint: Peaked at 155.20' (Flood elevation advised)

Inflow Area $=$	$0.446 \mathrm{ac}, 65.47 \%$ Impervious, Inflow Depth $=5.62 "$ for 100 year event		
Inflow	$=$	$2.50 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume $=$	0.209 af
Outflow	$=$	$2.50 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume $=$	0.209 aff , Atten $=0 \%$, Lag= 0.0 min
Primary	$=$	$1.46 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume $=$	0.028 af
Secondary $=$	$1.04 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume $=$	0.181 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=155.20' @ 12.14 hrs

Device	Routing	Invert	Outlet Devices		
\#1	Primary	153.92'	12.0" Round Culvert to MH A. 6		
			$\mathrm{L}=18.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 153.92' / 151.00' S=0.1622 '/' Cc= 0.900		
\#2	Secondary	153.75'	6.0" Round Culvert to SWMF-1.2		
			$\mathrm{L}=6.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 153.75' / 153.50' S=0.0417 '/' Cc= 0.900		
			$\mathrm{n}=0.012$, Flow Area $=0.20 \mathrm{sf}$		
\#3	Device 1	154.92'	3.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)		
Primary OutFlow Max=1.46 cfs @ 12.14 hrs HW=155.20' (Free Discharge) $L_{1}=$ Culvert to MH A. 6 (Passes 1.46 cfs of 3.35 cfs potential flow) - 3=Sharp-Crested Rectangular Weir (Weir Controls 1.46 cfs @ 1.74 fps)					
Secondary OutFlow Max=1.04 cfs @ 12.14 hrs HW=155.20' (Free Discharge) —2=Culvert to SWMF-1.2 (Inlet Controls 1.04 cfs @ 5.28 fps)					

Pond 35P: Div 1.2

Summary for Pond 36P: Rain Garden \#1 Lot 3

Inflow Area $=$	$0.261 \mathrm{ac}, 19.99 \%$	Impervious, Inflow Depth $=3.60 "$	for 100 year event	
Inflow	$=$	$0.96 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume $=$	0.078 af	
Outflow	$=$	$0.71 \mathrm{cfs} @$	12.25 hrs, Volume $=$	0.078 af, Atten $=26 \%, \mathrm{Lag}=6.4 \mathrm{~min}$
Discarded	$=$	$0.03 \mathrm{cfs} @$	12.25 hrs, Volume $=$	0.041 af
Primary	$=$	$0.68 \mathrm{cfs} @$	12.25 hrs, Volume $=$	0.037 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= $0.01 \mathrm{hrs} / 2$
Peak Elev=145.16' @ 12.25 hrs Surf.Area=1,379 sf Storage= 782 cf
Plug-Flow detention time $=130.1 \mathrm{~min}$ calculated for 0.078 af (100% of inflow)
Center-of-Mass det. time $=130.2 \mathrm{~min}$ (970.2-840.0)

Discarded OutFlow Max=0.03 cfs @ 12.25 hrs HW=145.16' (Free Discharge)
L2=Exfiltration (Exfiltration Controls 0.03 cfs)
Primary OutFlow Max=0.68 cfs @ 12.25 hrs HW=145.16' (Free Discharge)

Pond 36P: Rain Garden \#1 Lot 3

Summary for Pond 37P: SWMF-1.2

[81] Warning: Exceeded Pond 35P by 1.96 @ 13.91 hrs

Inflow	$=$	$1.04 \mathrm{cfs} @$	12.14 hrs, Volume $=$
Outflow	$=$	$0.18 \mathrm{cfs} @$	11.24 hrs, Volume=
Discarded $=$	$0.18 \mathrm{cfs} @$	11.24 hrs, Volume $=$	0.181 af, Atten $=82 \%, \mathrm{Lag}=0.0 \mathrm{~min}$

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=155.97' @ 13.77 hrs Surf.Area= $1,320 \mathrm{sf}$ Storage= $2,688 \mathrm{cf}$
Plug-Flow detention time $=120.0 \mathrm{~min}$ calculated for 0.181 af (100% of inflow)
Center-of-Mass det. time $=120.0 \mathrm{~min}(929.8-809.8)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	153.00'	1,184 cf	23.50'W x 56.17'L x 3.67'H Field A
			4,840 cf Overall - 1,880 cf Embedded = 2,960 cf x 40.0\% Voids
\#2A	$153.50{ }^{\prime}$	1,880 cf	Cultec R-V8HD $\times 32$ Inside \#1
			Effective Size $=55.2 \mathrm{~W} \times 32.0 \mathrm{H} \mathrm{H}=>8.68 \mathrm{sf} \times 7.50 \mathrm{~L}=65.1 \mathrm{cf}$
			Overall Size $=60.0$ " $\mathrm{W} \times 32.0 \mathrm{H} \mathrm{H} \times 8.00 \mathrm{~L}$ with 0.50 ' Overlap
			Row Length Adjustment $=-5.83$ x $8.68 \mathrm{sf} \times 4$ rows
		3,064 cf	Total Available Storage
Stora	ge Group A	ated with Cham	ber Wizard
Device	Routing	Invert Outle	et Devices
\#1	Discarded	153.00' 6.00	$0 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Discarded OutFlow Max=0.18 cfs @ 11.24 hrs HW=153.04' (Free Discharge)
L1 $_{1=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~} 0.18 \mathrm{cfs}$)

Pond 37P: SWMF-1.2 - Chamber Wizard Field A

Chamber Model = Cultec R-V8HD (Cultec Recharger® V8HD)

Effective Size=55.2"W x 32.0"H => $8.68 \mathrm{sf} \times 7.50^{\prime} \mathrm{L}=65.1 \mathrm{cf}$
Overall Size $=60.0^{\prime \prime} \mathrm{W} \times 32.0^{\prime \prime} \mathrm{H} \times 8.00^{\prime} \mathrm{L}$ with 0.50^{\prime} Overlap
Row Length Adjustment $=-5.83$ x 8.68 sf 4 rows
60.0" Wide +6.0 " Spacing $=66.0$ " C-C Row Spacing

8 Chambers/Row x 7.50' Long -5.83' Row Adjustment $=54.17^{\prime}$ Row Length $+12.0^{\prime \prime}$ End Stone $\times 2=56.17^{\prime}$ Base Length
4 Rows $\times 60.0^{\prime \prime}$ Wide $+6.0^{\prime \prime}$ Spacing $\times 3+12.0^{\prime \prime}$ Side Stone $\times 2=23.50^{\prime}$ Base Width
6.0" Base $+32.0^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.67^{\prime}$ Field Height

32 Chambers x 65.1 cf -5.83 Row Adjustment $\times 8.68$ sf $\times 4$ Rows $=1,879.9$ cf Chamber Storage
$4,840.0$ cf Field $-1,879.9$ cf Chambers $=2,960.1$ cf Stone $\times 40.0 \%$ Voids $=1,184.0$ cf Stone Storage
Chamber Storage + Stone Storage $=3,063.9 \mathrm{cf}=0.070$ af
Overall Storage Efficiency $=63.3 \%$
32 Chambers
179.3 cy Field
109.6 cy Stone

Pond 37P: SWMF-1.2

Peak Elev=155.97' Storage=2,688 cf

Summary for Pond 38P: SWMF-2.2

[81] Warning: Exceeded Pond 32P by 0.50 ' @ 12.56 hrs

Inflow	$=$	$1.56 \mathrm{cfs} @$	12.18 hrs, Volume $=$
Outflow	$=$	$0.83 \mathrm{cfs} @$	12.52 hrs, Volume $=$
Discarded	$=$	$0.16 \mathrm{cfs} @$	11.22 hrs, Volume $=$
Primary	$=$	$0.66 \mathrm{cfs} @$	12.52 hrs, Volume $=$
	0.209 af, Atten $=47 \%$, Lag $=20.4 \mathrm{~min}$		

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=153.49' @ 12.52 hrs Surf.Area=1,160 sf Storage= 2,554 cf
Plug-Flow detention time $=125.2$ min calculated for 0.209 af (100% of inflow)
Center-of-Mass det. time $=125.2 \mathrm{~min}(966.4-841.2)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	149.50'	450 cf	16.00'W x 31.50'L x 3.54'H Field A
			1,785 cf Overall - 659 cf Embedded $=1,126$ cf $\times 40.0 \%$ Voids
\#2A	150.00'	659 cf	Cultec R-330XLHD x 12 Inside \#1
			Effective Size $=47.8$ "W $\times 30.0{ }^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
			Overall Size=52.0"W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment $=+1.50{ }^{\prime} \times 7.45 \mathrm{sf} \times 3$ rows
\#3B	150.00'	578 cf	20.83'W x 31.50'L x 3.54'H Field B
			2,324 cf Overall - 879 cf Embedded $=1,445$ cf $\times 40.0 \%$ Voids
\#4B	150.50'	879 cf	Cultec R-330XLHD $\times 16$ Inside \#3
			Effective Size=47.8"W $\times 30.0{ }^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
			Overall Size $=52.0$ "W x 30.5"H x 8.50'L with 1.50' Overlap
			Row Length Adjustment $=+1.50$ x $7.45 \mathrm{sf} \times 4$ rows

2,567 cf Total Available Storage

Storage Group A created with Chamber Wizard
Storage Group B created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
$\# 1$	Discarded	$149.50 '$	6.000 in/hr Exfiltration over Horizontal area
\#2	Primary	153.00^{\prime}	$\mathbf{8 . 0 "}$ Round Culvert $L=15.0^{\prime} \quad$ CPP, square edge headwall, Ke= $=0.500$
			Inlet / Outlet Invert=153.00' / 151.50' $\quad \mathrm{S}=0.1000 \mathrm{Cc}=0.900$
		$\mathrm{n}=0.012$, Flow Area=0.35 sf	

Discarded OutFlow Max=0.16 cfs @ 11.22 hrs HW=150.00' (Free Discharge)
\&-1=Exfiltration (Exfiltration Controls 0.16 cfs)
Primary OutFlow Max=0.66 cfs @ 12.52 hrs HW=153.49' (Free Discharge)
L2=Culvert (Inlet Controls 0.66 cfs @ 2.39 fps)

Pond 38P: SWMF-2.2 - Chamber Wizard Field A

Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger ${ }^{\circledR 3}$ 330XLHD)

Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5$ "H $^{\prime} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50$ x 7.45 sf $\times 3$ rows
52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

4 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 29.50' Row Length +12.0" End Stone $\times 2=31.50$ ' Base Length
3 Rows x 52.0" Wide $+6.0^{\prime \prime}$ Spacing x $2+12.0^{\prime \prime}$ Side Stone $\times 2$ = 16.00' Base Width
6.0" Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.54$ ' Field Height

12 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45 \mathrm{sf} \times 3$ Rows $=659.4$ cf Chamber Storage
$1,785.0$ cf Field -659.4 cf Chambers $=1,125.6$ cf Stone $\times 40.0 \%$ Voids $=450.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,109.6$ cf $=0.025$ af
Overall Storage Efficiency $=62.2 \%$
12 Chambers
66.1 cy Field
41.7 cy Stone

Pond 38P: SWMF-2.2 - Chamber Wizard Field B

Chamber Model = Cultec R-330XLHD (Cultec Recharger® 330XLHD)

Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5$ "H $^{\prime} \times 8.50^{\prime} \mathrm{L}$ with 1.50 ' Overlap
Row Length Adjustment $=+1.50$ x 7.45 sf $\times 4$ rows
52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

4 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 29.50' Row Length +12.0" End Stone $\times 2=31.50$ ' Base Length
4 Rows x 52.0" Wide $+6.0^{\prime \prime}$ Spacing x $3+12.0^{\prime \prime}$ Side Stone $\times 2=20.83^{\prime}$ Base Width
6.0" Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.54$ ' Field Height

16 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45$ sf $\times 4$ Rows $=879.2$ cf Chamber Storage

2,324.2 cf Field - 879.2 cf Chambers $=1,445.0$ cf Stone $\times 40.0 \%$ Voids $=578.0$ cf Stone Storage

Chamber Storage + Stone Storage $=1,457.2$ cf $=0.033$ af
Overall Storage Efficiency $=62.7 \%$
16 Chambers
86.1 cy Field
53.5 cy Stone

Pond 38P: SWMF-2.2

Summary for Pond 39P: SWMF-L2.2

[79] Warning: Submerged Pond 40P Secondary device \# 2 OUTLET by 1.32'

Inflow	$=$	$0.62 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=$	0.059 af
Outflow	$=$	$0.07 \mathrm{cfs} @ 11.35 \mathrm{hrs}$, Volume $=$	0.059 af, Atten $=89 \%, \mathrm{Lag}=0.0 \mathrm{~min}$
Discarded $=$	$0.07 \mathrm{cfs} @ 11.35 \mathrm{hrs}$, Volume $=$	0.059 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=137.32' @ 12.85 hrs Surf.Area= 504 sf Storage= 810 cf
Plug-Flow detention time $=75.0$ min calculated for 0.059 af (100% of inflow)
Center-of-Mass det. time= $75.0 \mathrm{~min}(816.4-741.4$)

Volume	Invert	Avail.Storage	Storage Description
\#1A	135.00'	450 cf	$\begin{aligned} & \text { 16.00'W x 31.50'L } \times 3.54 \text { 'H Field A } \\ & \text { 1,785 cf Overall }-659 \mathrm{cf} \text { Embedded }=1,126 \mathrm{cf} \times 40.0 \% \text { Voids } \end{aligned}$
\#2A	135.50'	659 cf	Cultec R-330XLHD x 12 Inside \#1 Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$ Overall Size $=52.0^{\prime \prime} \mathrm{W} \times 30.5^{\prime \prime} \mathrm{H} \times 8.50^{\prime} \mathrm{L}$ with 1.50^{\prime} Overlap Row Length Adjustment $=+1.50$ ' $\times 7.45 \mathrm{sf} \times 3$ rows
		1,110 cf	Total Available Storage

Storage Group A created with Chamber Wizard
Device Routing Invert Outlet Devices
\#1 Discarded 135.00 ' $6.000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Horizontal area
Discarded OutFlow Max=0.07 cfs @ 11.35 hrs HW=135.04' (Free Discharge)
L-Exfiltration (Exfiltration Controls 0.07 cfs$) ~_{\text {1 }}$

Pond 39P: SWMF-L2.2 - Chamber Wizard Field A

Chamber Model $=$ Cultec R-330XLHD (Cultec Recharger ${ }^{\circledR 3}$ 330XLHD)

Effective Size $=47.8^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
Overall Size $=52.0$ "W x 30.5"H x 8.50'L with 1.50' Overlap
Row Length Adjustment $=+1.50$ x 7.45 sf $\times 3$ rows
52.0" Wide + 6.0" Spacing = 58.0" C-C Row Spacing

4 Chambers/Row x 7.00' Long +1.50' Row Adjustment = 29.50' Row Length +12.0" End Stone $\times 2=31.50$ ' Base Length
3 Rows x 52.0" Wide $+6.0^{\prime \prime}$ Spacing x $2+12.0^{\prime \prime}$ Side Stone x $2=16.00$ ' Base Width
6.0" Base $+30.5^{\prime \prime}$ Chamber Height $+6.0^{\prime \prime}$ Cover $=3.54$ ' Field Height

12 Chambers $\times 52.2$ cf +1.50 ' Row Adjustment $\times 7.45 \mathrm{sf} \times 3$ Rows $=659.4$ cf Chamber Storage
$1,785.0$ cf Field -659.4 cf Chambers $=1,125.6$ cf Stone $\times 40.0 \%$ Voids $=450.2$ cf Stone Storage
Chamber Storage + Stone Storage $=1,109.6$ cf $=0.025$ af
Overall Storage Efficiency $=62.2 \%$
12 Chambers
66.1 cy Field
41.7 cy Stone

Pond 39P: SWMF-L2. 2

Summary for Pond 40P: Div L2.2

[57] Hint: Peaked at 138.18' (Flood elevation advised)

Inflow Area $=$	$0.098 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth $=7.26 "$ for 100 year event		
Inflow	$=$	$0.75 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=$	0.060 af
Outflow	$=$	$0.75 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume=	0.060 aff , Atten $=0 \%$, Lag= 0.0 min
Primary	$=$	$0.13 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=$	0.001 af
Secondary $=$	$0.62 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=$	0.059 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev= 138.18' @ 12.07 hrs

Device Routing Invert Outlet Devices $\# 1$ Primary 138.00^{\prime} $\mathbf{1 2 . 0}$ Round Culver					
			$\mathrm{L}=50.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 138.00' / 134.00' S=0.0800 '/' Cc= 0.900		
			$\mathrm{n}=0.012$, Flow Area $=0.79$ sf		
\#2	Secondary	137.50'	6.0" Round Culvert to SWMF L2.2		
			$\mathrm{L}=5.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$		
			Inlet / Outlet Invert= 137.50' / 136.00' $\mathrm{S}=0.3000$ //' Cc= 0.900		
			$\mathrm{n}=0.012$, Flow Area $=0.20 \mathrm{sf}$		
\#3	Device 1	138.04'	3.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)		
Primary OutFlow Max=0.13 cfs @ 12.07 hrs HW=138.18' (Free Discharge) 					
Secondary OutFlow Max=0.62 cfs @ 12.07 hrs HW=138.18' (Free Discharge) L2=Culvert to SWMF L2.2 (Inlet Controls 0.62 cfs @ 3.14 fps)					

Pond 40P: Div L2.2

Summary for Pond 41P: Rain Garden \#2 Lot 3

Inflow Area $=$	$0.098 \mathrm{ac}, 23.68 \%$	Impervious, Inflow Depth $=3.82 "$	for 100 year event	
Inflow $=$	$0.38 \mathrm{cfs} @$	12.14 hrs, Volume $=$	0.031 af	
Outflow $=$	$0.18 \mathrm{cfs} @$	12.41 hrs, Volume $=$	0.031 af, Atten $=53 \%$, Lag $=16.0 \mathrm{~min}$	
Discarded	$=$	$0.02 \mathrm{cfs} @$	12.41 hrs, Volume $=$	0.024 af
Primary $=$	$0.16 \mathrm{cfs} @$	12.41 hrs, Volume $=$	0.008 af	

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs
Peak Elev=152.56' @ 12.41 hrs Surf.Area= 935 sf Storage= 442 cf
Plug-Flow detention time $=158.2$ min calculated for 0.031 af (100% of inflow)
Center-of-Mass det. time= 158.2 min (993.9-835.7)

Discarded OutFlow Max=0.02 cfs @ 12.41 hrs HW=152.56' (Free Discharge)
②=Exfiltration (Exfiltration Controls 0.02 cfs)
Primary OutFlow Max=0.16 cfs @ 12.41 hrs HW=152.56' (Free Discharge)
—1=Orifice/Grate (Weir Controls 0.16 cfs @ 0.81 fps)

Pond 41P: Rain Garden \#2 Lot 3

Summary for Link 19L: Design Point 1

Inflow Area $=$	$6.141 \mathrm{ac}, 15.53 \%$ Impervious, Inflow Depth $=2.43 "$ for 100 year event	
Inflow	$=$	$6.18 \mathrm{cfs} @ 12.59 \mathrm{hrs}$, Volume $=$
Primary	$=$	$6.18 \mathrm{cfs} @ 12.242 \mathrm{af}$
		12.59 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span= $0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 19L: Design Point 1

Hydrograph

Summary for Link 22L: Design Point 2

Inflow Area $=$	3.501 ac,	9.03% Impervious, Inflow Depth $=2.42 "$ for 100 year event
Inflow	$=$	$6.11 \mathrm{cfs} @$
Primary	$=$	6.12 .31 hrs , Volume $=$

Primary outflow $=$ Inflow, Time Span= $0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 22L: Design Point 2

Hydrograph

Summary for Link 25L: Design Point 3

Inflow Area $=$	0.529 ac,	0.00% Impervious, Inflow Depth $=2.65 "$ for 100 year event
Inflow	$=$	$1.50 \mathrm{cfs} @$
Primary	$=$	$1.50 \mathrm{cfs} @$
	12.12 hrs , Volume $=$	0.117 af

Primary outflow $=$ Inflow, Time Span $=0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 25L: Design Point 3

Hydrograph

Summary for Link 28L: Design Point 4

Inflow Area $=$	0.242 ac,	0.00% Impervious, Inflow Depth $=3.49 "$ for 100 year event
Inflow	$=$	$0.91 \mathrm{cfs} @$
Primary	$=$	$0.91 \mathrm{cfs} @$
	12.12 hrs , Volume $=$	0.070 af

Primary outflow $=$ Inflow, Time Span= $0.00-96.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Link 28L: Design Point 4

Hydrograph

Appendix F

FEMA Flood Maps

Appendix G

NYCDEP Application for Review and Approval of Stormwater Pollution Prevention Plans

APPENDIX B
 NEW YORK CITY DEPARTMENT OF ENVIRONMENTAL PROTECTION APPLICATION FOR REVIEW AND APPROVAL OF STORMWATER POLLUTION PREVENTION PLANS AND CROSSING, PIPING OR DIVERSION PERMITS

You are encouraged to participate in an optional pre-application consultation to discuss your proposal and any specific requirements for Department review and approval. Please contact the appropriate Department office listed on page 2 of the accompanying Applicant's Guide to arrange a pre-application meeting.

Applicant/Designated representative:
Name: McKenna Custom Homes, Inc.
Address: 343 Manville Road Pleasantville, NY 10570
Phone: (914) 769-1869

Design Professional:
Name: Alan L. Pilch, PE, RLA, Evans Associates
Address: 205 Amity Road
Bethany, CT 06524
Phone: (203) 393-0690 x114

Project Location: Address: 13 Hidden Oak Road Tax Map Parcel: Sec. 107.01, Block 1
Town: North Castle
Subdivision Name: Hidden Oak Subd.
Reservoir Basin: Kensico

County: Westchester
Lot number: Lot 32

Type of Approval Sought: 囚 Stormwater Pollution Prevention Plan
Crossing, Piping or Diversion Permit

Submissions must include four copies of all plans and supporting documents.
All applications must include narratives, plans, details, and specifications providing the following information:

- Project Description
- Description of Existing Conditions
- Description of Proposed Conditions
- Operations and Maintenance Plans

General Requirements for submissions are set forth in Section 3.1 of the accompanying Guide. Supplemental required information for each type of approval is described in Sections 3.2 and 3.3 (Stormwater Pollution Prevention Plans and Crossing, Piping or Diversion Permits, respectively). Also see Appendix A for a checklist of items to be included in the submission.

Notice of Cost-Sharing Funds

Certain costs incurred in the design, implementation, and maintenance of Stormwater Pollution Prevention Plans may be eligible for Department funding. Refer to Section 3.4 and Appendix F of the accompanying Guide.

I believe this application to te gomplete and in compliance with the Regulations.

(Signature)

- (Filing Date)

Alan L. Pilch
(Print Name)

Appendix \boldsymbol{H}

Notice of Intent

NOTICE OF INTENT

New York State Department of Environmental Conservation Division of Water 625 Broadway, 4th Floor Albany, New York 12233-3505

 Stormwater Discharges Associated with Construction Activity Under State Pollutant Discharge Elimination System (SPDES) General Permit \# GP-0-15-002 All sections must be completed unless otherwise noted. Failure to complete all items may result in this form being returned to you, thereby delaying your coverage under this General Permit. Applicants must read and understand the conditions of the permit and prepare a Stormwater Pollution Prevention Plan prior to submitting this NOI. Applicants are responsible for identifying and obtaining other DEC permits that may be required.
-IMPORTANTRETURN THIS FORM TO THE ADDRESS ABOVE OWNER/OPERATOR MUST SIGN FORM

Owner/Operator Information

Owner/Operator (Company Name/Private Owner Name/Municipality Name)

| M | C | K | e | n | n | a | | C | u | s | t | o | m | | H | o | m |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | e s

Owner/Operator Contact Person Last Name (NOT CONSULTANT)

M	C	K	e	n	n	a

Owner/Operator Contact Person First Name

K	e	v	i	n

Owner/Operator Mailing Address
\square
City

P	l	e	a	s	a	n	t	v	i	l	l	e

State
Sip
N
:---

Phone (Owner/Operator) Fax (Owner/Operator)

Email (Owner/Operator)

m	c	k	e	n	n	a	c	u	s	t	o	m	$@$	o	p	t	o	n	l	i	n	e	.	n	e	t								

FED TAX ID

$\left.$| 1 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$-$| 1 | 6 | 6 | 3 | 3 |
| :--- | :--- | :--- | :--- | :--- |$|0| 0 \right\rvert\,$ (not required for individuals)

Project Site Information

Project/Site Name

Street Address (NOT P.O. BOX)

H	I	D	D	E	N		O	A	K		R	O

Side of Street
O North South OEast OWest
City/Town/Village (THAT ISSUES BUILDING PERMIT)

N	O	R	T	H		C	A	S	T	L	E																				

Name of Nearest Cross Street

Distance to Nearest Cross Street (Feet)

	1	2	5	0

Tax Map Numbers
Section-Block-Parcel

				1	0	7	.	0	1		1		3

Project In Relation to Cross Street ONorth South O East O West Tax Map Numbers
\square

1. Provide the Geographic Coordinates for the project site in NYTM Units. To do this you must go to the NYSDEC Stormwater Interactive Map on the DEC website at:
www.dec.ny.gov/imsmaps/stormwater/viewer.htm
Zoom into your Project Location such that you can accurately click on the centroid of your site. Once you have located your project site, go to the tool boxes on the top and choose "i"(identify). Then click on the center of your site and a new window containing the X, Y coordinates in UTM will pop up. Transcribe these coordinates into the boxes below. For problems with the interactive map use the help function.
X Coordinates (Easting)

6	0	5	6	7	0

Y Coordinates (Northing)

4	5	5	3	5	6	1

2. What is the nature of this construction project?

- New Construction

O Redevelopment with increase in impervious area
ORedevelopment with no increase in impervious area
3. Select the predominant land use for both pre and post development conditions. SELECT ONLY ONE CHOICE FOR EACH

Pre-Development
 Existing Land Use

- FOREST

O PASTURE/OPEN LAND
O CULTIVATED LAND
O SINGLE FAMILY HOME
OSINGLE FAMILY SUBDIVISION
O TOWN HOME RESIDENTIAL
O MULTIFAMILY RESIDENTIAL
O INSTITUTIONAL/SCHOOL
O INDUSTRIAL
O COMMERCIAL
O ROAD/HIGHWAY
O RECREATIONAL/SPORTS EIELD
OBIKE PATH/TRAIL
O LINEAR UTILITY
O PARKING LOT
O OTHER

Post-Development Future Land Use
O SINGLE FAMILY HOME

- SINGLE EAMILY SUBDIVISION

Number of Lots

O TOWN HOME RESIDENTIAL
O MULTIFAMILY RESIDENTIAL
O INSTITUTIONAL/SCHOOL
O INDUSTRIAL
O COMMERCIAL
O MUNICIPAL
O ROAD/HIGHWAY
ORECREATIONAL/SPORTS FIELD
O BIKE PATH/TRAIL
O LINEAR UTILITY (water, sewer, gas, etc.)
O PARKING LOT
O CLEARING/GRADING ONLY
O DEMOLITION, NO REDEVELOPMENT
OWELL DRILLING ACTIVITY *(Oil, Gas, etc.) O OTHER

*Note: for gas well drilling, non-high volume hydraulic fractured wells only
4. In accordance with the larger common plan of development or sale, enter the total project site area; the total area to be disturbed; existing impervious area to be disturbed (for redevelopment activities); and the future impervious area constructed within the disturbed area. (Round to the nearest tenth of an acre.)
Total Site

	Area		
			7

Total Area To
Be Disturbed

			5

Existing Impervious Area To Be Disturbed

Future Impervious
Area Within Disturbed Area

5. Do you plan to disturb more than 5 acres of soil at any one time?

OYes No
6. Indicate the percentage of each Hydrologic Soil Group (HSG) at the site.

7. Is this a phased project?

OYes \quad No
8. Enter the planned start and end dates of the disturbance activities.

9. Identify the nearest surface waterbody(ies) to which construction site runoff will discharge.
Name

U	N	N	A	M	E	D		W	A	T	E	R	C	O	U	R	S	E															

| | | | | | | | | | | | | | | | | | |
| :--- |

9a. Type of waterbody identified in Question 9 ?

O Wetland / State Jurisdiction On Site (Answer 9b)
O Wetland / State Jurisdiction Off Site
OWetland / Federal Jurisdiction On Site (Answer 9b)
OWetland / Federal Jurisdiction Off Site
O Stream / Creek On Site

- Stream / Creek Off Site

ORiver On Site
ORiver Off Site
O Lake On Site
O Lake Off Site
O Other Type On Site
O Other Type Off Site
\square

ORegulatory Map
O Delineated by Consultant
O Delineated by Army Corps of Engineers
9b. How was the wetland identified?

OOther (identify)
\square
10. Has the surface waterbody(ies) in question 9 been identified as a 303 (d) segment in Appendix E of GP-0-15-002?

```
11. Is this project located in one of the Watersheds identified in
    Appendix C of GP-0-15-002?
12. Is the project located in one of the watershed areas associated with AA and AA-S classified
- Yes ONo waters?
If no, skip question 13.
13. Does this construction activity disturb land with no existing impervious cover and where the Soil Slope Phase is

OYes
- No identified as an E or \(F\) on the USDA Soil Survey? If Yes, what is the acreage to be disturbed?

14. Will the project disturb soils within a State regulated wetland or the protected 100 foot adjacent

OYes No area?
15. Does the site runoff enter a separate storm sewer system (including roadside drains, swales, ditches,

OYes No OUnknown culverts, etc)?
16. What is the name of the municipality/entity that owns the separate storm sewer system?

\(\square\)
17. Does any runoff from the site enter a sewer classified as a Combined Sewer? - No

Unknown
18. Will future use of this site be an agricultural property as defined by the NYS Agriculture and Markets Law?

OYes No
19. Is this property owned by a state authority, state agency, federal government or local government?

OYes
No
20. Is this a remediation project being done under a Department approved work plan? (i.e. CERCLA, RCRA, Voluntary Cleanup

OYes No Agreement, etc.)
21. Has the required Erosion and Sediment Control component of the SWPPP been developed in conformance with the current NYS Standards and Specifications for Erosion and Sediment Control (aka Blue Book)?
22. Does this construction activity require the development of a SWPPP that includes the post-construction stormwater management practice component (i.e. Runoff Reduction, Water Quality and

Yes O No Quantity Control practices/techniques)?
If No, skip questions 23 and 27-39.
23. Has the post-construction stormwater management practice component of the SWPPP been developed in conformance with the current NYS

Yes O No Stormwater Management Design Manual?
24. The Stormwater Pollution Prevention Plan (SWPPP) was prepared by:
- Professional Engineer (P.E.)

OSoil and Water Conservation District (SWCD)
O Registered Landscape Architect (R.L.A)
OCertified Professional in Erosion and Sediment Control (CPESC)
O Owner/Operator
O Other

Contact Name (Last, Space, First)


Mailing Address

City

State \(\quad\) Zip
\begin{tabular}{|l|l|l|l|l|}
\hline C & T \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|l}
0 & 6 & 5 & 2 & 4 \\
\hline
\end{tabular} \(\square\)
Phone
\begin{tabular}{|l|l|l|}
\hline 2 & 0 & 3 \\
\hline
\end{tabular} \left\lvert\, \begin{tabular}{|l|l|l|}
\hline 3 & 9 & 3 \\
\hline
\end{tabular}\(-\)\begin{tabular}{|l|l|l|l|}
\hline 0 & 6 & 9 & 0 \\
\hline
\end{tabular}\right.
Fax
\begin{tabular}{|l|l|l|}
\hline 2 & 0 & 3 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|}
\hline 3 & 9 & 3 \\
\hline
\end{tabular}
Email
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline\(a\) & l & \(a\) & \(n\) & \(@\) & \(e\) & \(a\) & \(e\) & c & - & \(i\) & \(n\) & c &. & c & o & m & & & & & & & & & & & & & & & & & & & & \\
\hline \hline
\end{tabular}

\section*{SWPPP Preparer Certification}

I hereby certify that the Stormwater Pollution Prevention Plan (SWPPP) for this project has been prepared in accordance with the terms and conditions of the GP-0-15-002. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of this permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.

\begin{tabular}{l} 
Date \\
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline 0 & 5 \\
\hline
\end{tabular} \\
\hline
\end{tabular}\(|\)\begin{tabular}{|l|l|l|l|}
\hline 2 & 0 & 1 & 6 \\
\hline
\end{tabular}
25. Has a construction sequence schedule for the planned management practices been prepared?
- Yes ONo

Select all of the erosion and sediment control practices that will be employed on the project site:

\section*{Temporary Structural}
- Check Dams

O Construction Road Stabilization
O Dust Control
O Earth Dike
- Level Spreader

O Perimeter Dike/Swale
OPipe Slope Drain
O Portable Sediment Tank
ORock Dam
O Sediment Basin
O Sediment Traps
- Silt Fence

O Stabilized Construction Entrance
- Storm Drain Inlet Protection

OStraw/Hay Bale Dike
O Temporary Access Waterway Crossing
O Temporary Stormdrain Diversion
O Temporary Swale
O Turbidity Curtain
Water bars

\section*{Biotechnical}

OBrush Matting
O Wattling

\section*{Vegetative Measures}

Orush Matting
O Dune Stabilization
OGrassed Waterway
OMulching
- Protecting Vegetation

ORecreation Area Improvement
- Seeding

O Sodding
OStraw/Hay Bale Dike
OStreambank Protection
OTemporary Swale
OTopsoiling
O Vegetating Waterways
Permanent Structural

O Debris Basin
ODiversion
O Grade Stabilization Structure
O Land Grading
OLined Waterway (Rock)
O Paved Channel (Concrete)
O Paved Flume
ORetaining Wall
ORiprap Slope Protection
- Rock Outlet Protection

Ostreambank Protection

Other


Post-construction Stormwater Management Practice (SMP) Requirements
Important: Completion of Questions 27-39 is not required if response to Question 22 is No.
27. Identify all site planning practices that were used to prepare the final site plan/layout for the project.
- Preservation of Undisturbed Areas

O Preservation of Buffers
- Reduction of Clearing and Grading

OLocating Development in Less Sensitive Areas
O Roadway Reduction
O Sidewalk Reduction
O Driveway Reduction
OCul-de-sac Reduction
OBuilding Footprint Reduction
O Parking Reduction

27a. Indicate which of the following soil restoration criteria was used to address the requirements in Section 5.1.6("Soil Restoration") of the Design Manual
(2010 version).
- All disturbed areas will be restored in accordance with the Soil Restoration requirements in Table 5.3 of the Design Manual (see page 5-22).

O Compacted areas were considered as impervious cover when calculating the WQv Required, and the compacted areas were assigned a post-construction Hydrologic Soil Group (HSG) designation that is one level less permeable than existing conditions for the hydrology analysis.
28. Provide the total Water Quality Volume (WQv) required for this project (based on final site plan/layout).
Total WQv Required
\begin{tabular}{|l|l|l|l|l|}
\hline & & 0 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|}
\hline 4 & 3 & 5 \\
acre-feet
\end{tabular}
29. Identify the \(R R\) techniques (Area Reduciion), RR techniques (Volume Reduction) and Standard SMPs with RRv Capacity in Table 1 (See Page 9) that were used to reduce the Total WQv Required(\#28).

Also, provide in Table 1 the total impervious area that contributes runoff to each technique/practice selected. For the Area Reduction Techniques, provide the total contributing area (includes pervious area) and, if applicable, the total impervious area that contributes runoff to the technique/practice.

Note: Redevelopment projects shall use Tables 1 and 2 to identify the SMPs used to treat and/or reduce the \(W Q v\) required. If runoff reduction techniques will not be used to reduce the required \(W Q v\), skip to question \(33 a\) after identifying the SMPs.

OConservation of Natural Areas (RR-1) \(\square\) and/or \(\square\)
\(\square\)
O Sheetflow to Riparian Buffers/Filters Strips (RR-2) \(\square\) and/or \(\square\)
\(\square\)
- Tree Planting/Tree Pit (RR-3)

Disconnection of Rooftop Runoff (RR-4)

and/or and/or
 RR Techniques (Volume Reduction)
- Vegetated Swale (RR-5)
- Rain Garden (RR-6)

O Stormwater Planter (RR-7)
ORain Barrel/Cistern (RR-8)
O Porous Pavement (RR-9)
O Green Roof (RR-10)


Standard SMPs with RRv Capacity
O Infiltration Trench (I-1)
O Infiltration Basin (I-2)
ODry Well (I-3)
- Underground Infiltration System (I-4)
- Bioretention (F-5)

ODry Swale (O-1)


\section*{Standard SMPs}

OMicropool Extended Detention (P-1)
O Wet Pond (P-2)
O Wet Extended Detention (P-3)
OMultiple Pond System (P-4)
O Pocket Pond (P-5)
O Surface Sand Filter ( \(\mathrm{F}-1\) )
O Underground Sand Filter (F-2)
O Perimeter Sand Filter ( \(\mathrm{F}-3\) )
O Organic Filter ( \(\mathrm{F}-4\) )
O Shallow Wetland (W-1)
- Extended Detention Wetland (W-2)

O Pond/Wetland System (W-3)
O Pocket Wetland (W-4)
O Wet Swale ( \(0-2\) )

```

Table 2 - Alternative SMPs
(DO NOT INCLUDE PRACTICES BEING
USED FOR PRETREATMENT ONLY)

```

Alternative SMP
Total Contributing Impervious Area (acres)

O Hydrodynamic


Provide the name and manufacturer of the Alternative SMPs (i.e.


Note: Redevelopment projects which do not use RR techniques, shall
use questions \(28,29,33\) and \(33 a\) to provide SMPs used, total
WQv required and total WQv provided for the project.
30. Indicate the Total RRv provided by the RR techniques (Area/Volume Reduction) and Standard SMPs with RRV capacity identified in question 29.

\section*{Total RRv provided}
\begin{tabular}{|l|l|l|l|l|}
\hline & & 0 \\
\hline
\end{tabular}
31. Is the Total RRv provided (\#30) greater than or equal to the total WQv required (\#28).

OYes No
If Yes, go to question 36.
If No, go to question 32.
32. Provide the Minimum RRv required based on HSG.
[Minimum RRv Required \(=(P)(0.95)(A i) / 12, A i=(S)(A i c)]\)

Minimum RRv Required
\begin{tabular}{|l|l|l|l|l|}
\hline & & 0 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l}
1 & 2 & 4 \\
acre-feet \\
\hline
\end{tabular}

32a. Is the Total RRv provided (\#30) greater than or equal to the Minimum RRv Required (\#32)?

If Yes, go to question 33.
Note: Use the space provided in question \#39 to summarize the specific site limitations and justification for not reducing \(100 \%\) of WQV required (\#28). A detailed evaluation of the specific site limitations and justification for not reducing \(100 \%\) of the WQv required (\#28) must also be included in the SWPPP.
If No, sizing criteria has not been met, so NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria.
33. Identify the Standard SMPs in Table 1 and, if applicable, the Alternative SMPs in Table 2 that were used to treat the remaining
total \(W \mathrm{WQv}(=\) Total \(W Q v\) Required in 28 - Total RRv Provided in 30).
Also, provide in Table 1 and 2 the total impervious area that contributes runoff to each practice selected.

Note: Use Tables 1 and 2 to identify the SMPs used on Redevelopment projects.

33a. Indicate the Total WQv provided (i.e. WQv treated) by the SMPs identified in question \#33 and Standard SMPs with RRv Capacity identified in question 29.
\[
\begin{aligned}
& \text { WQV Provided } \\
& \left.\begin{array}{|l|l|l|l|}
\hline & & 0 & \mid 2
\end{array} \right\rvert\, \\
& \hline
\end{aligned}
\]

Note: For the standard SMPs with RRV capacity, the WQv provided by each practice = the \(W Q v\) calculated using the contributing drainage area to the practice - RRv provided by the practice. (See Table 3.5 in Design Manual)
34. Provide the sum of the Total RRv provided (\#30) and the \(W Q v\) provided (\#33a).

35. Is the sum of the RRv provided (\#30) and the WQv provided (\#33a) greater than or equal to the total WQv required (\#28)? Yes O No

If Yes, go to question 36 .
If No, sizing criteria has not been met, so NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria.
36. Provide the total Channel Protection Storage Volume (CPv) required and provided or select waiver (36a), if applicable.

\section*{CPv Required}
\[
\begin{array}{|l|l|l|l|l|l|}
\hline & & 0 \\
\hline 0 & 9 & 8 \\
\text { acre-feet } \\
\hline
\end{array}
\]

CPv Provided


36a. The need to provide channel protection has been waived because:
OSite discharges directly to tidal waters or a fifth order or larger stream.
OReduction of the total CPV is achieved on site through runoff reduction techniques or infiltration systems.
37. Provide the Overbank Flood ( \(Q p\) ) and Extreme Flood ( \(Q f\) ) control criteria or select waiver (37a), if applicable.

Total Overbank Flood Control Criteria ( Qp )
\begin{tabular}{l} 
Pre-Development \\
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline & 7 & Post-development \\
\hline & 7 & 0 & CFS
\end{tabular} \\
\hline
\end{tabular}

Total Extreme Flood Control Criteria (Qf)

Pre-Development
\begin{tabular}{|l|l|l|l|l|}
\hline & 2 & 0 &. & 3 \\
2 & \\
CFS
\end{tabular}

Post-development
\begin{tabular}{l|l|l|l|l}
1 & 4 \\
\hline 7 & 0 & \\
\hline
\end{tabular}

37a. The need to meet the Qp and Qf criteria has been waived because:
O Site discharges directly to tidal waters or a fifth order or larger stream.
O Downstream analysis reveals that the \(Q p\) and \(Q f\) controls are not required
38. Has a long term Operation and Maintenance Plan for the post-construction stormwater management practice(s) been Yes No developed?

If Yes, Identify the entity responsible for the long term Operation and Maintenance
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline\(l\) & \(e\) & \(g\) & \(a\) & \(l\) & & \(a\) & \(g\) & \(r\) & \(e\) & \(e\) & \(m\) & \(e\) & \(n\) & \(t\) & & \(b\) & \(e\) & \(t\) & \(w\) & \(e\) & \(e\) & \(n\) & & \(t\) & \(h\) & \(e\) & & \(t\) & \(h\) & \(r\) & \(e\) & \(e\) & & \\
\hline
\end{tabular}
39. Use this space to summarize the specific site limitations and justification for not reducing \(100 \%\) of \(W Q v\) required (\#28). (See question 32a) This space can also be used for other pertinent project information.

There are many planning and design practices which have been implemented by the project to reduce the amount of impervious surfaces and overall land disturbance in order to minimize the I year storm water quality volume. The subdivision is designed to minimize environmental impacts and to minimize the amount of new impervious surfaces to the maximum extent. As is noted above, the subdivision is a Conservation Subdivision which permits smaller lot sizes and less lot frontage than under the Town zoning code. This permits a shorter subdivision road than would be required under Conventional zoning. Smaller lot sizes reduce disturbance when compare to a conventional lot. The shorter subdivision road significantly reduces the amount of impervious surfaces when compared to road which would be required under the conventional zoning.

The applicant's engineer is proposing to implement several measures to reduce the volume of runoff to the greatest extent that is practical. This includes: (i) infiltration on Lot 1 and 2 to convey runoff from the house roof into subsurface chambers and into the site's soils, (ii) bioretention facility on Lot 1 for runoff from the rear yard (mostly lawn area) of Lot 1 , and (iii) infiltration of a portion of the runoff from the proposed subdivision road in subsurface chambers. Other measures to reduce the volume of runoff include recognized techniques as per Section 5.2 of the 2015 New York State Stormwater Management Design Manual. These include: (i) elimination of sidewalks, and (ii) minimizing the building footprints to the maximum extent.

Site constraints also have impacted the ability of the project to achieve the full reduction of the l-year storm runoff volume. Specifically, these constraints include: (i) significant areas of exposed bedrock which cover 0.682 acres or about \(9 \%\) of the site. There are also areas of steep slopes in excess of \(25 \%\) which limits the potential for stormwater management practices to reduce the runoff volume.
40. Identify other DEC permits, existing and new, that are required for this project/facility.

OAir Pollution Control
O Coastal Erosion
O Hazardous Waste
OLong Island Wells
OMined Land Reclamation
O Solid Waste
O Navigable Waters Protection / Article 15
O Water Quality Certificate
O Dam Safety
O Water Supply
O Freshwater Wetlands/Article 24
OTidal Wetlands
OWild, Scenic and Recreational Rivers
OStream Bed or Bank Protection / Article 15
O Endangered or Threatened Species(Incidental Take Permit)
O Individual SPDES
O SPDES Multi-Sector GP \begin{tabular}{|l|l|l|}
\hline\(N\) & Y & R \\
\hline
\end{tabular}
O Other

- None
41. Does this project require a US Army Corps of Engineers If Yes, Indicate Size of Impact.

42. Is this project subject to the requirements of a regulated, traditional land use control MS4?
- Yes ONo (If No, skip question 43)
43. Has the "MS4 SWPPP Acceptance" form been signed by the principal executive officer or ranking elected official and submitted along

OYes ONo with this NOI?
44. If this NOI is being submitted for the purpose of continuing or transferring coverage under a general permit for stormwater runoff from construction activities, please indicate the former SPDES number assigned. \begin{tabular}{|l|l|l|l|l|l|}
N & Y & R & & & \\
\hline
\end{tabular}

\section*{Owner/Operator Certification}

I have read or been advised of the permit conditions and believe that I understand them. I also understand that, under the terms of the permit, there may be reporting requirements. I hereby certify that this document and the corresponding documents were prepared under my direction or supervision. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further understand that coverage under the general permit will be identified in the acknowledgment that \(I\) will receive as a result of submitting this NOI and can be as long as sixty (60) business days as provided for in the general permit. I also understand that, by submitting this NOI, I am acknowledging that the SWPPP has been developed and will be implemented as the first element of construction, and agreeing to comply with all the terms and conditions of the general permit for which this NOI is being submitted.


\section*{Print Last Name}
\begin{tabular}{l|l|l|l|l|l|l|}
\hline\(M\) & \(C\) & \(K\) & \(E\) & \(N\) & \(N\) & \(A\) \\
\hline
\end{tabular}

\section*{Owner/Operator Signature}
\(\square\)


\title{
Hidden Oak Subdivision
}

\title{
Phase 1A Literature Review \& Sensitivity Analysis \& Phase 1B Archaeological Field Reconnaissance Survey
}


\author{
Hidden Oak Road \\ Town of North Castle Westchester County, New York
}

\section*{Prepared for:}

McKenna Custom Homes, Inc.
343 Manville Road
Pleasantville, NY 10510

By:
CITY/SCAPE: Cultural Resource Consultants
166 Hillair Circle
White Plains NY 10605

\title{
Hidden Oak Subdivision
}

\author{
Hidden Oak Road \\ Town of North Castle \\ Westchester County, New York \\ \section*{TABLE OF CONTENTS}
}
Management Summary
Maps \& Figures List
Phase 1A Literature Review and Sensitivity Analysis
Introduction ..... 1
Project Area Description ..... 1
Environmental Conditions ..... 4
Potential for the Site to Contain Prehistoric or Historic Cultural Resources ..... 6
History of the Site ..... 6
National Register Eligible and Listed Properties ..... 15
Additional Research Undertaken ..... 15
Sensitivity Assessment and Site Prediction ..... 16
Conclusions and Recommendations ..... 16
Phase 1B Archaeological Field Reconnaissance Survey
Phase 1B Introduction ..... 17
Phase 1A Information ..... 17
Methodology ..... 17
Field Methodology ..... 17
Field Results ..... 18
Rockshelters and Mines ..... 19
Summary and Conclusions ..... 19
Bibliography ..... 20

\section*{APPENDICES:}

Appendix A: Photographs
Appendix B: Soils Description and Maps
Appendix C: Shovel Test Records

\section*{Management Summary}

SHPO Project Review Number (if available):
Involved State and Federal Agencies:
Phase of Survey: Phase 1A Literature Review \& Sensitivity Analysis \& Phase 1B Archaeological Field Reconnaissance Survey

Location Information:
Location: Hidden Oak Road
Minor Civil Division: Town of North Castle
County: Westchester County, New York
Survey Area (Metric \& English)
Length: 1150' (350)
Width: 650' (198 m)
Depth (when appropriate):
Number of Acres Surveyed: \(\pm \mathbf{6 . 5}\) acres ( \(\mathbf{2} .63\) hectares).
] Number of Square Meters \& Feet Excavated (Phase II, Phase III only): N/A
Percentage of the Site Excavated (Phase II, Phase III only):
USGS 7.5 Minute Quadrangle Map: Glenville CT \& Mt Kisco
Archaeological Survey Overview
Number \& Interval of Shovel Tests: 93 at 50' ( \(\mathbf{1 5} \mathbf{~ m}\) )
Number \& Size of Units: N/A
Width of Plowed Strips: N/A
Surface Survey Transect Interval: N/A
Results of Archaeological Survey
Number \& name of prehistoric sites identified: 0
Number \& name of historic sites identified: 0
Number \& name of sites recommended for Phase II/Avoidance: N/A
Results of Architectural Survey
Number of buildings/structures/cemeteries within project area: 0
Number of buildings/structures/cemeteries adjacent to project area: 0
Number of previously determined NR listed or eligible buildings/structures/cemeteries/districts: 0
Number of identified eligible buildings/structures/cemeteries/districts: N/A
Report Author (s): Stephanie Roberg-Lopez M.A., R.P.A. Gail T. Guillet and Beth Selig, M.A.,R.P.A.
Date of Report: December 2014

\section*{MAP \& FIGURE LIST}

Maps
Map 1: 1986 USGS Topographical Map including the project area. New York Quadrangle. Scale: \(1 "=700^{\prime}\).

Map 2: Locator Map including the project area. ( Source: Google Maps). Scale: 1" \(=365^{\prime}\).
Map 3: 1851 Sidney \& Neff Atlas of Westchester County Scale: 1"=1650'.
Map 4: \(\quad 1858\) F.C Merry Map of Westchester County. Scale: \(1^{\prime \prime}=2200^{\prime}\).
Map 5: \(\quad 1868\) F.W. Beers Atlas of New York and Vicinity. Scale: 1" \(=825^{\prime}\).

Map 6: 1893 J.R. Bien Atlas of Westchester County, New York. Scale: 1" \(=1650\) '.

Map 7: 1908 Hyde \& Company. Map of North Castle and part of New Castle. Scale: 1"=1470'.

Map 8: 1914 G.W. Bromley. Atlas of Westchester County, New York. Scale: 1" \(=1470\) '.
Map 9: 1899 Stamford Quadrangle \& 1902 Tarrytown Quadrangle USGS Topographical Map. 15 Minute Series. Scale: \(1 "=1650\) '.

Map 10: 1951 Mt. Kisco and 1960 Glenville CT. Quadrangles. 7.5 Minute Series. Scale: 1" \(=7750\) '

\section*{Figures}

Fig. 1:
Fig. 2:

Fig. 3: Hidden Oak Subdivision Site. Phase 1B Archaeological Field Reconnaissance Map. Scale \(1 "=100\) '.

\title{
HIDDEN OAK SUBDIVISION \\ Hidden Oak Road \\ Town of North Castle. Westchester County, New York
}

\section*{Introduction}

In October 2014, CITY/SCAPE: Cultural Resource Consultants undertook a Phase 1A Literature Review and Sensitivity Analysis of Hidden Oak Subdivision site located in the Town of North Castle, Westchester County, New York. (Maps \(1 \& 2\) ) For the purposes of this report, the area of potential effect (APE) is considered the entirety of the property, which contains \(\pm 8.2158\) acres ( 3.325 hectares). It is proposed to subdivide the property into three house lots, each of which will include a residential structure, driveways, septic systems and storm water management systems.

The Phase 1A work was performed in accordance with the guidelines established by the New York State Office of Parks, Recreation and Historic Preservation (OPRHP) and the Standards for Cultural Resource Investigations and the Curation of Archeological Collections published by the New York State Archeological Council (2005 \& 2000). The field investigation and technical report meet the specifications of the Secretary of the Interior's Standards and Guidelines for Archeology and Historic Preservation (Federal Register 48:190:44716-44742) (United States Department of the Interior 1983). All work performed meets the requirements of the relevant federal standards (36 CFR 61) and of the State Environmental Quality Review Act (SEQRA) 6NYCRR, part 617 of the New York State Environmental Conservation Law. In addition, the qualifications of the Principal Investigator, who will supervise the project, meet or exceed the qualifications described in the Secretary of the Interior's Professional Qualifications Standards (Federal Register 48:190:44738-44739) (United States Department of the Interior 1983).

\section*{Project Area Description}

The project area is located on the east side of King Street (Route 120) in the Town of North Castle New York, and northeast of the Kensico Reservoir. The project area is bounded to the north by Hidden Oak Road, and to the east and south by forested land. (Photos \(5 \& 6\) ) On the southern boundary is a small stream that empties into the Kensico Reservoir, which, along with the land to the south of the project area, is part of the City of New York watershed. The project area contains open forest with extensive rock outcrops and steep slopes descending to the drainage noted above. (Photo 7) Map research indicates that the project area was open farm land throughout the \(19^{\text {th }}\) and early \(20^{\text {th }}\) centuries. The project area, which is marked by stone walls, is vacant, except for construction materials that have been stored on the site.

To the west of the project area, fronting King Street (Route 120), is a house that dates to the early \(19^{\text {th }}\) century. With the exception of this house, the area in which the Hidden Oak Subdivision is located consists of houses built in the later part of the \(20^{\text {th }}\) and the early part of the \(21^{\text {st }}\) century.


Map 1: 2013 USGS Topographical Map including Project Area. Mt. Kisco NY \& Glenville CT Quadrangle. Scale: 1" \(=700^{\prime}\).


Map 2: Locator Map including Project Area. (Source: Google Maps). Scale: 1"=365’.


Fig. 1: Aerial Photograph showing Project Area. (Source: Google Earth) Scale: 1" \(=370\) '.

\section*{Environmental Conditions}

The elevation of the Village of Armonk, located to the west of the project area, is \(\pm 387\) feet ( 117.95 meters) above mean sea level (AMSL). The Hidden Oak Subdivision is located at a lower elevation with the elevation in the northern portion of the site reaching \(160^{\prime}(48.7 \mathrm{~m})\) AMSL. The land then drops to \(123^{\prime}(37.5 \mathrm{~m})\) in the southern portion of the project area.

The Hudson Valley region, of which Westchester County is a part, is a northern extension of the Great Appalachian Valley. The site itself is considered to be within the northern extension of the Manhattan Prong, which is part of the larger New England Physiographic Province. The underlying bedrock consists of Cambrian and Ordovician duotones, quartzites, schist's and gneiss. Bedrock outcrops occur in a number of places on the site, but the surficial deposits, to the extent that they exist, consist of undifferentiated glacial till. Most recently, during the Wisconsin glacial event of the Pleistocene Epoch approximately 10,000 to 13,000 years ago, a sheet of ice several thousand feet thick covered the area. As it retreated, contouring the land and smoothing off mountain tops, it left behind a mantle of sediment. This unconsolidated sediment provided the source material for the undifferentiated glacial till that covers most of the bedrock in the region.

The characteristics of the soils within the project area have an impact on the potential for the site to contain prehistoric cultural material. The Natural Resources Conservation Service indicates that the project area contains well drained soils, including Charlton loam (Chic), Charlton-Chatfield complex (Croc) and Chatfield-Hollis-Rock outcrop (Cud). (Appendix B: Soil Descriptions, Fig. 2)

As noted above, there is a small stream located on the eastern and southern boundaries of the project area that flows into the Kensico Reservoir, which is on the west side of King Street (Route 120). The Kensico Reservoir is part of the New York City watershed.

Stone walls define the boundaries of former agricultural fields or pasture. Access to the project area is a temporary road. No structures are located on the site, but the central area contains construction materials that have been stored on site.

\section*{Potential for the Site to Contain Prehistoric and Historic Cultural Resources}

As part of the initial research for the Phase 1A report, CITY/SCAPE: Cultural Resource Consultants examined the available information regarding prehistoric sites in the general vicinity. Due to the ongoing scanning and digitizing process at the Office of Parks, Recreation and Historic Preservation (OPRHP), the site files were not available for review and CITY/SCAPE's staff, therefore, relied on information obtained from several cultural resource surveys completed for projects in the vicinity of the Hidden Oaks Subdivision site.

Three prehistoric archaeological sites were identified, two of which are located along the Byram River, which is located east of the project area. In historical texts, the Stockade Site (A119.10.0009/NYSM 5178) and Camp Site II (A119.10.0008/NYSM 5171) were identified as Late Woodland sites; however, no professional excavations were undertaken at these locations. To the northeast of the project area, NYSM 8853 identifies a site containing prehistoric finds located on a terrace along an unnamed road. No additional information was available regarding this site.

The Townsend Site is located northwest of the hamlet of Armonk. While this site is located more than a mile \((1.6 \mathrm{~km})\) from the project area, it is included, because it provides information on the types of sites and material recovered in the general area. Two loci were discussed, the first was identified as a cave or rock shelter, and the second as a camp site. According to the author of the report, a total of fifty-one (51) prehistoric artifacts were recovered, including several diagnostic projectile points, among them one or more Orient Fishtails, a Wading River, a Squibnocket Triangle, two Beekman Triangles, and several untyped stemmed points. In addition to the diagnostics, there were also Stage 2, Stage 3 and Stage 4 bifaces, projectile point tips, a cobble hammerstone and a utilized flake (Wiegand 1997). In addition to the projectile points and non-diagnostic material, the Townsend Site produced a total of 5,783 pieces of lithic debitage, including quartz, quartzite, grey chert, dark gray/black chert and yellow jasper.

While there are few professionally excavated prehistoric sites identified within a mile of the project area, the project area itself is located in an area with elevated level terraces overlooking wetland and freshwater resources that would have been attractive to prehistoric peoples. For this reason, the prehistoric potential within the project area must be considered moderate to high.

The eastern portion of the Bedford Road Historic District, which is described as historically and architecturally significant, falls within a two mile radius of the project area. The Bedford Road Historic District is described ". . . as the last intact grouping of distinctive nineteenth-century buildings that reflect the architectural character of Armonk during the period 1842-1880" (NR Form 1985, Section 8). Due to its distance from the project area, the historic district will not be impacted either physically or visually by the proposed development.

\section*{History of the Site}

As part of the Phase 1A Literature Review and Sensitivity Analysis, historic maps of the area were examined to determine whether the project area had the potential to contain Map Documented Structures (MDS) or historic cultural resources. The earliest map examined for this report dates to 1851. The Map of Westchester County, published by Sidney \& Neff, includes the project area. On this map, King Street is shown extending through the Town of North Castle. The project area is located on property owned by W. Lane, whose residence was located adjacent to the northwestern boundary of the project area. The house is an example of a vernacular farm house and exhibits elements of the Greek Revival style. Based on its architectural details, the house dates to the early \(19^{\text {th }}\) century. On the Armonk-Bedford Road between Bedford Street and School Street were several houses owned by the Townsend family. There were also two stores, a school and an Episcopal Church located in the area. Along Whippoorwill Road, east of the project area, there were numerous residences located on both sides of the highway. To the southwest of the project area, Nanny Hagen Road (then Nannahagen Road) crossed the Bronx River, which drained to the south. On this map, the project area is interior land that would have been used as pasture or woodlot. No structures were shown within the project area boundaries.


Map 3: Sidney \& Neff's 1851 Atlas of Westchester County Scale: 1" \(=1650\) '.

The 1858 Map of Westchester County (Map 4), which was surveyed and published by F. C. Merry, indicates that the Village of Armonk (then spelled "ARMONCK") had been established at the intersection of two major roads, one running northeast-southwest (Main Street/Armonk-Bedford Road), and the other northwest (East Whippoorwill Road) and east (Bedford Road). The Wampus River flows to the east of the village center. A portion of Armonk is identified on the 1858 map as an early subdivision, which was laid out by St. Stephen's Episcopal Church; remnants of that development are reflected in the block defined by Bedford Road. The area surrounding Armonk contained a
scattering of farms located along Whippoorwill Road to the east and the Armonk- Bedford Road (NYS Route 22) to the south. The land on which the project area is located was still owned by W. Lane. S. Lane owned the land to the south. Southwest of the project area, the Bronx River was shown as a small stream. The Bronx River would later be impounded to create the Kensico Reservoir.


Map 4: 1858 F.C Merry Map of Westchester County. Scale: 1" \(=2200\) '.

On the 1868 F. W. Beers' Atlas of New York and Vicinity, the hamlet of Armonk is well established east of the project area. (Map 5) The project area remained vacant interior farm land. This map indicates that the S. J. Lane residence, which was shown on the 1858 map, was now owned by W. J. Lane, who also owned the house northwest of the project area at the intersection of King Street and Nanny Hagen Road. This house, identified as Locust Grove, is

280 King Street. This map shows the Bronx River as a substantial waterway west of the project area which defines the boundary with the Town of Mount Pleasant.


Map 5: F.W. Beers' 1868 Atlas of New York and Vicinity. Scale: 1" \(=825\) '.

By 1893, when J. R. Bien published the Atlas of Westchester County, New York, the W. Lane residence was owned by Leander Hunter. Hunter then owned 159 acres, which included the project area. (Map 6) South of the project area was Windfield Hall, an estate owned by W. Lane that included 450 acres. Also to the south of the project area was a farm owned by David Waterbury that contained 100 acres. East of the project area along Whippoorwill Road, the Waterbury Estate encompassed 440 acres. The Bronx River is shown as flowing to the west of the project area, while a small stream flowed into the river from the upland area east of the project area.


Map 6: 1893 J.R. Bien Atlas of Westchester County, New York. Scale: 1" \(=1650\) '

Fifteen years later, when Hyde \& Company published the Map of North Castle in the Atlas of Westchester County, New York, there had been few changes in the general vicinity of the project area. (Map 7) To the west of the
project area, the former Windfield Hall estate was now owned by E. Reynolds. The ownership of the lands to the north and south of the project area had remained unchanged. Leander Hunter owned the house on the northwestern boundary of the project area.


Map 7: Hyde \& Company's 1908 Map of North Castle and part of New Castle. Scale: 1"=1470'.

In 1914, G. W. Bromley published the Automobile Atlas of Westchester County, New York. (Map 8) At that time, the project area was owned by the Leander Hunter Estate. This map shows the Bronx River flowing into the Kensico Reservoir. Along Whipoorwill Road, the Waterbury Estate was still shown, along with residential structures owned by Mrs. A. Smith and Stephen Briggs.


Map 8: G.W. Bromley's 1914 Atlas of Westchester County, New York. Scale: 1"=1470’.

Two historic topographical maps were examined for this report. These maps indicate the location of roads and structures, but do not include the names of landowners. The 1899, the USGS Stamford Quadrangle and 1902 Tarrytown topographical map for the area of North Castle include the project area. The street pattern had remained the same, with the reservoir located on the west side of King Street. (Map 9) On this map, there were no structures shown within the boundaries of the project area or in the immediate vicinity of it. Several structures were shown along Whippoorwill Road.


Map 9: 1899 Stamford Quadrangle \& 1902 Tarrytown Quadrangle USGS Topographical Map. 15 Minute Series. Scale: 1" \(=1650\) '.


Map 10: 1951 Mt. Kisco and 1960 Glenville CT. Quadrangles. 7.5 Minute Series. Scale: 1" \(=775\),

By 1951/1960, the roads in the vicinity of the site had change significantly. King Street was now identified as Route 120 and Hidden Oak Road had been opened. The reservoir is identified as Kensico Lake, with the area near
the project area identified as Pleasantville Cove. Adjacent to the northwest boundary of the project area is the house located at 280 King Street. The wetland area and the small stream that drains into the Kensico Reservoir are located outside the southern boundary of the project area.

\section*{National Register Eligible and Listed Properties}

There is one National Register property, the Witthoeff Residence, within a one mile radius of the project area. The Witthoeff Residence, located on Tallwoods Road, was listed in 2010. The structure, built by Arthur Witthoeft in 1957, is an example of the International style. The house is considered one of the great remaining residential examples of the International Modernist style in this region (NRNF 2010: section 8 page 1). The Witthoeft property is located 1530 ' from the proposed project area. Topography and distance make it unlikely that the proposed Hidden Oak Subdivision will have any visual impacts to the Witthoeft property.

\section*{Additional Research Undertaken}

As part of the research for the Phase 1A Literature Review and Sensitivity Analysis, surveys completed for projects in the general area were consulted. As previously stated, the hard copies of these reports were not accessible at the OPRHP office, and cultural resource reports completed in the area were, therefore, used to develop this regional context.

Directly to the west of the project area, Louis Berger completed a Phase 1 Cultural Resources Survey of the Nichols Project site, located south of the Village of Armonk near the confluence of the Wampus and Byram Rivers. The Nichols Project site, located two miles southeast project area, is situated in proximity to a stream on well drained ground. Despite the environmental conditions on the site, which suggested that the project area contained the potential to contain cultural resources, the Nichols Project site contained no significant historic or prehistoric cultural resources.

Eugene J. Boesch, Ph.D., completed a Stage I Archaeological Investigation of the Proposed Water Pipeline Crossing of the Wampus River - IBM Headquarters Building Study Area in 1996. Located west of the project area and I-684, the project area yielded scant prehistoric materials. The site was interpreted as a short-term prehistoric campsite, but the finds were not judged significant and no further work was recommended (Boesch 1996).

In 1987, improvements were proposed to the Route 22/I-684 interchange, which is located 2 miles east of the project area. The State Education Department undertook a survey of the areas to be impacted by the proposed improvement. No evidence of either prehistoric or historical archaeological sites was identified within the proposed improvement area (Vaillancourt 1987:18).

In 1994, the Leisure Farm Subdivision Property, located \(2 \frac{1}{2}\) miles east project area, was investigated at the level of a Phase 1A and Phase 1B by Sheffield Associates. No prehistoric material was recovered from the site. The property contained several historic structures, but, as these were not judged to be eligible for National Register listing, no further investigation was recommended.

In 1986, Ernest A. Wiegand II completed a Phase 1A and Phase 1B report for the Kent Development site, located immediately west of Main Street in the Village of Armonk. The site is approximately \(11 / 2\) miles east of the
proposed project area. The survey of the property yielded prehistoric materials, including a Levanna projectile point and several pieces of debitage. The site, referred to as the Whippoorwill Site, was interpreted as a briefly occupied camp site. With the exception of the Levanna point, scant evidence of prehistoric occupation was recovered and no further archaeological work was recommended (Wiegand 1986:11).

In 2009, CITY/SCAPE completed a Phase 1A Literature Review and Sensitivity Analysis and Phase 1B Archaeological Field Reconnaissance Survey of the Turet Subdivision. The Phase 1B survey investigated five acres along the Town's southern boundary. No cultural material of any kind was recovered in the Phase 1B survey.

\section*{Sensitivity Assessment and Site Prediction}

Drawing on previous surveys of prehistoric sites in the vicinity of the project area in the Town of North Castle, Westchester County, New York, there is evidence that Native Americans utilized the area. The types of sites identified include rockshelters and small camp sites. There is a report of a stockaded village near the confluence of the Wampus and Byram Rivers, but the site is anecdotal and it was never subjected to a professional archaeological survey. There is also anecdotal evidence of sites along the Bronx River, which is now impounded by the Kensico Reservoir, but historically flowed a short distance to the west of the project area. Based on the presence of sites in the vicinity, the prehistoric potential for the Hidden Oak Subdivision is considered to be moderate to high. This assessment is based on the presence of prehistoric sites in similar topography within a one mile radius of the project area, the relationship of the site to the Bronx, Wampus and Byram Rivers, which would have provided access to the area from Long Island Sound, and environmental factors on the southern boundary of the site, including the presence of a small stream corridor and wetlands. The potential of the site to contain prehistoric cultural resources is reduced by the fact that significant portions of the project area contain steep slopes in excess of 12 percent.

The potential for the project to contain historic cultural resources is considered low to moderate. Research indicates that in \(19^{\text {th }}\) and early \(20^{\text {th }}\) century the project area was interior farmland. No structures were located within the project area, but there is a house that dates to the early \(19^{\text {th }}\) century located adjacent to the northwestern boundary of the property, and there is the possibility that dump sites or sheet middens could be present in the northwestern portion of the project area.

\section*{Conclusions and Recommendations}

Based on the sensitivity model developed by the New York Archaeological Council (NYAC), which has been accepted by OPRHP, as well as reported resources within a one mile radius of the Hidden Oak Subdivision site, it has been determined that the project area has a moderate to high potential to contain prehistoric cultural resources. With respect to historic cultural resources, it is considered possible that dump sites or shaft features associated with the historic occupation of the house at 280 King Street may exist within the northwestern portion of the project area. It is, therefore, recommended that a Phase 1B Archaeological Field Reconnaissance Survey be undertaken on the Hidden Oak Subdivision site to rule out or rule in the presence of both prehistoric and historic cultural resources. The Phase 1B survey will be limited to the Area of Potential Effect (APE), eliminating from testing those area with slopes that are 12 percent or greater.

\section*{PHASE 1B FIELD RECONNAISSANCE SURVEY}

\section*{Phase 1B Introduction}

On December 12, 2014, CITY/SCAPE: Cultural Resource Consultants completed a field reconnaissance level archaeological survey of the Hidden Oaks Subdivision Site in the Town of North Castle, Westchester County, New York. (Maps 1 \& 2)

Archaeological fieldwork was directed by Stephanie Roberg-Lopez, M.A., R.P.A., Principal Investigator. Beth Selig, M.A., R.P.A., CITY/SCAPE's staff archaeologist, supervised the excavations. Field technicians include Franco Zani Jr. and Frank Spada. A light flurry covered the ground surface, and the soils were soft with no evidence of frozen ground. The final report was completed by Beth Selig. Site photography was completed by Gail T. Guillet and Beth Selig. The preparation of the Field Reconnaissance Map and final production of the report was completed by Beth Selig.

\section*{Phase 1A Information}

The proposed project description, environmental information, and archaeological sensitivity assessment are included in the Phase 1A report that is bound with this report.

\section*{Methodology}

Results of the Phase 1A confirmed that the site is located in an area of prehistoric activity. In addition, the landscape closely conforms to an ecological model that indicates that the more level, undisturbed portions of the project area could be highly sensitive for prehistoric cultural materials. The testing strategy for the site was, therefore, structured around the knowledge that portions of the property possessed the potential to yield prehistoric cultural remains. The potential for the site to yield historic cultural material was considered moderate to low.

The areas selected for shovel testing were subjected to tests at intervals of \(15 \mathrm{~m}\left(50^{\prime}\right)\) along transects conforming to the land surface. Determinations concerning the sensitivity of the various areas were based on environmental factors, topography, and known activity patterns of the prehistoric population. The locations of the tests and disturbed areas were recorded on a large-scale map that shows surveyed borders and the locations of the various structures identified on the site. (See Field Reconnaissance Map)

\section*{Field Methodology}

Field methodology employed at the Hidden Oaks Subdivision site consisted of several stages of investigation. These included:
1. A walkover and visual inspection of the site to assess areas of potential sensitivity for prehistoric cultural remains.
2. The excavation of a control shovel test to establish the stratigraphy of the site and to identify the depth and composition of the sterile glacially deposited sub soils.
3. Systematic visual inspection of the land surface to rule out the presence of rock faces and overhangs.
4. Shovel testing in the areas identified as having a potential sensitivity for prehistoric remains.
5. Photographic documentation of the overall site.

The methodology for shovel testing in the sensitive areas involved excavating \(40 \mathrm{~cm}(16\) ') diameter shovel tests at 15 m (50') intervals. Soils were passed through a \(1 / 4\) inch steel mesh screen, and the material remaining in the screens was carefully examined for historic and prehistoric artifacts. The stratigraphy of each test was recorded including the depth and the soil description of each layer. (See Appendix C) No cultural material was recovered from the Hidden Oaks Subdivision site.

\section*{Field Results}

Once a testing strategy had been established and areas unsuitable for testing (standing water, percolation tests and associated spoil piles) were eliminated from the survey, the potentially sensitive areas were systematically shovel tested. The areas subjected to shovel testing represent the flat and well drained areas within the project area. To maintain spatial control the site was divided into three areas. The division of these areas was based on existing stone walls that mark small pasture areas within the project area.

For the purposes of the Phase 1B investigation, testing was limited to the Area of Potential Effect (APE). The proposed development plan, provided by the project sponsor, indicates two conservation easement areas located adjacent to the southeastern, and western boundaries of the project area. No testing was undertaken within the conservation easements.

\section*{Area 1}

The first area to be tested is located in the central portion of the project area. As stated, stone walls defined the boundaries of this rectangular area. (Photos 9 \& 20) Transects began along the northern stone wall, and progressed south to a second stone wall. Six transects containing 36 shovel test comprehensively tested this area. Of the 36 shovel tests, seven shovel tests were not excavated due to steep slopes or exposed surficial bedrock. (Photos 19 \& 26) The southern portion of TR 6 encountered areas of standing water, and three open percolation tests with large back dirt piles on the surface. (Photos 23-25) The soils in this area consisted of a dark brown to dark yellowish brown silty sandy loam overlying a reddish brown or brownish yellow silty clay. No cultural material of any kind was recovered from this portion of the project area.

\section*{Area 2}

The second area to be tested is located in the southern portion of the site. As with the previous area, stone walls provided identifiable boundaries. Transects 7 through 13 were aligned north to south in this area. (Photo 26) Much like Area 1, the landscape consists of steep slopes with areas of exposed surficial bedrock. (Photos 23-26) A total of 34 shovel tests were planned in this area. Of the 34 planned shovel tests, 13 were not excavated due to steep
slopes and areas of exposed surficial bedrock. Like Area 1, the soils varied with a dark brown to brown silty sandy loam A horizon, overlying a reddish brown sand with gravel, or a brownish yellow sandy clay. No cultural material of any kind was recovered from Area 2.

\section*{Area 3}

The final area to be tested is the northern portion of the project area. This area is also characterized by areas of steep slope and exposed surficial bedrock. Portions of the sloped area, adjacent to the northern boundary, are currently being used to store construction equipment. (Photo 5) In addition, other areas of the landscape are overgrown with forsythia and honeysuckle bushes. (Photo 17) Transects 14 through 18 were aligned south to north in Area 3. Here a total of 23 shovel tests were planned. Of the planned shovel tests, five were eliminated due to steep slope, exposed bedrock, surface water and percolation test pits. (Photo 22) The soils identified in this location are consistent with those previously discussed. No cultural material of any kind was recovered.

\section*{Rockshelters and Mines}

As discussed above, there are numerous areas of exposed bedrock, composed primarily of dolostone and gneiss, located throughout the project area. None of the outcrops had the height to have been utilized as rockshelters. Several small veins of quartz were identified within the bedrock, none of which appear to have been quarried. There were also large cobbles throughout the property. As with the quartz veins, none of the cobbles exhibited evidence of being culturally modified.

\section*{Summary and Conclusions}

In December of 2014, CITY/SCAPE: Cultural Resource Consultants completed a Phase 1B archaeological field reconnaissance survey of the Hidden Oak Subdivision site in the Town of North Castle Westchester County, New York. A thorough review of the existing body of archaeological data relevant to the project area was undertaken and conclusions were drawn concerning the probability of encountering prehistoric and/or historic cultural remains on the site. Areas of slope in excess of \(15 \%\) grade, exposed surficial bedrock, standing water and areas of prior disturbance were eliminated from testing. Once this process was completed, areas possessing the potential to yield cultural remains were subjected to systematic subsurface archaeological testing.

A total of 93 shovel tests were placed in areas considered to have the potential to yield prehistoric or historic cultural material. Of the 93 shovel tests none yielded prehistoric or historic cultural material. Based on the results of the archaeological field survey completed on the Hidden Oak Subdivision site, it is the conclusion of CITY/SCAPE: Cultural Resource Consultants that the project may proceed without further archaeological investigation of the Hidden Oak Subdivision site.

\section*{Bibliography}
F. W. Beers

1868 Atlas of the Town of North Castle. F. W. Beers, Ad Ellis, \& G.G. Soule: New York. Plate: 19.

Berger, Louis and Associates, Inc.
1985 Phase I Cultural Resource Survey of the Nichols Project Site: Armonk, Westchester County, New York
Bien, Joseph R.
1893 Atlas of Westchester County, New York. Julius Bien \& Company: New York.
Boesch, Eugene
1995a Stage 1 Archaeological Investigation of the Proposed Water Pipeline Crossing of the Wampus River - 1 BM Headquarters Building Study Area: Town of North Castle, Westchester County, New York

Bromley, G. W.
1914 Automobile Atlas of Westchester County, New York. G. W. Bromley and Co.: Philadelphia, PA.

CITY/SCAPE: Cultural Resource Consultants
2014 Phase 1A Literature Review and Sensitivity Analysis \& Phase 1B Archaeological Field Reconnaissance Survey. Anderson Hill Road Site. Town of Harrison, Westchester New York.
2009 Phase 1A Literature Review and Sensitivity Analysis \& Phase 1B Archaeological Field Reconnaissance Survey. Turet Subdivision. Town of New Castle. Westchester New York.
2008 Phase 1A Literature Review and Sensitivity Analysis \& Phase 1B Archaeological Field Reconnaissance Survey. Chappaqua Crossing. Town of New Castle. Westchester New York.
2007 Phase 1A Literature Review and Sensitivity Analysis \& Phase 1B Archaeological Field Reconnaissance Survey. 20 Bedford Road. Village of Armonk. Town of North Castle. Westchester New York.
1996a Stage 2 Archaeological Investigation. Chiselhurst Estates. Town of New Castle. Westchester County, NY.
1996b Stage 1A Literature Review. Chiselhurst Estates. Town of New Castle. Westchester County, NY.
1995a Stage 2 Archaeological Investigation. Ferrovecchio Subdivision. Town of New Castle. Westchester County, NY.
1995 b Stage 2 Investigation of Historic Site. Ferrovecchio Subdivision. Town of New Castle. Westchester County, NY.

Eisenberg, Leonard
1978 "Paleo-Indian Settlement Patterns in the Hudson and Delaware River Drainages." In Occasional Publications in Northeastern Anthropology. vol. 4. Archaeological Services: Bethlehem, CT.

Funk, Robert E.
1976 Recent Contributions to Hudson Valley Prehistory. New York State Museum Memoir 22. Albany, NY.
Küchler, August W.
1964 Potential Natural Vegetation of the Conterminus United States. American Geographical Society, New York.

Hyde \& Company
1908 Atlas of the Westchester County, New York. Detail of the Town of North Castle. Published by Hyde \& Company.

Merry, F. C.
1858 Map of Westchester County, New York. M. Drips: New York. Scale: \(11 / 2 "=1\) mile.

Parker, Arthur

1920 The Archaeological History of New York. New York State Museum Bulletin. No. 237 and 238. The University of the State of New York: Albany, NY.

Public Archaeology Facility
2007 Phase 1 Cultural Resource Survey. Kaysal Court Wetland Mitigation Project. Town of North Castle, Westchester New York.

Ritchie, William A.
1973 Aboriginal Settlement Patterns in the Northeast. Memoir 20. New York State Museum and Science Service. Albany, NY.
1969 The Archaeology of New York State. Natural History press: Garden City, NY.
Scharf, J. Thomas
1992 History of Westchester County, New York Including Morrisania, Kings Bridge, and West Farms, Which Have Been Annexed to New York City. L. E. Preston \& Co.: Philadelphia. Reprint of 1886 Edition by Picton Press: Camden. ME.

Schuberth, Christopher J.
1968 The Geology of New York City and Environs. The Natural History Press: Garden City, NY
Sheffield Archaeological Consultants
1994 Stage 1A and Stage 1B Cultural Resources Investigation. The Subdivision at Leisure Farm. Town of North Castle. Westchester County, New York.

Sidney \& Neff
1851 Map of Westchester County, New York. Newell S. Brown, Publisher: White Plains \& Phil. Scale: 2 6/8" = 1 mile.

Snow, Dean R.
1980 The Archaeology of New England. Academic press: New York, NY.
United States Department of Agriculture (USDA): Soil Conservation Survey
1994 Soil Survey of Putnam and Westchester Counties, New York.
United States Department of the Interior
1987 National Register Nomination Form for Bedford Road Historic District, Bedford Road, Armonk, Westchester County, New York
1984 National Register Nomination Form for Smith Tavern, Armonk Westchester County, New York
United States Geological Survey
2013 USGS Tope 7.5 Minute Series. Glenville Quad. Scale 1:50,000.
1960 USGS Tope 7.5 Minute Series. Glenville Quad. Scale \(1: 50,000\).
1951 USGS Tope. 7.5 Minute Series. Mt. Cisco Quad. Scale: 1=50,000.
1902 USGS Tope. 15 Minute Series. Tarrytown Quad. Scale: 1:62,500.
1899 USGS Tope. 15 Minute Series. Stamford Quad.. Scale: 1:62,500.
Vaillancourt, Dana R.
1987 Route 11/I-684 Interchange Improvement: Village of Armonk, Town of North Castle, Westchester County, NY.

Westchester County Department of Planning
1986 Archaeological Resources Study. Westchester County Department of Planning: White Plains, NY.

\section*{Wiegand, Ernest}

1997a Stage 3 Archaeological Data Recovery of the Townsend Site. Townsend Estates Subdivision. Town of North Castle, New York. (Westchester County) Prepared for Townsend Estates LLC.
1997b Stage 1 Archaeological Reconnaissance Survey. Townsend Estates Subdivision. Town of North Castle, New York. (Westchester County) Prepared for Townsend Estates LLC.
1989 Stage lA \& 1B Cultural Resources Survey of the Proposed Somers Golf Course. Town of Somers. Westchester County, NY.
1989 Phase 1A and Phase 1B Cultural Resource Survey of the Proposed Thomas Dwight Estates. Town of North Castle. Westchester County, NY.
1986a Phase 1A and 1B Cultural Resources Survey of the Kent Development. North Castle, New York (Westchester County).
1986b Phase 1A and 1B Cultural Resources Survey of the Whipporwill Ridge Development. North Castle New York, (Westchester County)

\section*{FIELD RECONNAISSANCE MAP}


\section*{APPENDICES}

\section*{LIST OF APPENDICES}

Appendix A: Photographs
Appendix B: Soil Descriptions and Map
Appendix C: Shovel Test Records

\section*{APPENDIX A}

\section*{PHOTOGRAPHS}


Photo 1: Entrance to Hidden Oak Subdivision from Hidden Oak Road. Driveway to 6 Hidden Oak Road is to left.
View to southeast.


Photo 2: Looking northeast along entrance drive to Hidden Oak Subdivision. Stone wall located on property marks old farm field boundaries. Building in background is outbuilding on 280 King Street property.


Photo 3: 280 King Street. Hidden Oak Subdivision is adjacent to front and side yard of 280 King Street. View to northeast.


Photo 4: Much of land surface on Hidden Oak Subdivision is characterized by bedrock outcrops. View to southeast.


Photo 5: Proposed entrance drive for Hidden Oak Subdivision. Some building materials are currently stored on site. View to southeast.


Photo 6:. Portions of project area are relatively level, but underlain by bedrock that is near surface. View to southeast.


Photo 7: Project area falls steeply on southern boundary into area that is part of New York City watershed. View to southeast.


Photo 8: Another view to southeast from edge of southern part of Hidden Oak Subdivision site.


Photo 9: Looking southeast across project area to King Street and Kensico Reservoir.


Photo 10: Looking into project area from drive to 6 Hidden Oak Road. View to southeast.


Photo 11: 6 Hidden Oak Road. House is currently under renovation. View to northeast.


Photo 12: House located on north side of drive to 6 Hidden Oak Road is modern structure. View to northeast.


Photo 13: 5 Hidden Oak Road. House dates to \(20^{\text {th }}\) century. View to southeast.


Photo 14: House located north of 5 Hidden Oak Road dates to \(20^{\text {th }}\) century. View to east.


Photo 15: 10 Hidden Oak Road. House is recent construction. View to northwest.


Photo 16: 294 King Street. House located on King Street north of 280 King Street, which backs up to Hidden Oak Subdivision site. View to southeast.


Photo 17: Looking southeast across project area. Photo taken from highest elevation at northern boundary. View to southeast.


Photo 18: Dirt roadway provides access to interior of site. View to east.


Photo 19: Steep slopes and exposed bedrock located in Area 2. View to east.


Photo 20: Stone wall served as baseline for TR 1-TR 6. View to east.


Photo 21: Quartz cobbles were noted within stone wall and at surface. None exhibit evidence of cultural modification.
View to north.


Photo 22: Area of surface water noted in Area 3 adjacent to TR 20. A percolation test is located to right of roadway (not visible in photo). View to west.


Photo 23: Southeastern corner of Area 1 contained wet soils and surface water. View to north.


Photo 24: Landscape along TR 6 was visibly churned, likely due to deep percolation tests. See Photo 25. View to west.


Photo 25: One of many deep percolation test pits located throughout project area. View to east.


Photo 26: Field technician excavated TR 11. View to east.


Photo 27: Surface bedrock and downed trees were located across the site. View to northeast.


Photo 28: Northwestern portion of APE contains existing road that exhibits evidence of surface grading. View to south.

\section*{APPENDIX B}

\section*{SOIL DESCRIPTION AND MAP}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Name & Soil Horizon Depth & \begin{tabular}{l}
Texture/ \\
Inclusions
\end{tabular} & Slope (Percent) & Drainage & Landform \\
\hline Charlton Loam (ChC) & \begin{tabular}{l}
Surface: 0-8" \((0-20 \mathrm{~cm})\) \\
Subsoil: 8-24" (20-60 cm) \\
Subsoil: 24-60" (60-152 cm)
\end{tabular} & \begin{tabular}{l}
Loam \\
Sandy Loam \\
Sandy Loam
\end{tabular} & 8 to \(15 \%\) & Well Drained & Hill, Ridges, Till Plains \\
\hline \begin{tabular}{l}
Chatfield-Charlton complex, (CrC) \\
Chatfield \\
Charlton:
\end{tabular} & \begin{tabular}{l}
Surface: 0-2" (0-5.08 cm) \\
Subsoil: 2-7" (5.08-17.78 cm) \\
Substratum: 7-24" (17.79-60.96 cm) \\
Surface: 0-2 (0-5 cm) \\
Subsoil: 2-8" (5-20 cm) \\
Substratum:: 8-24" (20-60.96 cm)
\end{tabular} & \begin{tabular}{l}
Loam \\
Loam \\
Sandy Loam \\
Loam \\
Loam \\
Sandy Loam
\end{tabular} & 2 to 15\% & Well drained to somewhat excessively drained & Hills, ridges and till plains \\
\hline \begin{tabular}{l}
Chatfield Hollis \\
Complex (CuD) Chatfield \\
Hollis
\end{tabular} & \begin{tabular}{l}
Surface: 0-19" (0-18 cm) \\
Subsoil: 19-32" (49-82 cm) \\
Substratum: 32--72" (82-205 cm) \\
Surface: 0-6" (0-15 cm) \\
Subsoil: 6-13" (15-33 cm) \\
Substratum: 13-72" (33-205 cm)
\end{tabular} & \begin{tabular}{l}
Gravelly Fine Sandy Loam \\
Fine Sandy Loam \\
Unweathered Bedrock \\
Loam \\
Gravelly Fine Sandy Loam \\
Unweathered bedrock
\end{tabular} & 15 to 35\% & Well Drained & Hills, ridges \\
\hline
\end{tabular}


\section*{APPENDIX C}

\section*{SHOVEL TEST RECORDS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Transect & STP & Level & Depth (in) & Depth (cm) & Munsell & Soil Description & Cultural Material \\
\hline TR 1 & 1 & 1 & 0-14 & 0-35 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 14-19 & 35-47 & 10YR4/6 & Dark yellowish brown sandy clay & NCM \\
\hline & 2 & 1 & 0-45 & 0-18 & 10YR4/4 & Dark yellowish brown silty sandy loam & NCM \\
\hline & & 2 & 45-17 & 18-42 & 10YR4/6 & Dark yellowish brown sandy clay & NCM \\
\hline & 3 & 2 & 0-10 & 0-24 & 10YR4/4 & Dark yellowish brown silty sandy loam & NCM \\
\hline & & 1 & 10-14 & 24-35 & 10YR4/6 & Dark yellowish brown sandy clay & NCM \\
\hline & 4 & 1 & 0-7 & 0-17 & 10YR4/4 & Dark yellowish brown sandy loam, terminated at bedrock & NCM \\
\hline & 5 & 1 & - & - & - & Not Excavated: Exposed Bedrock & \\
\hline & 6 & 1 & 0-4 & 0-10 & 10YR4/6 & Dark yellowish brown sandy clay & NCM \\
\hline & & 2 & 4-12 & 10-30 & 10YR4/4 & Dark yellowish brown sandy loam, terminated at bedrock & NCM \\
\hline TR 2 & 7 & 1 & - & - & - & Not Excavated: Slope > 15\% & \\
\hline & 8 & 1 & 0-12 & 0-30 & 10YR4/4 & Dark yellowish brown sandy loam, terminated at bedrock & NCM \\
\hline & 9 & 1 & 0-6 & 0-15 & 10YR4/4 & Dark yellowish brown sandy loam, terminated at bedrock & NCM \\
\hline & 10 & 1 & - & - & - & Not Excavated: Slope > 15\% & \\
\hline & 11 & 1 & - & - & - & Not Excavated: Slope > 15\% & \\
\hline & 12 & 1 & 0-12 & 0-30 & 10YR4/4 & Dark yellowish brown sandy loam, terminated at bedrock & NCM \\
\hline TR 3 & 13 & 1 & 0-7 & 03 & 10YR3/4 & Dark brown sandy loam, terminated at bedrock. & NCM \\
\hline & 14 & 1 & 0-18 & 0-33 & 10YR3/4 & Dark brown sandy loam & NCM \\
\hline & & 2 & 18-24 & 33-43 & 10YR4/6 & Dark yellowish brown sandy clay & NCM \\
\hline & 15 & 1 & - & - & - & Not Excavated: Slope > 15\% & \\
\hline & 16 & 1 & 0-4 & 0-10 & 10YR3/4 & Dark brown sandy loam, terminated at bedrock. & NCM \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Transect & STP & Level & Depth (in) & Depth (cm) & Munsell & Soil Description & Cultural Material \\
\hline & 17 & 1 & 0-20 & 0-25 & 10YR3/4 & Dark brown sandy loam & NCM \\
\hline & & 2 & 20-25 & 25-36 & 10YR4/6 & Dark yellowish brown sandy clay & NCM \\
\hline & 18 & 1 & 0-14 & 0-25 & 10YR3/4 & Dark brown sandy loam, terminated at bedrock. & NCM \\
\hline TR 4 & 19 & 1 & 0-18 & 0-48 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 18-20 & 48-50 & 7.5YR5/4 & Brown sandy clay & NCM \\
\hline & 20 & 1 & 0-10 & 0-25 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 10-14 & 25-35 & 10YR5/4 & Yellowish brown sandy clay & NCM \\
\hline & 21 & 1 & 0-14 & 0-35 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 14-18 & 35-45 & 10YR5/4 & Yellowish brown sandy clay & NCM \\
\hline & 22 & 1 & 0-9 & 0-23 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 9-10 & 23-25 & 10YR5/8 & Brownish yellow sandy clay & NCM \\
\hline & 23 & 1 & 0-14 & 0-35 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 14-18 & 35-45 & 10YR5/6 & Yellowish brown sandy clay & NCM \\
\hline & 24 & 1 & 0-12 & 0-30 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 12-14 & 30-35 & 10YR5/4 & Yellowish brown sandy clay & NCM \\
\hline TR 5 & 25 & 1 & - & - & - & Not Excavated: Slope > \(15 \%\) & \\
\hline & 26 & 1 & 0-22 & 0-55 & 10YR4/4 & Dark yellowish brown sandy loam, terminated at bedrock & NCM \\
\hline & 27 & 1 & 0-6 & 0-14 & 10YR4/4 & Dark yellowish brown silty sandy loam & NCM \\
\hline & & 2 & 6-21 & 14-52 & 10YR4/6 & Dark yellowish brown sandy clay & NCM \\
\hline & 28 & 1 & 0-24 & 0-60 & 10YR4/4 & Dark yellowish brown silty sandy loam & NCM \\
\hline & & 2 & 24-26 & 60-65 & 10YR4/6 & Dark yellowish brown sandy clay & NCM \\
\hline & 29 & 1 & 0-11 & 0-28 & 10YR4/4 & Dark yellowish brown sandy loam, terminated at bedrock & NCM \\
\hline & 30 & 1 & 0-8 & 0-20 & 10YR4/4 & Dark yellowish brown sandy loam, terminated at bedrock & NCM \\
\hline
\end{tabular}

Hidden Oak Subdivision. Hidden Oak Road. Town of North Castle, Westchester County, New York
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Transect & STP & Level & Depth (in) & Depth (cm) & Munsell & Soil Description & Cultural Material \\
\hline TR 6 & 31 & 1 & 0-14 & 0-35 & 10YR4/6 & Dark yellowish brown sandy clay & NCM \\
\hline & & 2 & 14-18 & 35-45 & 10YR4/4 & Dark yellowish brown silty sandy loam & NCM \\
\hline & 32 & 1 & - & - & - & Not Excavated: Surface Water & \\
\hline & 33 & 1 & - & - & - & Not Excavated: Surface Water & \\
\hline & 34 & 1 & - & - & - & Not Excavated: Surface Water & \\
\hline & 35 & 1 & - & - & - & Not Excavated: Percolation Test Pit & \\
\hline & 36 & 1 & - & - & - & Not Excavated: Percolation Test Pit & \\
\hline TR 7 & 37 & 1 & 0-14 & 0-35 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 14-18 & 35-45 & 10YR5/6 & Yellowish brown sandy clay & NCM \\
\hline & 38 & 1 & 0-12 & 0-30 & 10YR4/4 & Dark yellowish brown sandy loam, terminated at bedrock & NCM \\
\hline TR 8 & 39 & 1 & - & - & - & Not Excavated: Slope > 15\% & \\
\hline & 40 & 1 & - & - & - & Not Excavated: Slope > 15\% & \\
\hline & 41 & 1 & 0-10 & 0-25 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 10-12 & 25-30 & 10YR5/6 & Yellowish brown sandy clay & NCM \\
\hline & 42 & 1 & 0-12 & 0-30 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 12-16 & 30-40 & 10YR5/6 & Yellowish brown sandy clay & NCM \\
\hline & 43 & 1 & - & - & - & Not Excavated: Slope > 15\% & \\
\hline & 44 & 1 & - & - & - & Not Excavated: Slope \(>15 \%\) & \\
\hline TR 9 & 45 & 1 & - & - & - & Not Excavated: Slope > 15\% & \\
\hline & 46 & 1 & 0-14 & 0-35 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 14-18 & 35-45 & 7.5YR5/4 & Brown sandy clay & NCM \\
\hline & 47 & 1 & 0-10 & 0-25 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 10-16 & 25-40 & 10YR5/4 & Yellowish brown sandy clay & NCM \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Transect & STP & Level & Depth (in) & Depth (cm) & Munsell & Soil Description & Cultural Material \\
\hline & 48 & 1 & 0-9 & 0-23 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 9-12 & 23-30 & 10YR5/4 & Yellowish brown sandy clay & NCM \\
\hline & 49 & 1 & 0-10 & 0-25 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 10-13 & 25-33 & 10YR5/4 & Yellowish brown sandy clay & NCM \\
\hline & 50 & 1 & 0-6 & 0-15 & 10YR4/4 & Dark yellowish brown sandy loam, terminated at bedrock & NCM \\
\hline TR 10 & 51 & 1 & 0-3 & 0-8 & 10YR4/4 & Dark yellowish brown sandy loam, terminated at bedrock & NCM \\
\hline & 52 & & - & - & - & Not Excavated: Slope > 15\% & \\
\hline & 53 & & - & - & - & Not Excavated: Exposed Bedrock & \\
\hline & 54 & & - & - & - & Not Excavated: Exposed Bedrock & \\
\hline & 55 & & - & - & - & Not Excavated: Exposed Bedrock & \\
\hline & 56 & & - & - & - & Not Excavated: Exposed Bedrock & \\
\hline TR 11 & 57 & 1 & 0 & 0-27 & 10YR4/4 & Dark yellowish brown silty sandy loam & NCM \\
\hline & & 2 & 8-20 & 20-50 & 10YR4/6 & Dark yellowish brown sandy clay & NCM \\
\hline & 58 & 1 & - & - & - & Not Excavated: Exposed Bedrock & \\
\hline & 59 & 1 & 0-8 & 0-19 & 10YR4/4 & Dark yellowish brown sandy loam, terminated at bedrock & NCM \\
\hline & 60 & 1 & 0-8 & 0-17 & 10YR4/4 & Dark yellowish brown silty sandy loam & NCM \\
\hline & & 2 & 8-34 & 17-34 & 10YR4/6 & Dark yellowish brown sandy clay & NCM \\
\hline & 61 & 1 & - & - & - & Not Excavated: Exposed Bedrock & \\
\hline & 62 & 1 & - & - & - & Not Excavated: Exposed Bedrock & \\
\hline TR 12 & 63 & 1 & 0-14 & 0-35 & 10YR4/4 & Dark yellowish brown sandy loam, terminated at bedrock & NCM \\
\hline & 64 & 1 & 0-8 & 0-20 & 10YR4/4 & Dark yellowish brown silty sandy loam & NCM \\
\hline & & 2 & 8-14 & 20-35 & 10YR4/6 & Dark yellowish brown sandy clay & NCM \\
\hline & 65 & 1 & 0-9 & 0-23 & 10YR4/4 & Dark yellowish brown silty sandy loam & NCM \\
\hline
\end{tabular}

Hidden Oak Subdivision. Hidden Oak Road. Town of North Castle, Westchester County, New York
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Transect & STP & Level & Depth (in) & Depth (cm) & Munsell & Soil Description & Cultural Material \\
\hline & & 2 & 9-16 & 23-40 & 10YR4/6 & Dark yellowish brown sandy clay & NCM \\
\hline & 66 & 1 & 0-6 & 0-15 & 10YR4/4 & Dark yellowish brown sandy loam, terminated at bedrock & NCM \\
\hline & 67 & 1 & 0-12 & 0-30 & 10YR4/4 & Dark yellowish brown silty sandy loam & NCM \\
\hline & & 2 & 12-18 & 30-45 & 10YR4/6 & Dark yellowish brown sandy clay & NCM \\
\hline & 68 & 1 & - & - & - & Not Excavated: Exposed Bedrock & \\
\hline TR 13 & 69 & 1 & 0-10 & 0-25 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 10-12 & 25-30 & 10YR5/8 & Brownish yellow sandy clay & NCM \\
\hline & 70 & 1 & 0-8 & 0-20 & 10YR4/4 & Dark yellowish brown sandy loam, terminated at bedrock & NCM \\
\hline & 71 & 1 & - & - & - & Not Excavated: Slope > 15\% & \\
\hline & 72 & 1 & - & - & - & Not Excavated: Slope > 15\% & \\
\hline TR 14 & 73 & 1 & 0-10 & 0-25 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 10-13 & 25-33 & 7.5YR5/4 & Brown sandy clay & NCM \\
\hline & 74 & 1 & - & - & - & Not Excavated: Exposed Bedrock & \\
\hline & 75 & 1 & 0-7 & 0-18 & 10YR4/4 & Dark yellowish brown sandy loam, terminated at bedrock & NCM \\
\hline & 76 & 1 & 0-9 & 0-23 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 9-12 & 23-30 & 10YR5/8 & Brownish yellow sandy clay & NCM \\
\hline & 77 & 1 & 0-9 & 0-23 & 10YR4/4 & Dark yellowish brown sandy loam, terminated at bedrock & NCM \\
\hline TR 15 & 78 & & 0-13 & 0-33 & 10YR4/4 & Dark yellowish brown sandy loam, terminated at bedrock & NCM \\
\hline & 79 & & - & - & - & Not Excavated: Percolation Test Pit & \\
\hline & 80 & & 0-3 & 0-8 & 10YR4/4 & Dark yellowish brown sandy loam, terminated at bedrock & NCM \\
\hline & 81 & & - & - & - & Not Excavated: Percolation Test Pit & \\
\hline & 82 & & - & - & - & Not Excavated: Percolation Test Pit & \\
\hline TR 16 & 83 & 1 & 0-10 & 0-25 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|l|l|}
\hline Transect & STP & Level & Depth (in) & Depth (cm) & Munsell & Soil Description & Cultural Material \\
\hline & & 2 & \(10-13\) & \(25-33\) & \(10 Y R 5 / 8\) & Brownish yellow sandy clay & NCM \\
\hline
\end{tabular}

Hidden Oak Subdivision. Hidden Oak Road. Town of North Castle, Westchester County, New York
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Transect & STP & Level & Depth (in) & Depth (cm) & Munsell & Soil Description & Cultural Material \\
\hline & 84 & 1 & 0-14 & 0-35 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 14-17 & 35-43 & 10YR5/8 & Brownish yellow sandy clay & NCM \\
\hline & 85 & 1 & 0-9 & 0-23 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 9-13 & 23-33 & 10YR5/8 & Brownish yellow sandy clay & NCM \\
\hline & 86 & 1 & 0-13 & 0-33 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 13-16 & 33-40 & 10YR5/8 & Brownish yellow sandy clay & NCM \\
\hline & 87 & 1 & 0-12 & 0-30 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 12-15 & 30-38 & 10YR5/8 & Brownish yellow sandy clay & NCM \\
\hline TR 17 & 88 & 1 & 0-12 & 0-30 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 12-18 & 30-45 & 10YR5/8 & Brownish yellow sandy clay & NCM \\
\hline & 89 & 1 & 0-14 & 0-35 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 14-20 & 35-50 & 10YR5/8 & Brownish yellow sandy clay & NCM \\
\hline & 90 & 1 & 0-12 & 0-30 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 12-18 & 30-45 & 10YR5/8 & Brownish yellow sandy clay & NCM \\
\hline & 91 & 1 & 0-36 & 0-90 & \[
\begin{gathered}
\hline \text { 10YR3/3 \& } \\
\text { 10YR5/6 } \\
\hline
\end{gathered}
\] & Mottled brown and yellow coarse sand and gravel & NCM \\
\hline & 92 & 1 & - & - & - & Not Excavated: Slope > 15\% & \\
\hline TR 18 & 93 & 1 & 0-12 & 0-30 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 12-50 & 30-51 & 10YR5/8 & Brownish yellow sandy clay & NCM \\
\hline & 94 & 1 & 0-7 & 0-16 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 7-14 & 16-34 & 10YR5/8 & Brownish yellow sandy clay & NCM \\
\hline & 95 & 1 & 0-18 & 0-45 & 10YR4/4 & Dark yellowish brown sandy loam & NCM \\
\hline & & 2 & 18-22 & 45-55 & 10YR5/8 & Brownish yellow sandy clay & NCM \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Road Right & t-of-Wa & & & & Lot 1 & & & & & Lot 2 & & & & & Lot 3 & & & & & Open Spa & & & \\
\hline & & & Remove? & & & & & Remove? \\
\hline Number & DBH & Species & \(x=y e s\) & & Number & DBH & Species & \(x=y e s\) & & Number & DBH & Species & \(x=y e s\) & & Number & DBH & Species & \(x=y e s\) & & Number & DBH & Species & \(x=y\) es \\
\hline 1 & 10 & Locust & \(\times\) & & 1-1 & 13 & Maple & & & 2-1 & 10 & Maple & & & 3-1 & 8 & Maple & & & 4-1 & 13 & Oak & x \\
\hline 2 & unk & Locust & x & & 1-2 & 16 & Maple & x & & 2-2 & 14 & Locust & x & & 3-2 & 14 & Locust & & & 4-2 & & Maple & x \\
\hline 3 & 21 & Locust & x & & 1-3 & 10 & Maple & x & & 2-3 & 13 & Locust & & & 3-3 & unk & & & & 4-3 & 10 & Maple & x \\
\hline 4 & 21 & Locust & x & & 1-4 & 16 & Locust & x & & 2-4 & 10 & Oak & & & 3-4 & 12 & Ash & & double & & & & \\
\hline 5 & 18 & Locust & x & & 1-5 & 15 & Locust & & & 2-5 & 11 & Locust & & & 3-5 & 13 & Locust & & & Note: with & in open spac & ce, only tr & es to \\
\hline 6 & 16 & Locust & x & double & 1-6 & 19 & Maple & & & 2-6 & 11 & Locust & & & 3-6 & 15 & Locust & x & & be remove & d were numb & bered & \\
\hline 7 & 17 & Locust & x & & 1-7 & 18 & Locust & & & 2-7 & 9 & Maple & & & 3-7 & 10 & Oak & x & & & & & \\
\hline 8 & 17 & Locust & \(\times\) & & 1-8 & 6 & Black Cherry & & & 2-8 & 13 & Locust & \(x\) & & 3-8 & 16 & Locust & x & & & & & \\
\hline 9 & 6 & Maple & x & & 1-9 & 12 & Maple & & & 2-9 & 12 & Locust & x & & 3-9 & 10 & Ash & x & & & & & \\
\hline 10 & 6 & Locust & x & & 1-10 & 6 & Oak & x & & 2-10 & 6 & Oak & x & & 3-10 & 8 & Oak & x & & & & & \\
\hline 11 & 28 & Locust & x & & 1-11 & 6 & Maple & x & & 2-11 & 11 & Locust & x & & 3-11 & 10 & Locust & x & & & & & \\
\hline 12 & 19 & Locust & x & & 1-12 & 10 & Oak & x & & 2-12 & 10 & Oak & x & & 3-12 & 16 & Locust & x & & & & & \\
\hline 13 & 10 & Maple & x & & 1-13 & 9 & Maple & & & 2-13 & 12 & Black Cherry & & & 3-13 & 8 & Oak & x & & & & & \\
\hline 14 & 10 & Maple & x & & 1-14 & 12 & Maple & & & 2-14 & 11 & Oak & x & & 3-14 & 17 & Ash & x & & & & & \\
\hline 15 & 7 & Maple & x & & 1-15 & 6 & Maple & & & 2-15 & 7 & Oak & x & & 3-15 & 17 & Ash & x & & & & & \\
\hline 16 & 7 & Maple & x & & 1-16 & 18 & Maple & & & 2-16 & 11 & Locust & x & & 3-16 & 6 & Oak & x & & & & & \\
\hline 17 & 7 & Maple & x & & 1-17 & 19 & Maple & & & 2-17 & 9 & Locust & x & & 3-17 & 8 & Locust & & & & & & \\
\hline 18 & 13 & Maple & x & & 1-18 & & Locust & x & & 2-18 & 9 & Locust & x & & 3-18 & 8 & Locust & & & & & & \\
\hline 19 & 8 & Maple & x & & 1-19 & 15 & Locust & x & & 2-19 & 11 & Oak & x & & 3-19 & 14 & Locust & & & & & & \\
\hline 20 & 21 & Locust & x & & 1-20 & 14 & Locust & \(x\) & & 2-20 & 10 & Oak & x & & 3-20 & 14 & Locust & & & & & & \\
\hline 21 & 6 & Maple & x & & 1-21 & 20 & Locust & x & & 2-21 & 7 & Locust & \(x\) & & 3-21 & 13 & Locust & & & & & & \\
\hline 22 & 21 & Locust & x & & 1-22 & 10 & Locust & x & & 2-22 & 11 & Locust & x & & 3-22 & 7 & Maple & & & & & & \\
\hline 23 & 16 & Ash & x & & 1-23 & 19 & Locust & x & & 2-23 & 10 & Locust & x & & 3-23 & 10 & Maple & & & & & & \\
\hline 24 & 24 & Locust & x & & 1-24 & 20 & Locust & x & & 2-24 & 11 & Oak & x & & 3-24 & 10 & Maple & \(x\) & & & & & \\
\hline 25 & 9 & Oak & x & & 1-25 & 26 & Ash & x & & 2-25 & 13 & Locust & x & & 3-25 & 6 & Oak & x & & & & & \\
\hline 26 & 6 & Oak & x & & 1-26 & 16 & Ash & x & triple & 2-26 & 14 & Oak & & & 3-26 & 8 & Oak & x & & & & & \\
\hline 27 & 17 & Black Cherry & x & & 1-27 & 6 & Oak & x & & 2-27 & 14 & Ash & & & 3-27 & 8 & Oak & x & & & & & \\
\hline 28 & 6 & Maple & x & & 1-28 & 22 & Locust & x & & 2-28 & 9 & Ash & & & 3-28 & 13 & Ash & & & & & & \\
\hline 29 & 7 & Maple & \(x\) & & 1-29 & 18 & Locust & x & & 2-29 & 7 & Oak & & & 3-29 & 10 & Locust & & & & & & \\
\hline 30 & 19 & Locust & x & & 1-30 & 8 & Oak & x & & 2-30 & 15 & Oak & \(x\) & double & 3-30 & 16 & Ash & & & & & & \\
\hline 31 & 15 & Locust & x & & 1-31 & 9 & Oak & x & & 2-31 & 8 & Oak & x & & 3-31 & 9 & Oak & & & & & & \\
\hline 32 & 14 & Maple & x & & 1-32 & 26 & Ash & x & & 2-32 & 14 & Ash & x & & 3-32 & 10 & Locust & & & & & & \\
\hline 33 & 19 & Locust & x & & 1-33 & 6 & Oak & x & & 2-33 & 15 & Ash & x & & 3-33 & 10 & Ash & \(x\) & double & & & & \\
\hline 34 & 22 & Locust & x & & 1-34 & 8 & Oak & x & & 2-34 & 12 & Oak & x & & 3-34 & 8 & Maple & x & & & & & \\
\hline 35 & 8 & Oak & x & & 1-35 & 17 & Ash & x & & 2-35 & 15 & Ash & x & & 3-35 & 18 & Ash & x & & & & & \\
\hline 36 & 8 & Maple & x & & 1-36 & & Maple & x & & 2-36 & 13 & Oak & x & & 3-36 & 8 & Locust & x & & & & & \\
\hline 37 & 10 & Maple & & & 1-37 & 12 & Oak & x & & 2-37 & 7 & Maple & x & & 3-37 & 20 & Ash & & & & & & \\
\hline 38 & 6 & Maple & \(x\) & & 1-38 & 6 & Oak & x & & 2-38 & 7 & Maple & x & & 3-38 & 9 & Maple & & & & & & \\
\hline 39 & 22 & Maple & x & & 1-39 & 11 & Locust & x & & 2-39 & 22 & Ash & x & & 3-39 & 9 & Maple & x & & & & & \\
\hline 40 & 23 & Ash & & & 1-40 & 11 & Oak & x & & 2-40 & 6 & Maple & x & & 3-40 & 8 & Maple & & & & & & \\
\hline 41 & 6 & Maple & \(x\) & & 1-41 & 12 & Oak & & & 2-41 & 9 & Ash & x & & 3-41 & 8 & Maple & & & & & & \\
\hline 42 & 6 & Maple & \(x\) & & 1-42 & 11 & Oak & x & & 2-42 & 7 & Maple & x & & 3-42 & 22 & Ash & & & & & & \\
\hline 43 & 6 & Maple & x & & 1-43 & 12 & Locust & x & & 2-43 & 13 & Ash & x & & 3-43 & 12 & Oak & & & & & & \\
\hline 44 & 7 & Ash & & & 1-44 & 10 & Locust & x & & 2-44 & 6 & Maple & x & & 3-44 & 12 & Ash & & & & & & \\
\hline 45 & 19 & Ash & & & 1-45 & & Ash & x & & 2-45 & 11 & Ash & x & & 3-45 & 18 & Ash & & & & & & \\
\hline 46 & 6 & Maple & x & & 1-46 & 10 & Oak & & & 2-46 & 7 & Maple & x & & 3-46 & 15 & Oak & & & & & & \\
\hline 47 & 6 & Maple & x & & 1-47 & 12 & Locust & & & 2-47 & 14 & Ash & x & & 3-47 & 9 & Maple & x & & & & & \\
\hline 48 & 6 & Maple & x & & 1-48 & 11 & Oak & & & 2-48 & 17 & Ash & & & 3-48 & 13 & Ash & & & & & & \\
\hline 49 & 8 & Maple & x & & 1-49 & 9 & Locust & & & 2-49 & 7 & Oak & & & 3-49 & 8 & Oak & & & & & & \\
\hline 50 & 8 & Maple & x & & 1-50 & 8 & Oak & & & 2-50 & 17 & Ash & & double & 3-50 & 18 & Oak & x & & & & & \\
\hline 51 & 8 & Maple & x & & 1-51 & 8 & Locust & & & 2-51 & 11 & Ash & \(x\) & & 3-51 & 11 & Ash & & & & & & \\
\hline 52 & 6 & Oak & x & & 1-52 & 11 & Oak & & & 2-52 & 8 & Ash & x & & 3-52 & 13 & Ash & & & & & & \\
\hline 53 & 6 & Oak & x & & 1-53 & 13 & Locust & & & 2-53 & 6 & Maple & x & & 3-53 & 18 & Oak & & & & & & \\
\hline 54 & 25 & Ash & x & & 1-54 & 12 & Maple & & & 2-54 & 6 & Maple & x & & 3-54 & 9 & Oak & x & & & & & \\
\hline 55 & & Maple & x & & 1-55 & 13 & Locust & & & 2-55 & 6 & Maple & x & & 3-55 & unk & unk & x & & & & & \\
\hline 56 & 8 & Ash & x & & 1-56 & unk & Locust & & & 2-56 & 13 & Ash & x & & 3-56 & 14 & Oak & x & & & & & \\
\hline 57 & 24 & Ash & x & & 1-57 & 11 & Oak & & & 2-57 & 9 & Ash & x & & 3-57 & 8 & Maple & x & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Road Righ & t-of-W & & & & Lot 1 & & & & & Lot 2 & & & & & Lot 3 & & & & Open Spa & & & \\
\hline & & & Remove? & & & & Remove? \\
\hline Number & DBH & Species & \(x=y\) es & & Number & DBH & Species & \(x=y\) es & & Number & DBH & Species & \(x=y\) es & & Number & DBH & Species & \(x=y e s\) & Number & DBH & Species & \(x=y e s\) \\
\hline 58 & 22 & Ash & x & & 1-58 & 12 & Black Cherry & & & 2-58 & 17 & Maple & & & 3-58 & 8 & Oak & & & & & \\
\hline 59 & 8 & Oak & x & & 1-59 & & Maple & & & 2-59 & 12 & Maple & & & 3-59 & 6 & Oak & x & & & & \\
\hline 60 & 12 & Maple & x & & 1-60 & 8 & Oak & & & 2-60 & 12 & Ash & x & double & 3-60 & 14 & Oak & x & & & & \\
\hline 61 & 7 & Maple & x & & 1-61 & 8 & Locust & & & 2-61 & 18 & Ash & & double & 3-61 & 11 & Ash & x & & & & \\
\hline 62 & 23 & Locust & x & & 1-62 & 7 & Locust & & & 2-62 & 13 & Oak & & & 3-62 & 9 & Oak & x & & & & \\
\hline 63 & 24 & Locust & x & & 1-63 & 10 & Maple & & & 2-63 & 12 & Ash & & & 3-63 & 10 & Ash & x & & & & \\
\hline 64 & 17 & Oak & x & & 1-64 & 16 & Ash & & & 2-64 & 7 & Oak & x & & 3-64 & 14 & Ash & x & & & & \\
\hline 65 & 20 & Locust & x & & 1-65 & 12 & Ash & x & & 2-65 & 7 & Hickory & \(x\) & & 3-65 & 14 & Ash & x & & & & \\
\hline 66 & 8 & Maple & x & & 1-66 & 20 & Ash & x & & 2-66 & 12 & Ash & x & double & 3-66 & 16 & Oak & x & & & & \\
\hline 67 & 20 & Locust & x & & 1-67 & 22 & Ash & x & & 2-67 & 15 & Ash & x & & 3-67 & 9 & Oak & x & & & & \\
\hline 68 & 9 & Black Cherry & x & & 1-68 & 11 & Oak & x & & 2-68 & 7 & Oak & & & 3-68 & 15 & Oak & x & & & & \\
\hline 69 & 10 & Oak & x & & 1-69 & 7 & Locust & x & & 2-69 & 11 & Oak & \(\times\) & & 3-69 & 9 & Oak & x & & & & \\
\hline 70 & 10 & Ash & x & & 1-70 & 11 & Locust & x & & 2-70 & 11 & Oak & & & 3-70 & 9 & Oak & x & & & & \\
\hline 71 & 18 & Locust & x & & 1-71 & 8 & Oak & x & & 2-71 & 7 & Hickory & x & & 3-71 & 15 & Oak & x & & & & \\
\hline 72 & 19 & Locust & x & & 1-72 & 8 & Locust & x & & 2-72 & 14 & Black Cherry & & triple & 3-72 & 13 & Ash & x & & & & \\
\hline 73 & 10 & Oak & x & & 1-73 & 16 & Ash & x & triple & 2-73 & 20 & Oak & \(x\) & & 3-73 & 15 & Ash & x & & & & \\
\hline 74 & 12 & Oak & x & & 1-74 & 11 & Ash & x & & 2-74 & 12 & Black Cherry & & & 3-74 & 12 & Oak & x & & & & \\
\hline 75 & 18 & Ash & x & & 1-75 & 12 & Locust & x & & 2-75 & 13 & Ash & \(x\) & & 3-75 & 12 & Oak & x & & & & \\
\hline 76 & 10 & Ash & x & & 1-76 & 14 & Ash & x & & 2-76 & 10 & Ash & x & & 3-76 & 7 & Oak & x & & & & \\
\hline 77 & 10 & Ash & x & & 1-77 & 13 & Locust & x & & 2-77 & 10 & Ash & \(x\) & & 3-77 & 8 & Maple & x & & & & \\
\hline 78 & 14 & Ash & x & & 1-78 & 6 & Maple & x & & 2-78 & 6 & Fagus & x & & 3-78 & 8 & Maple & x & & & & \\
\hline 79 & 11 & Ash & x & & 1-79 & 7 & Maple & x & & 2-79 & 9 & Ash & & & 3-79 & 11 & Ash & x & & & & \\
\hline 80 & 12 & Oak & x & & 1-80 & 8 & Locust & x & & 2-80 & 9 & Ash & & & 3-80 & 8 & Maple & \(x\) & & & & \\
\hline 81 & 16 & Locust & x & & 1-81 & 21 & Locust & x & & 2-81 & 14 & Ash & & & 3-81 & 8 & Ash & \(x\) & & & & \\
\hline 82 & 8 & Oak & x & & 1-82 & 8 & Maple & & & 2-82 & 9 F & Fagus & x & & 3-82 & 7 & Maple & \(x\) & & & & \\
\hline 83 & 12 & Ash & x & & 1-83 & 7 & Maple & & & 2-83 & 10 & Ash & & & 3-83 & 13 & Locust & x & & & & \\
\hline 84 & 6 & Maple & x & & 1-84 & 9 & Maple & & & 2-84 & 6 & Oak & & & 3-84 & 14 & Locust & & & & & \\
\hline 85 & 13 & Ash & x & & 1-85 & 24 & Locust & & & 2-85 & 12 & Ash & & & 3-85 & 13 & Locust & x & & & & \\
\hline 86 & 15 & Oak & x & & 1-86 & 22 & Black Cherry & & & 2-86 & 14 & Ash & & & 3-86 & 13 & Locust & x & & & & \\
\hline 87 & 8 & Oak & x & & 1-87 & & Maple & & & 2-87 & 18 & Ash & & & 3-87 & 7 & Cedar & & & & & \\
\hline 88 & 7 & Maple & x & & 1-88 & 13 & Maple & & & 2-88 & 12 & Ash & & & 3-88 & 12 & Maple & & & & & \\
\hline 89 & 13 & Ash & x & & 1-89 & 11 & Locust & & & 2-89 & 11 & Ash & & & 3-89 & 11 & Maple & & & & & \\
\hline 90 & 13 & Ash & x & & 1-90 & & Maple & & & 2-90 & 11 & Ash & & & 3-90 & 12 & Locust & & & & & \\
\hline 91 & 13 & Oak & x & & 1-91 & 21 & Maple & & double & 2-91 & 16 & Ash & & & 3-91 & 13 & Locust & & & & & \\
\hline 92 & 10 & Maple & x & & 1-92 & 9 & Maple & & & 2-92 & 12 & Ash & & & 3-92 & 16 & Oak & & & & & \\
\hline 93 & 13 & Locust & x & & 1-93 & 6 & Maple & & & 2-93 & 13 & Ash & x & & 3-93 & 10 & Oak & & & & & \\
\hline 94 & 15 & Locust & x & & 1-94 & 9 & Maple & & & 2-94 & 11 & Ash & x & & 3-94 & 8 & Oak & x & & & & \\
\hline 95 & 8 & Maple & x & & 1-95 & 16 & Maple & & & 2-95 & 12 & Ash & & & 3-95 & 11 & Oak & x & & & & \\
\hline 96 & 12 & Locust & x & & 1-96 & 8 & Maple & & & 2-96 & 6 & Oak & & & 3-96 & 12 & Ash & \(x\) & & & & \\
\hline 97 & 14 & Oak & \(x\) & & 1-97 & 24 & Maple & & & 2-97 & 7 & Oak & & & 3-97 & 15 & Ash & x & & & & \\
\hline 98 & 13 & Locust & x & & 1-98 & 15 & Ash & & & 2-98 & 14 & Ash & & & 3-98 & 12 & Ash & x & & & & \\
\hline 99 & 12 & Locust & x & & 1-99 & 20 & Ash & & & 2-99 & 14 & Ash & & double & 3-99 & 8 & Oak & \(x\) & & & & \\
\hline 100 & 11 & Locust & x & double & 1-100 & 14 & Maple & & & 2-100 & 8 & Maple & & & 3-100 & 13 & Ash & x & & & & \\
\hline 101 & 14 & Locust & x & & 1-101 & 13 & Locust & & & 2-101 & 12 & Ash & & & 3-101 & 12 & Ash & x & & & & \\
\hline 102 & 7 & Maple & x & & 1-102 & 6 & Maple & & & 2-102 & 13 & Ash & & & 3-102 & 16 & Ash & x & & & & \\
\hline 103 & 7 & Maple & x & & 1-103 & & Maple & & & 2-103 & 9 & Ash & & & 3-103 & unk & & \(x\) & & & & \\
\hline 104 & 6 & Maple & x & & 1-104 & 9 & Maple & & & 2-104 & 14 & Ash & & double & 3-104 & unk & & \(x\) & & & & \\
\hline 105 & 15 & Locust & x & & 1-105 & 6 & Maple & & & 2-105 & 10 & Ash & & double & 3-105 & 14 & Ash & \(x\) & & & & \\
\hline 106 & 14 & Locust & x & & 1-106 & 30 & Ash & & & 2-106 & 13 & Ash & & & 3-106 & 15 & Ash & x & & & & \\
\hline 107 & 8 & Maple & x & & 1-107 & 26 & Ash & x & & 2-107 & 13 & Ash & & & 3-107 & 16 & Ash & \(x\) & & & & \\
\hline 108 & 9 & Maple & \(x\) & & 1-108 & 38 & Ash & x & & 2-108 & 11 & Ash & & & 3-108 & 12 & Ash & \(x\) & & & & \\
\hline 109 & 12 & Locust & x & & 1-109 & 20 & Ash & x & & 2-109 & 10 & Oak & & & 3-109 & 15 & Ash & x & & & & \\
\hline 110 & 11 & Locust & x & & 1-110 & 14 & Ash & x & & 2-110 & 17 & Ash & & & 3-110 & unk & & x & & & & \\
\hline 111 & 6 & Maple & x & & 1-111 & 15 & Maple & x & & 2-111 & 13 & Ash & & & 3-111 & 11 & Ash & x & & & & \\
\hline 112 & 8 & Maple & x & & 1-112 & 20 & Locust & & & 2-112 & 6 & Maple & & & 3-112 & 9 & Ash & \(x\) & & & & \\
\hline 113 & 6 & Maple & \(x\) & & 1-113 & 14 & Locust & & & 2-113 & 24 & Ash & & & 3-113 & 10 & Maple & \(x\) & & & & \\
\hline 114 & 20 & Ash & x & & 1-114 & & Locust & & & 2-114 & 14 & Ash & & & 3-114 & 6 & Fagus & x & & & & \\
\hline & & & & & 1-115 & 15 & Hickory & & & 2-115 & 6 & Maple & & & 3-115 & 13 & Oak & x & & & & \\
\hline & & & & & 1-116 & & Ash & & & 2-116 & 11 & Ash & & & 3-116 & 25 & Oak & x & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Road Right-of-Way} & \multirow[b]{2}{*}{Remove?} & \multirow[t]{2}{*}{Lot 1} & & & & & \multirow[t]{2}{*}{Lot 2} & & & \multirow[b]{2}{*}{Remove?} & & \multirow[t]{2}{*}{Lot 3} & & & \multirow[b]{2}{*}{Remove?} & & \multicolumn{2}{|l|}{Open Space} & & \multirow[b]{2}{*}{Remove?} \\
\hline & & & & & & & Remove? & & & & & & & & & & & & & & & \\
\hline Number & DBH & Species & \(x=\) yes & Number & DBH & Species & \(x=\) yes & & Number & DBH & Species & \(x=y\) es & & Number & DBH & Species & \(x=\) yes & & Number & DBH & Species & \(x=\) yes \\
\hline & & & & 1-117 & 16 & Locust & & & 2-117 & 6 & Maple & & & 3-117 & 12 & Black Cherry & x & double & & & & \\
\hline & & & & 1-118 & 18 & Locust & x & & 2-118 & 15 & Ash & & & 3-118 & 9 & Hickory & x & & & & & \\
\hline & & & & 1-119 & 13 & Locust & x & & 2-119 & 6 & Maple & & & 3-119 & & Oak & x & & & & & \\
\hline & & & & 1-120 & 13 & Maple & x & & 2-120 & 6 & Maple & & & 3-120 & 10 & Oak & x & & & & & \\
\hline & & & & 1-121 & 11 & Locust & x & & 2-121 & 15 & Ash & & & 3-121 & 16 & Maple & x & double & & & & \\
\hline & & & & 1-122 & 18 & Locust & x & & 2-122 & 7 & Maple & & & 3-122 & 9 & Black Cherry & x & & & & & \\
\hline & & & & 1-123 & 14 & Locust & x & & 2-123 & 7 & Maple & & & 3-123 & 9 & Black Cherry & x & & & & & \\
\hline & & & & 1-124 & 17 & Locust & x & & 2-124 & 6 & Fagus & & & 3-124 & 16 & Ash & x & & & & & \\
\hline & & & & 1-125 & 10 & Maple & x & & 2-125 & 16 & Oak & & double & 3-125 & 11 & Black Cherry & x & & & & & \\
\hline & & & & 1-126 & 9 & Locust & x & & 2-126 & 8 & Fagus & & & 3-126 & 16 & Maple & & double & & & & \\
\hline & & & & 1-127 & 8 & Locust & x & & 2-127 & 10 & Ash & & & 3-127 & & Oak & & & & & & \\
\hline & & & & 1-128 & 17 & Locust & x & & 2-128 & 6 & Maple & & & 3-128 & 6 & Oak & & & & & & \\
\hline & & & & 1-129 & 9 & Black Cherry & x & & 2-129 & 6 & Maple & & & 3-129 & 9 & Cedar & & & & & & \\
\hline & & & & 1-130 & 12 & Black Cherry & \(x\) & & 2-130 & 13 & Ash & & & 3-130 & & Cedar & & & & & & \\
\hline & & & & 1-131 & 11 & Locust & \(x\) & & 2-131 & 6 & Oak & & & 3-131 & 12 & Oak & & & & & & \\
\hline & & & & 1-132 & 12 & Locust & x & & 2-132 & 6 & Fagus & x & & 3-132 & 11 & Oak & & & & & & \\
\hline & & & & 1-133 & 15 & Maple & x & & 2-133 & 14 & Maple & & & 3-133 & 15 & Black Cherry & & double & & & & \\
\hline & & & & 1-134 & 7 & Locust & x & & 2-134 & 7 & Fagus & & & 3-134 & 11 & Oak & & & & & & \\
\hline & & & & 1-135 & 10 & Locust & & & 2-135 & 12 & Hickory & & & 3-135 & 15 & Oak & & & & & & \\
\hline & & & & 1-136 & 20 & Locust & x & & 2-136 & 6 & Oak & & & 3-136 & & Black Cherry & & & & & & \\
\hline & & & & 1-137 & 9 & Oak & x & & 2-137 & 7 & Maple & & & 3-137 & 14 & Maple & & & & & & \\
\hline & & & & 1-138 & 7 & TOH & x & & 2-138 & 16 & Ash & \(x\) & & 3-138 & 16 & Maple & & & & & & \\
\hline & & & & 1-139 & 7 & Black Cherry & & & 2-139 & 7 & Maple & x & & 3-139 & & Black Cherry & x & & & & & \\
\hline & & & & 1-140 & 5 & Black Cherry & & & 2-140 & 7 & Maple & x & & 3-140 & 10 & Hickory & x & & & & & \\
\hline & & & & 1-141 & 6 & Black Cherry & \(x\) & & 2-141 & 8 & Fagus & x & & 3-141 & 15 & Ash & x & & & & & \\
\hline & & & & 1-142 & 6 & Black Cherry & \(x\) & & 2-142 & 24 & Oak & x & & 3-142 & & Fagus & x & & & & & \\
\hline & & & & 1-143 & 5 & Black Cherry & \(x\) & & 2-143 & 6 & Oak & x & & 3-143 & 10 & Black Cherry & \(x\) & & & & & \\
\hline & & & & 1-144 & 5 & Black Cherry & \(x\) & & 2-144 & 10 & Ash & x & & 3-144 & 12 & Black Cherry & \(x\) & & & & & \\
\hline & & & & 1-145 & 10 & Locust & \(x\) & & 2-145 & 12 & Ash & x & & 3-145 & & Black Cherry & x & & & & & \\
\hline & & & & 1-146 & 15 & Maple & x & & 2-146 & 7 & Oak & x & & 3-146 & 8 & Oak & & & & & & \\
\hline & & & & 1-147 & 13 & Locust & x & & 2-147 & 8 & Oak & x & & 3-147 & 14 & Maple & x & double & & & & \\
\hline & & & & 1-148 & 11 & Locust & x & & 2-148 & 15 & Ash & x & & 3-148 & 11 & Oak & x & & & & & \\
\hline & & & & 1-149 & 16 & Maple & x & & 2-149 & 12 & Maple & x & & 3-149 & 7 & Oak & x & & & & & \\
\hline & & & & 1-150 & 11 & Locust & x & & 2-150 & 14 & Ash & x & & 3-150 & 14 & Oak & x & & & & & \\
\hline & & & & 1-151 & 16 & Black Cherry & x & & 2-151 & 12 & Hickory & & & 3-151 & 15 & Oak & x & & & & & \\
\hline & & & & 1-152 & 12 & Locust & x & & 2-152 & 7 & Fagus & & & 3-152 & 15 & Tulip & x & & & & & \\
\hline & & & & 1-153 & 13 & Maple & x & & 2-153 & 9 & Maple & & & 3-153 & 12 & Fagus & x & & & & & \\
\hline & & & & 1-154 & 11 & Locust & x & & 2-154 & 20 & Ash & & & 3-154 & 14 & Oak & & & & & & \\
\hline & & & & 1-155 & 7 & Maple & x & & 2-155 & 7 & Oak & & & 3-155 & 6 & Maple & x & & & & & \\
\hline & & & & 1-156 & 7 & Oak & & & 2-156 & 11 & Oak & & & 3-156 & 16 & Oak & & & & & & \\
\hline & & & & 1-157 & 11 & Oak & & & 2-157 & 7 & Maple & & & 3-157 & 12 & Maple & & double & & & & \\
\hline & & & & 1-158 & 9 & Ash & \(x\) & double & 2-158 & 14 & Ash & & & 3-158 & 11 & Oak & & & & & & \\
\hline & & & & 1-159 & 7 & Hickory & & & 2-159 & 8 & Oak & & & 3-159 & 6 & Oak & \(x\) & & & & & \\
\hline & & & & 1-160 & 6 & Black Cherry & \(x\) & & 2-160 & 7 & Fagus & \(x\) & & 3-160 & & Oak & x & & & & & \\
\hline & & & & 1-161 & 16 & Maple & x & & 2-161 & 13 & Oak & x & & 3-161 & 10 & Ash & x & & & & & \\
\hline & & & & 1-162 & 18 & Maple & & & 2-162 & 10 & Locust & x & & 3-162 & 18 & Ash & x & & & & & \\
\hline & & & & 1-163 & 26 & Maple & & & 2-163 & 14 & Ash & x & & 3-163 & 8 & Oak & x & & & & & \\
\hline & & & & 1-164 & 25 & Locust & & & 2-164 & 11 & Oak & x & & 3-164 & 11 & Hickory & x & & & & & \\
\hline & & & & 1-165 & 11 & Maple & & & 2-165 & 15 & Locust & x & & 3-165 & 11 & Hickory & x & & & & & \\
\hline & & & & 1-166 & 6 & Maple & & & 2-166 & 8 & Maple & & & 3-166 & 11 & Oak & x & & & & & \\
\hline & & & & 1-167 & 13 & Black Cherry & & & 2-167 & 13 & Oak & & & 3-167 & 7 & Oak & x & & & & & \\
\hline & & & & 1-168 & 18 & Locust & & & 2-168 & 11 & Oak & & & 3-168 & 18 & Ash & x & & & & & \\
\hline & & & & 1-169 & 8 & Maple & & & 2-169 & 7 & Oak & x & & 3-169 & 12 & Hickory & x & & & & & \\
\hline & & & & 1-170 & 6 & Maple & & & 2-170 & 14 & Oak & x & & 3-170 & 7 & Hickory & x & & & & & \\
\hline & & & & 1-171 & 9 & Maple & & & 2-171 & 6 & Maple & x & & 3-171 & 10 & Hickory & x & & & & & \\
\hline & & & & 1-172 & 15 & Maple & & & 2-172 & 10 & Locust & x & & 3-172 & 14 & Ash & x & & & & & \\
\hline & & & & 1-173 & 9 & Maple & & & 2-173 & 12 & Oak & x & & 3-173 & 8 & Oak & x & & & & & \\
\hline & & & & 1-174 & 16 & Ash & & & 2-174 & 9 & Locust & & & 3-174 & 10 & Hickory & x & & & & & \\
\hline & & & & 1-175 & 23 & Ash & & & 2-175 & 15 & Oak & & & 3-175 & 11 & Oak & x & double & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Road Right-of-Way} & & \multirow[t]{2}{*}{Lot 1} & & & \multirow[b]{2}{*}{Remove?} & \multirow[t]{2}{*}{Lot 2} & & & & \multirow[t]{2}{*}{Lot 3} & & & \multirow[b]{2}{*}{Remove?} & & \multicolumn{2}{|l|}{Open Space} & & \multirow[b]{2}{*}{Remove?} \\
\hline & & & Remove? & & & & & & & & Remove? & & & & & & & & & \\
\hline Number & DBH & Species & \(\mathrm{x}=\mathrm{yes}\) & Number & DBH & Species & \(x=\) yes & Number & DBH & Species & \(x=y\) es & Number & DBH & Species & \(x=\) yes & & Number & DBH & Species & \(x=y e s\) \\
\hline & & & & 1-176 & 11 & Maple & x & 2-176 & 14 & Black Cherry & & 3-176 & 14 & Hickory & x & & & & & \\
\hline & & & & 1-177 & 9 & Oak & x & 2-177 & 8 & Maple & & 3-177 & 11 & Fagus & x & & & & & \\
\hline & & & & 1-178 & 9 & Maple & x & 2-178 & 10 & Oak & & 3-178 & & Maple & x & & & & & \\
\hline & & & & 1-179 & 16 & Locust & x & 2-179 & 7 & Oak & & 3-179 & 10 & Fagus & x & & & & & \\
\hline & & & & & & & & 2-180 & 11 & Oak & & 3-180 & & Ash & \(x\) & & & & & \\
\hline & & & & & & & & 2-181 & 7 & Locust & & 3-181 & & Oak & & & & & & \\
\hline & & & & & & & & 2-182 & 11 & Locust & & 3-182 & 10 & Maple & & & & & & \\
\hline & & & & & & & & 2-183 & 10 & Oak & & 3-183 & 14 & Oak & \(x\) & & & & & \\
\hline & & & & & & & & 2-184 & 9 & Locust & & 3-184 & 18 & Ash & & & & & & \\
\hline & & & & & & & & 2-185 & 9 & Locust & & 3-185 & 13 & Ash & & & & & & \\
\hline & & & & & & & & 2-186 & 8 & Oak & & 3-186 & 13 & Black Cherry & & & & & & \\
\hline & & & & & & & & 2-187 & 13 & Locust & & 3-187 & 13 & Oak & & & & & & \\
\hline & & & & & & & & 2-188 & 9 & Locust & & 3-188 & 12 & Ash & & & & & & \\
\hline & & & & & & & & 2-189 & 6 & Hickory & & 3-189 & 10 & Oak & & & & & & \\
\hline & & & & & & & & 2-190 & 8 & Oak & & 3-190 & & Hickory & & double & & & & \\
\hline & & & & & & & & 2-191 & 15 & Ash & & 3-191 & 25 & Tulip & \(x\) & & & & & \\
\hline & & & & & & & & 2-192 & 9 & Oak & & 3-192 & & Tulip & \(x\) & & & & & \\
\hline & & & & & & & & & & & & 3-193 & & Oak & x & & & & & \\
\hline & & & & & & & & & & & & 3-194 & & Oak & & & & & & \\
\hline & & & & & & & & & & & & 3-195 & & Oak & \(x\) & & & & & \\
\hline & & & & & & & & & & & & 3-196 & 18 & Oak & \(x\) & & & & & \\
\hline & & & & & & & & & & & & 3-197 & 11 & Oak & x & & & & & \\
\hline & & & & & & & & & & & & 3-198 & & Oak & & & & & & \\
\hline & & & & & & & & & & & & 3-199 & 18 & Ash & & & & & & \\
\hline & & & & & & & & & & & & 3-200 & & Ash & & & & & & \\
\hline & & & & & & & & & & & & 3-201 & 12 & Ash & \(x\) & double & & & & \\
\hline & & & & & & & & & & & & 3-202 & 14 & Ash & & & & & & \\
\hline & & & & & & & & & & & & 3-203 & 12 & Oak & & & & & & \\
\hline & & & & & & & & & & & & 3-204 & & Fagus & \(x\) & & & & & \\
\hline & & & & & & & & & & & & 3-205 & 14 & Oak & \(x\) & & & & & \\
\hline & & & & & & & & & & & & 3-206 & 12 & Oak & x & & & & & \\
\hline & & & & & & & & & & & & 3-207 & 12 & Oak & & double & & & & \\
\hline & & & & & & & & & & & & 3-208 & & Oak & & double & & & & \\
\hline & & & & & & & & & & & & 3-209 & 14 & Fagus & \(x\) & & & & & \\
\hline & & & & & & & & & & & & 3-210 & 15 & Oak & \(x\) & & & & & \\
\hline & & & & & & & & & & & & 3-211 & 11 & Oak & x & & & & & \\
\hline & & & & & & & & & & & & 3-212 & 14 & Maple & \(x\) & double & & & & \\
\hline & & & & & & & & & & & & 3-213 & & Fagus & x & & & & & \\
\hline
\end{tabular}

Tree Removal Summary
All regulated trees ( \(\geq 8^{\text {" }}\) DBH)
Specimen trees ( \(\geq 24\) " DBH)
R.O.W.
84

Note: all regulated trees includes specimen trees

\section*{Environmental} Protection

Emily Lloyd
Zommissioner

\footnotetext{
'aul V. Rush, P.E. Jeputy Commissioner 3ureau of Water Supply ,rush@dep.nyc.gov
}

165 Columbus Avenue /alhalla, NY 10595
-: (914) 742-2001
: (914) 742-2027

Alan L. Pilch, P.E., R.L.A.
Evans Associates Environmental Consulting, Inc.
205 Amity Road
Bethany, CT 06524
Re: Hidden Oak Subdivision - SWPPP
Hidden Oak Road, (T) North Castle
TM \# 107.01-1-32
Kensico Reservoir Basin
DEP Log \# 2014-KE-0108-SP. 1

Dear Mr. Pilch:
This letter is to inform you that your application to engage in the above referenced regulated activity pursuant to the "Rules and Regulations for the Protection from Contamination, Degradation and Pollution of the New York City Water Supply and Its Sources" (Regulations) was approved on June 6, 2016.

The Department reserves the right to modify, suspend or revoke this approval based on the grounds set forth in Section 18-26 of the Regulations. The activity proposed in your application only applies to the terms of this approval and is subject to the Regulations cited above. Failure to comply with the conditions of the approval may be the cause for suspension of this approval and initiation of an enforcement action. Should modification, suspension or revocation of an approval be necessary, the Department will notify the regulated party, via certified mail or personal service prior to modifying, suspending or revoking the approval. The notice will state the alleged facts or conduct which appear to warrant the intended action and explain the procedures to be followed.

The Regulations provide that an applicant may appeal the imposition of a substantial condition in an approval by filing a petition, in writing, with NYCDEP and with the New York City Office of Administrative Trials and Hearings (OATH) within thirty days of the date this determination was mailed.

NYCDEP may inspect and monitor the erosion control practices at the project site during construction. Therefore, a pre-construction meeting must be held at least two days prior to the start of any work. The owner, design professional, contractor and NYCDEP personnel must attend.

Please contact Mary Galasso at (914) 773 - 4440 to schedule this pre-construction meeting.

c: McKenna Custom Homes, Owner, mckennacustom@optonline.net
A. Kaufman, (T) North Castle Planning (w/enc.) - planning@northcastleny.com Armand DeAngelis, NYSDEC - armand.deangelis@dec.ny.gov

\section*{Protection}

\section*{STORMWATER POLLUTION PREVENTION PLAN DETERMINATION}
Pursuant to the authority granted under:Article 11 of the New York State Public Health Law;Rules and Regulations For The Protection From Contamination, Degradation andPollution Of The New York City Water Supply and Its Sources, 15 RCNY Chapter 18, 10NYCRR Part 128.
New York City Department of Environmental Protection makes the following determinationswith respect to the stormwater pollution prevention plan described below:
Name of Project: Hidden Oak Subdivision
Location: Hidden Oak Road
(T) North Castle, Westchester County, New York
Tax Map \# 107.01-1-32
Owner: Kevin McKennaMcKenna Custom Homes
Address: \(\quad 343\) Manville Road
Pleasantville, NY 10570
Drainage Basin: Kensico Reservoir

\section*{General Description:}

The proposed project is a three lot residential subdivision on approximately 7.7 aces. The lots will be served by individual subsurface sewage treatment systems and wells. Stormwater management practices include underground infiltration systems, a bioretention practice, a vegetated swale, and an extended detention stormwater wetland. Proprietary devices units will provide pretreatment for infiltration and bioretention practices. Runoff reduction will be achieved using infiltration, rain gardens, and tree planting.

\section*{Date(s) of site inspection:}

May 14, 2014 and November 11, 2014

\section*{Conditions of Approval:}

This approval is granted with the following conditions:
- The regulated activity must be conducted in compliance with the plans as approved, listed in Appendix A, all applicable accepted standards, and all applicable laws, rules and regulations.
- Any alteration or modification of the SWPPP must be approved by DEP prior to implementation; DEP may opt to issue an amended SWPPP Determination.
- The applicant must schedule a pre-construction conference prior to the start of construction. Present at the meeting should be the applicant, the design engineer, the general contractor, and DEP staff.
- The applicant must notify DEP at least forty-eight (48) hours prior to the commencement of construction activity so that compliance inspections may be scheduled by DEP.
- All erosion and sediment controls must be properly installed and maintained until the site has been stabilized and the risk of erosion eliminated. Final stabilization is defined in the General Permit as all soil disturbing activities at the site have been completed, and that a uniform perennial vegetative cover with a density of \(80 \%\) cover for the area has been established or equivalent stabilization measures (such as the use of mulches or geotextiles) have been employed.
- The applicant is required to submit as-built drawings for all stormwater management and water quality facilities.
- The stormwater management and water quality facilities must be maintained in accordance with the maintenance schedule included in the SWPPP as approved by DEP.
- This approval shall expire and thereafter be null and void unless construction is completed within Five (5) years of the date of issuance or within any extended period of time approved by DEP upon good cause shown.
- In the event that the material submitted is inaccurate or misleading, this approval is not valid and construction of this project is in violation of DEP regulations
- Failure to comply with any of the conditions of this approval is a violation of this approval and the Rules and Regulations For The Protection From Contamination, Degradation and Pollution Of The New York City Water Supply and Its Sources.

\author{
STORMWATER POLLUTION PREVENTION PLAN DETERMINATION
}
- This approval and all conditions of the approval are binding on the owner of the property where the facility is to be located. Any references to the "applicant" in this approval or in any conditions of this approval shall be deemed to refer to the owner of such property.
- If the applicant sells or otherwise transfers title of Hidden Oak Subdivision before all construction planned for the property is completed and the site is stabilized, the applicant shall require the new owner ("Buyer") to comply with the SWPPP approved by the New York City Department of Environmental Protection on June 6, 2016 including, but not limited to, conservation easements, negative covenants, all provisions relating to erosion and sediment control during construction and to all maintenance of the stormwater management facilities once construction is complete. In particular, the applicant shall provide the Buyer with a copy of the SWPPP and shall cause the following real covenants and restrictions to be recorded with the deed for Hidden Oak Subdivision with the following provisions:
(1) Buyer hereby acknowledges, covenants, warrants, and represents that he/she shall install and maintain any and all erosion controls and stormwater management facilities on the premises in accordance with the SWPPP, such SWPPP being attached hereto as Exhibit \(\qquad\) .
(2) Buyer's installation and maintenance of the erosion control and stormwater management facilities shall be for the benefit of the City of New York as well as for the owners of Hidden Oak Subdivision.
(3) Buyer's obligation to install and maintain any and all erosion controls and stormwater management facilities on the premises in accordance with the attached SWPPP shall be perpetual, shall run with the land, and shall be binding on Buyer's heirs, successors, and assigns.
(4) Buyer hereby covenants, warrants and represents that any lease, mortgage, subdivision, or other transfer of Hidden Oak Subdivision SWPPP, or any interest therein, shall be subject to the restrictive covenants contained herein pertaining to the installation and maintenance of erosion control and stormwater management facilities, and any deed, mortgage, or other instrument of conveyance shall specifically refer to the attached SWPPP and shall specifically state that the interest thereby conveyed is subject to covenants and restrictions contained herein.
- Prior to conveying title to Hidden Oak Subdivision, the applicant shall submit to the New York City Department of Environmental Protection a proposed deed containing the aforementioned real covenants and restrictions.

\title{
STORMWATER POLLUTION PREVENTION PLAN DETERMINATION
}

This approval and all conditions of the approval are binding on the owner of the property where the stormwater management facilities are to be located. Any references to the "applicant" in this approval or in any conditions of this approval shall be deemed to refer to the owner of such property.

Date: June 6, 2016
Determination made by:


This determination letter must be maintained by the applicant and be readily available for inspection at the construction site.

\title{
STORMWATER POLLUTION PREVENTION PLAN DETERMINATION \\ Hidden Oak Subdivision
}

\section*{APPENDIX A}

The following documents were prepared by Evans Associates Environmental Consulting, Inc., for Hidden Oak Subdivision:
1. Stormwater Pollution Prevention Plan report dated March 1, 2016.
2. Drawing CS-1 entitled "Cover Sheet" dated July 15, 2014, last revised March 1, 2016.
3. Drawing IPP-1 entitled "Integrated Plot Plan/Subdivision Layout" dated July 15, 2014, last revised March 1, 2016.
4. Drawing S-2 entitled "Grading \& Utilities Plan" dated July 15, 2014, last revised March 1, 2016.
5. Drawing SP-3.1 entitled 'Phase 1: Erosion \& Sediment Control Plan/Tree Removal and Protection Plan" dated July 15, 2014, last revised March 1, 2016.
6. Drawing SP-3.2 entitled "Phase 2: Erosion \& Sediment Control Plan/Tree Removal and Protection Plan" dated July 15, 2014, last revised March 1, 2016.
7. Drawing SP-4 entitled "Slopes Map" dated July 15, 2014, last revised July 24, 2015.
8. Drawing SP-5 entitled "Landscape Plan" dated July 14, 2014, last revised March 1, 2016
9. Drawing DE-1 entitled "Construction Details" dated July 15, 2014, last revised March 1, 2016.
10. Drawing DE-2 entitled "Construction Details" dated May 30, 2014, last revised March 1, 2016.
11. Drawing DE-3 entitled "Construction Details" dated November 17, 2014, last revised July 24, 2015.
12. Drawing DE-4 entitled "Construction Details/Erosion Control Notes" dated April 9, 2015, last revised March 1, 2016.
13. Drawing DE-5 entitled "Construction Details/Maintenance Plan" dated August 25, 2015, last revised March 1, 2016.

\title{
DEED \\ OF CONSERVATION EASEMENT
}

This Indenture, made the day of 2021 between
MCKENNA CUSTOM HOMES, INC., 433 Manville Road, Pleasantville, New York 10570 party of the first part, and

TOWN OF NORTH CASTLE, a municipal corporation of the State of New York, 15 Bedford Road, Armonk, New York 10510 party of the second part,

WITNESSETH, that the said party of the First Part in consideration of the sum of ONE DOLLAR and other good and valuable consideration, paid by the party of the Second Part, does hereby grant and release unto the party of the Second Part, its successors and assigns forever, a conservation easement extending in and through a certain property of the party of the First Part, situate, lying and being in the Town of North Castle, County of Westchester and State of New York which easement is more particularly bound and described in SCHEDULE "A" annexed hereto and made a part hereof.

WHEREAS, the party of the First Part hereby desires to grant to the party of the Second Part the right to preserve and protect the conservation values described herein by encumbering the Property with a conservation easement pursuant to the provision of New York Conservation Law, Article, 49, Title 3; and

WHEREAS, the Grantee agrees to accept this conservation easement and honor the intentions of the Grantee as stated herein and to preserve and protect the Property in perpetuity according to the terms of this easement for the benefit of this and future generations.

NOW THEREFORE, in consideration of the foregoing and the mutual covenants terms, conditions and restrictions contained herein, the Grantor hereby voluntarily grants and conveys to Grantee a conservation easement in perpetuity over the Property of the nature and character and to the extent set forth herein.
1. Purpose. It is the purpose of this easement to ensure the open natural character and to protect it from development. This easement shall prevent any use of the property that will impair or interfere with the conservation values of the property by restricting use of the property as provided herein.
2. Prohibited Uses and Restrictions. Any activity on or use of the property, beyond what is depicted on the approved subdivision plans, is inconsistent with the purpose of this conservation easement and is prohibited. Without limiting the generality of the foregoing provision, the following restrictions specifically apply to the property:
a. No quarry, gravel pit, surface or subsurface mining or drilling, or other mining or drilling activities prohibited under applicable provisions of Section 170(h) of the Internal Revenue Code shall be permitted on or under the Property.
b. No dumping or storage of ashes, non-composted organic waste, sewage, garbage, or any toxic or offensive materials shall be allowed in the Property.
c. No more than de minimus recreational activities may be conducted on the Property.
d. Notwithstanding any other restriction contained herein, the owner of the Property (or any relevant part thereof) or the Grantee may take such actions with respect to the Property as are necessary to protect the health and safety of the public and the persons using the Property; provided that if any such action is contrary to a restriction contained herein, the action shall be limited to the minimum variation necessary to afford the required protection.
3. Rights Conveyed to Grantee. To accomplish the purposes of this easement, the following rights are conveyed to the Grantee by this easement.
a. The right to preserve and protect the conservation values of the Property.
b. The right to enter upon the Property at reasonable times in order to monitor compliance and otherwise enforce the terms of this easement. Grantee shall provide Grantor or Grantor's successors, reasonable notice of such entry unless Grantee determines that immediate entry is required to prevent, terminate or migrate violation of this easement.
c. The right to prevent any activity on, incursion into, or use of the property that is inconsistent with the purpose of this easement, and to require the restoration of such areas or features of the property that are damaged by any inconsistent activity or use pursuant to the remedies set forth herein.
d. The right, but not the obligation to cut, remove and plant trees and to maintain and/or improve the wetlands and other natural habitat on the Property.
4. Reserved Grantor's Rights. Grantor reserves for itself, its assigns, representatives and successors in interest with respect to the Property, all rights accruing from its ownership of the Property, including, without limitation, the right to sell or transfer the Property, as owner, subject to the restrictions and covenants set forth herein this easement; and the right to engage in, or permit others to engage in, all uses of the property that are not expressly prohibited herein and are not inconsistent with in addition, any other provisions of this easement to the contrary notwithstanding, Grantor specifically reserves for itself and its successors in interest with respect to the Property, and they shall enjoy, the following rights with respect to the Property:
a. Grantor specifically reserves the right to control access to the property except that specifically granted to Grantee for purpose of monitoring compliance with this easement, and no right of access to the general public to any portion of the Property is conveyed by this easement.
b. Grantor reserves for itself, its assigns, representatives and successors the right to maintain the discharge swale from Stormwater Management Facility Basin 1 (SWMB \#1) for FDA-1.3, and Level Spreader LS-1.

\section*{5. Enforcement.}
a. Notice. If Grantee determines that a violation of this easement has occurred or is threatened, Grantee shall give written notice to Grantor of such violation and demand that corrective action sufficient to cure the violation be taken. Where the violation involves injury to the property resulting from any use inconsistent with the terms or the purpose of this conservation easement, Grantee shall demand that Grantor restore the Property to its prior condition in accordance with a plan approved by the Grantee.
b. Injunctive Relief. If, Grantor fails to cure the violation within 30 days after receipt of notice of a violation from Grantee, or, where the violation cannot reasonably be cured within a 30 day period, Grantor fails to begin curing such violation within a 30 day period, or Grantor fails to diligently continue to cure such violation until it is cured, Grantee may bring action-at law or inequity in a court of competent jurisdiction to enforce the terms of this easement, to enjoin the violation by temporary or permanent injunction, and to require the restoration of the property to the condition that existed prior to any such injury.
c. Damages. Grantee shall be entitled to recover damages for a violation of the terms of this easement or for injury to any of the conservation values protected by this easement, including, without limitation, damages for loss of scenic, aesthetic, or environmental values. Without limiting Grantor's liability therefore, Grantee may, in its sole discretion, apply any damages recovered to the costs of undertaking any corrective action on the Property.
e. Costs of Enforcement. All reasonable costs of enforcing the terms of this easement against Grantor, including but not limited to the costs and expenses of legal action, reasonable attorney's fees, and any costs involved in the restoration of the Property resulting from Grantor's violation of the terms of this easement, shall be borne by Grantor unless Grantor ultimately prevails in judicial enforcement, in which case each party shall bear its own costs.
f. Forbearance. Forbearance or delay by Grantee in the exercise of any of its rights to the terms of this easement shall not be deemed a waiver of such rights or of any of the terms of the easement. Grantors hereby waive any defense of laches, estoppel or prescription.
g. Acts Beyond Grantor's Control. Grantee shall have no cause of action under this easement against Grantor for injury or damage to the property which is beyond Grantor's control, including, without limitation, flood, fire, wind, storms, or earth movement, or from any prudent action taken by Grantor, under
emergency conditions, to prevent, abate or mitigate significant injury to the Property or adjacent properties from such causes.
6. Notices and Approvals. Grantor agrees to give Grantee written notice before exercising any reserved right, the exercise of which may have an adverse impact on the conservation interests of this conservation easement. Grantor further agrees to notify Grantee of any conveyance, lease or transfer of the Property, such notice to be given in writing at least twenty (20) days in advance of such conveyance, lease or transfer. The failure to give such notice shall not, however, invalidate the conveyance, lease or transfer. When Grantee's or Grantor's approval is required for any action or activity allowed by this easement to be taken only with approval such approval shall be in writing and signed by both parties to this easement agreement or their successors. Any notice required by this easement shall be deemed given when received or three days after being mailed by certified or registered mail, return receipt requested, postage prepaid, properly addressed as follows: (a) if to Grantee, at address set forth above; (b) if to Grantor, at the address set forth above; (c) if to any subsequent owner, at the address provided by notice to Grantee of transfer of the property as required by this paragraph. Any party may change the address to which notices are to be sent to him, her or it by duly giving notice pursuant to this paragraph.
7. Costs and Liabilities. Grantors shall retain all responsibilities and shall bear all costs and liabilities of any kind related to the ownership, operation, upkeep and maintenance of the Property. Grantor shall remain solely responsible for obtaining any applicable governmental permits and approvals for any construction or other activity or use permitted by this easement, and all such construction and other such activity or use shall be undertaken in accordance with all applicable federal, state and local laws, regulations and requirements. Grantor shall keep the Property free of all liens arising out of any work performed for materials furnished to, or obligations incurred by Grantor.
8. Taxes. Grantor shall pay before delinquency all taxes, assessments, fees and charges of whatever including any taxes imposed upon or incurred as result of this easement and shall furnish Grantee with evidence of such payment upon request.
9. Amendment. This conservation easement may be amended upon written consent of Grantee and alter the restrictions on use or permitted structure of this conservation easement. Any such amendment, variance or waiver shall be consistent with the basic purpose of this conservation easement.
10. Recordation. Grantee shall record this instrument in a timely fashion in the official records of the office of the Clerk of the County of Westchester Division of Land Records.
11. Assignment. Grantee's rights and obligations under this conservation easement may be assigned only to an organization that is a qualified organization under Section 170(11) of the Internal Revenue Code (or any successor provision then applicable) and is not-for-profit conservation corporation or other entity authorized to take title to a conservation easement under New York Environmental Law, Article 49, Title 3, and which agrees to continue to carry out the conservation progress of this conservation easement. Any assignee other than a governmental
unit in the County of Westchester, must be an entity able to enforce this conservation easement, having purposes similar to those of Grantee and which encompass those of this conservation easement. Grantee agrees to provide Grantor notice of any assignment 20 days prior to any assignment Failure to provide such notice prior to assignment shall not affect the validity of the assignment, nor shall it impair the validity of this easement or limit its enforceability in any way.
12. Subsequent Transfers. Any subsequent conveyance of any interest in the Property, including without limitation, transfer, lease or mortgage, shall be subject to this conservation easement, and any deed, lease, mortgage or other instrument evidencing or effecting such conveyance shall contain language substantially as follows: "This [conveyance, lease, mortgage, easement, etc.] is subject to a Conservation Easement which runs with the land and which was granted to the Town of North Castle by instrument dated and recorded in the office of the Clerk of Westchester County, Control Number: . The failure to include such language in any deed or instrument shall not affect the validity or enforceability of this conservation easement.
13. Binding Effect. The provisions of this conservation easement shall run with the Property in perpetuity and shall bind and be enforceable against the Grantor and all future owners and any party entitled to possession or use of the Property or any portion thereof while such party is the owner or entitled to possession or use thereof. As used in this conservation easement, the term "owner" included the owner of any beneficial equitable interest in the Property or any portion thereof; the term "Grantor" includes the original Grantor, his, her or their heirs, successors and assigns, all future owners of all or any portion of the Property, and any party entitled to possession or use thereof; and the term "Grantee" includes the original Grantee and its successors and assigns. Notwithstanding the foregoing, upon any transfer of title, the transferor shall cease being a Grantor or owner for purpose of this conservation easement and shall have no further responsibility or liability hereunder for acts done or conditions arising thereafter, but the transferor shall remain liable for earlier acts and conditions. The obligations imposed on Grantor by this agreement shall be joint and several.
14. Extinguishment. If circumstances arise in the future that make the purpose of this easement impossible to accomplish, and if this Easement of any of its restrictions are extinguished by judicial proceeding, then, upon any subsequent sale, exchange or involuntary conversion by the Grantor, the Grantee shall be entitled to that portion of the proceeds equal to the proportionate value of the conservation restrictions as provided immediately below. For such purposes only, grantor agrees that the donation/conveyance of this Conservation Easement to Grantee gives rise to a property right, immediately vested in Grantee, with a fair market value that is equal to the proportionate value that the conservation restrictions hereby created at the date hereof bears to the value of the Property as a whole at the date hereof (subject to reasonable adjustment to the extent permissible under Section 170(h) of the Internal Revenue Code for any improvements which may hereafter be made on the Property). Grantee agrees to use it share of such proceeds in a manner consistent with the conservation purposes of this conservation easement.
15. Condemnation. If all or any part of the property is taken by the exercise of the power of eminent domain, or acquired by purchase in lieu of condemnation, whether by public,
corporate or other authority, so as to terminate this easement, in whole or in part, Grantor and Grantee shall act jointly to recover the full value of the interests in the Property subject to the taking or in lieu purchase and all direct or incidental damages resulting therefrom. All expenses reasonably incurred by Grantors or Grantees in connection with the taking or in lieu purchase shall be paid out of the amount recovered. Grantee's share of the balance of the amount recovered shall be determined by multiplying that balance by the ration set forth in paragraph 14 .
16. Further Acts. Each party shall perform any further acts and execute and deliver any documents, including amendments to this conservation easement, which may be reasonably necessary to carry out its provisions or which are necessary to qualify this instrument as a conservation easement under Article 49, Title 3, of the Conservation Law or any regulations promulgated pursuant thereto.
17. Severability. Invalidation of any provision of this conservation easement by Court Judgment, Order, Statute or otherwise shall not affect any other provisions, which shall be and remain in force and effect.
18. Interpretation. This instrument in intended to create a "qualified real property interest" for "conservation purposes" as defined in Section 170(h) of the Internal Revenue Code, and shall be interpreted consistently with such intention. In the event that any provision has been omitted from this instrument which is necessary to qualify the interest hereby granted as such a "qualified real property interest" for "conservation purposes", such provision shall be deemed incorporated herein to the extent necessary to cause the interest hereby granted to be so qualified.

IN WITNESS WHEREOF, the parties have executed this instrument as of the day and year written above.

\section*{MCKENNA CUSTOM HOMES, INC.}

\section*{BY:}

GREGORY MCKENNA, PRES.

\section*{TOWN OF NORTH CASTLE \\ BY:}

STATE OF NEW YORK

\section*{COUNTY OF WESTCHESTER ]}

On the day of , 2016 before me, the undersigned personally appeared: GREGORY MCKENNA personally known to me or proven on the basis of satisfactory evidence to be the individual(s) whose name(s) is [are] subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity[ies] and that by his/her/their signature[s] on the instrument, the individual[s] or the person upon behalf of which the individual \([\mathrm{s}]\) acted executed this instrument.

\section*{STATE OF NEW YORK ] \\ COUNTY OF WESTCHESTER}

On the
day of
, 2016 before me, the undersigned personally appeared: personally known to me or proven on the basis of satisfactory evidence to be the individual(s) whose name(s) is [are] subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity[ies] and that by his/her/their signature[s] on the instrument, the individual[ s\(]\) or the person upon behalf of which the individual[ s\(]\) acted executed this instrument.

\section*{Section:}

\section*{Block:}

Lot:

\section*{RECORD AND RETURN TO:}

\section*{PATRICK J. BLISS, ESQ.}

399 KNOLLWOOD RD, 204
WHITE PLAINS, NEW YORK 10603

\section*{DEED OF ROAD TO TOWN OF NORTH CASTLE}

\author{
This Indenture, made the day of 2021 between
}

MCKENNA CUSTOM HOMES, INC., 433 Manville Road, Pleasantville, New York 10570
party of the first part, and
TOWN OF NORTH CASTLE, a municipal corporation of the State of New York, 15 Bedford Road, Armonk, New York 10510 party of the second part,

WITNESSETH, that the party of the first part, in consideration of ten dollars and other valuable consideration paid by the party of the second part, does hereby grant and release unto the party of the second part, the heirs or successors and assigns of the party of the second part forever,

ALL THAT CERTAIN plot, piece or parcel of land, with the improvements thereon situate and lying in the Town of North Castle County of Westchester being more particularly described on SCHEDULE A annexed hereto and incorporated herein by reference.

BEING AND INTENDED to be only a part of the premises conveyed to the party of the first part by deed from the dated and duly recorded in the Westchester County Clerk's Office, Division of Land Records under Control No.

This conveyance is made upon unanimous Resolution of the Board of Trustees and Shareholders of McKenna Custom Homes, Inc., of this date in accordance with BCL §909.

TOGETHER with all right title and interest, if any, of the party of the first part in and to any streets and roads abutting the above described premises to the center lines thereof; TOGETHER with appurtenances and all the estate and rights of the party of the first part in and to said premises; TO HAVE AND TO HOLD the premises herein granted unto the party of the second part, the heirs or successors and assigns of the party of the second part forever.

AND the party of the first part covenants that the party of the first part has done nothing or suffered anything whereby the said premises have been encumbered in any way whatever, except as aforesaid.

AND the party of the first part, in compliance with Section 13 of the Lien Law, covenants that the party of the first will receive the consideration for this conveyance and will hold the right to receive such consideration as a trust fund to be applied first for the purpose of paying the cost of the improvement and will apply the same first to the payment of the cost of the improvement before using any part of the total of the same for any other purpose. The "party" shall be construed as if it read "parties" whenever the sense of this indenture requires.

IN WITNESS WHEREOF, the party of the first part has duly executed this deed the date and year above first written.

MCKENNA CUSTOM HOMES, INC.

BY:
GREGORY MCKENNA

\section*{DECLARATION OF COVENANTS, CONDITIONS, AND RESTRICTIONS FOR HIDDEN OAK SUBDIVISION}

DECLARATION made as of the \(\qquad\) day of \(\qquad\) , 20 , by with an address at \(\qquad\) (hereinafter referred to as the "Declarant").

\section*{W I T N E S S E T H:}

WHEREAS, Declarant is the owner of all that certain lot, piece or parcel of land situate, lying and being in the Town of [_] , County of [_] and State of New York, being designated as Section, Block and Lot [indicate all lots of subdivision] as shown on that certain map entitled "[filed map name]" which was filed in the Office of the County Clerk of
\(\qquad\) ] County on [ \(\qquad\) ] as Filed Map No. \(\qquad\) ] and which is more accurately bounded and described in the deed attached hereto as Exhibit 1 (the "Property"); and

WHEREAS, Declarant plans to undertake or is undertaking plans for the development or sale of land that will result in [__ ] as described in the definition of "[__]" referenced in the Rules and Regulations for the Protection from Contamination, Degradation and Pollution of the New York City Water Supply and Its Sources, Title 10 New York Codes, Rules and Regulations Part 128-3.9(b)( \(\quad\) )(_); Title 15 Rules of the City of New York Chapter 1839(b)(__ )(__) ("Watershed Regulations"); and

WHEREAS, the Watershed Regulations require Declarant to prepare a Stormwater Pollution Prevention Plan ("SWPPP") and submit the SWPPP to the New York City Department of Environmental Protection ("DEP") for its review and approval so that stormwater generated by precipitation during and after soil disturbing activities and runoff from newly created impervious surfaces is captured and treated, thus reducing or eliminating a pollution discharge; and

WHEREAS, Declarant has submitted a SWPPP application to DEP for the Property described above, Project name and number, and received an approval from DEP for such SWPPP, dated \(\qquad\) , such SWPPP approval and the maintenance obligations being attached hereto as Exhibit 2; and

WHEREAS, Declarant desires to declare the following covenants, conditions and restrictions to govern the future development, use and maintenance of any lots that are part of the Property that may be conveyed to future owners, including the Declarant's respective heirs, successors, and assigns, and to subject any deed of conveyance of any such lots to this Declaration, by reference thereto, to the covenants, conditions and restrictions described herein,

NOW, THEREFORE, Declarant hereby declares that the Property shall be held, sold, conveyed, transferred and occupied subject to the following covenants, conditions, and restrictions which are for the benefit of the City of New York as well as for the owners of the Property and which shall be perpetual so long as the provisions of the SWPPP continue to be required by the Watershed Regulations, shall run with the Property and be binding on the Declarant, its heirs, successors and assigns and be binding upon each successive owner of any Property parcel or lot described in the subdivision plan and the heirs, successors and assigns of each subsequent party having or acquiring any right, title or interest in the Property or any part thereof.
1. Declarant hereby acknowledges, covenants, warrants, and represents that it shall install and maintain any and all erosion and sediment controls and stormwater management practices on the Property in accordance with the SWPPP approved by DEP, dated \(\qquad\) , and any and all amendments to the SWPPP that may be required and that DEP may approve.
2. Declarant's installation and maintenance of the erosion and sediment controls and stormwater management practices shall be for the benefit of the City of New York as well as for the owners of the Property.
3. Declarant's obligation to install and maintain any and all erosion and sediment controls and stormwater management practices on the Property in accordance with the DEP-approved SWPPP and any and all amendments to the SWPPP that DEP may approve shall be perpetual so long as the provisions of the SWPPP continue to be required by the Watershed Regulations.
4. Declarant hereby acknowledges, covenants and warrants that this Property shall be subject to the maintenance obligations set forth and described in the SWPPP, with respect to any stormwater management practices or treatment of runoff located on areas commonly owned by multiple property owners or a homeowners' association in the subdivision.
5. Declarant hereby covenants, warrants, and represents that any lease, mortgage, subdivision, or other transfer of the Property, or any interest therein, shall be subject to the restrictive covenants contained herein pertaining to the installation and maintenance of erosion and sediment control and stormwater management practices, and any deed, mortgage, or other instrument of conveyance shall be subject to and, specifically refer to, the attached SWPPP approval and shall specifically state that the interest thereby conveyed is subject to the covenants and restrictions contained herein and therein.
6. These covenants, conditions and restrictions shall be recorded at the Office of the County Clerk, shall run with the land and shall apply to, inure to the benefit of, and bind the Declarant and all subsequent heirs, executors, administrators, successors and assigns.

IN WITNESS WHEREOF, Declarant has executed this document on the date first above written.

\section*{STATE OF NEW YORK )}
)
COUNTY OF

On \(\qquad\) , 20 , before me, the undersigned, a Notary Public in and for said State, personally appeared \(\qquad\) , personally known to me or proved to me on the basis of satisfactory evidence to be the individual whose name is subscribed to the within instrument and acknowledged to me that he executed the same in his/her capacity, and that by his/her capacity, and that by his/her signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public

\section*{Exhibit 1}

Exhibit 2

This Agreement is made as of this day of , 2021 by and between the TOWN OF NORTH CASTLE, a New York municipal corporation with offices at 15 Bedford Road, Armonk, New York 10510, hereinafter referred to as the "Town", and McKenna Custom Homes, Inc., a New York corporation with offices at 343 Manville Road, Pleasantville, New York hereinafter referred to as "McKenna Custom".

\section*{WITNESSETH}

WHEREAS, McKenna Custom is the owner of that certain plot, piece and parcel of land, with the buildings and improvements thereon, situated at 13 Hidden Oak Road in the Town of North Castle, comprising 7.69 acres, and shown and designated on the Tax Map for the Town of North Castle Section 107.01, Block 1, Lot 32 (the "Land") and title to said lands being subject to the conditions imposed by the Town of North Castle as shown and designated on a certain Map entitled "Hidden Oak Subdivision Proposed Lots \(1,2 \& 3\), in Armonk, Town of North Castle, Westchester County, New York", made by William J. Welsh, Land Surveyor, dated \(\qquad\) and filed in the Westchester County Clerk's Office, Division of Land Records, on as Map No. ; and

WHEREAS, Declarant plans to undertake or is undertaking plans for the development or sale of land that will result in Plans for development or sale of land that will result in the disturbance of five (5) or more acres of total land area as described in the Section 18-39 (b) (3) (i) in the Rules and Regulations for the Protection from Contamination, Degradation and Pollution of the New York City Water Supply and Its Sources ("Watershed Regulations"); and

WHEREAS, the Watershed Regulations require Declarant to prepare a Stormwater Pollution Prevention Plan ("SWPPP") and submit the SWPPP to the New York City Department of Environmental Protection ("DEP") for its review and approval so that stormwater generated by precipitation during and after soil disturbing activities and runoff from newly created impervious surfaces is captured and treated, thus reducing or eliminating a pollution discharge; and

WHEREAS, Declarant has submitted a SWPPP application to DEP for the Property described above, Hidden Oak Subdivision, DEP Log \# 2014-KE-01088-SP.1, and received an approval from DEP for such SWPPP, dated \(\qquad\) , such SWPPP approval and the maintenance obligations being attached hereto as Exhibits 1 and 2; and

WHEREAS, McKenna Custom has submitted a Stormwater Pollution Prevention Plan ("SWPPP") to the Town dated March 1, 2016 prepared by Evans Associates which sets forth, among other things, the proposed improvements to be constructed and/or installed for the purpose of controlling and mitigating stormwater runoff from the Subdivision ("Storm Water Control Facilities") consisting of subsurface infiltration facilities, an extended detention stormwater management basin, a bioretention facility, two rain gardens and tree planting, as well as filter strips; and

WHEREAS, the SWPPP has been approved by the Town; and
WHEREAS, as required by the Town of North Castle, a maintenance and access agreement is to be recorded in the Office of the Westchester County Clerk (Division of Land Records) in order to provide for the long-term maintenance and continuation of the various stormwater control measures shown on the approved subdivision plans (the "Plan") and

WHEREAS, copies of the approved plans of the Subdivision are on file with the Building Department of the Town of North Castle at the Town Hall, 17 Bedford Road, Armonk, New York 10504; and

WHEREAS, the Town and McKenna Custom desire that Stormwater Control Facilities be constructed and installed in accordance with the approved plans and that they thereafter be inspected, used, maintained, repaired and replaced in perpetuity in order to insure that they continue to function in the manner for which they are intended.

NOW, THEREFORE, in consideration of the approval and the mutual agreements and understandings set forth herein, and consistent with all applicable provisions of the Town Code, the Town and McKenna Custom hereby agree as follows:
1. McKenna Custom and/or any subsequent owner(s) of property shall use, maintain, repair and replace the Stormwater Control Facilities located on the portions of the premises owned by them in accordance with the maintenance plan contained in the SWPPP, a copy of which
maintenance plan is set forth on Schedule "A" which is annexed hereto and hereby made a part hereof (the "Maintenance Procedures").
2. McKenna Custom shall perform the Maintenance Procedures and shall pay all expenses related to the use, maintenance, repair and replacement of the Stormwater Control Facilities. In the event that the property is conveyed to another party or parties, the subsequent owner or owners shall, as a result of such conveyance, assume all responsibility for performing the Maintenance Procedures and for any other costs associated with using, maintaining, repairing and replacing the Stormwater Control Facilities located on his or their lot or lots except that all property owners shall equally share in the maintenance and repair costs of all control facilities contained in Storm Water Mitigation Areas, identified on the approved subdivision map of McKenna Custom as "Easement for Maintenance of Common Stormwater Control Facilities". The conveyance of the property shall unconditionally release the party conveying any such property from all obligations contained herein, unless provided for otherwise in a contract of sale or other agreement between the parties to any such conveyance.
3. McKenna Custom, or any subsequent owner or owners of the property, shall inspect the Storm Water Control Facilities at the frequency set forth in the SWPPP. The inspector shall prepare and submit a written report to the appropriate lot owner and to the Town's Stormwater Management Officer ("SMO") within 30 days following the completion of the inspection. Any such report of the findings shall include, if appropriate, recommendations for future use, maintenance, repair and/or replacement of the Stormwater Control Facilities in order to ensure the continuing effectiveness of the Facilities.
4. No lot owner shall authorize, undertake or permit alteration, abandonment, modification or discontinuation of the use of the Stormwater Control Facilities except in accordance with written approval of the Town and the North Castle Planning Board, which approval shall not be unreasonably withheld.
5. Any lot owner shall undertake on his lot any necessary repairs and replacement of the

Stormwater Control Facilities at the reasonable direction of the Town or in accordance with the recommendations of the inspector. In the event that the SMO determines that a lot owner or all lot owners as the case may be have failed to construct or maintain the Stormwater Control Facilities located on their lot in accordance with the SWPPP or has failed to undertake corrective action specified by the Town or by the engineer pursuant to this Paragraph, the SMO shall notify such lot owner or all lot owners, as the case may be, to perform or cause to be performed any such maintenance or corrective action. Any such notice shall be sent to such lot owner or owners, as the case may be, by certified mail, return receipt requested, to the address for such lot owner(s) maintained by the Tax Assessor's Office for the Town. Any such lot owner(s) shall have thirty-five (35) days from the mailing of such notice to (a) complete or timely commence such corrective action; or (b) appeal any such determination of the SMO to the Town Board. The decision of the Town Board may be appealed pursuant to the provisions of Article 78 of the New York State Civil Practice Law and Rules.
6. In the event that a lot owner(s) is (a) duly notified by the Town to undertake maintenance or corrective action pursuant to Paragraph 4, above; and (b) either (1) such lot owner(s) does not appeal said notification; or (2) the order of the Town is upheld by either the Town Board or a court of competent jurisdiction and the lot owner does not, following the outcome of such appeal, carry out said maintenance or corrective action if required to do so, the Town is hereby granted an easement to enter the lots for the purpose of undertaking said maintenance or corrective action to the Facilities. Reasonable notice shall be given prior to such entry. The Town may affix the expenses thereof as a lien against the property.
7. In order to give effect to the provisions of this Agreement, the Town is permitted, at reasonable times, to have access to the property for inspection of the Stormwater Control Facilities. Access to the lots pursuant to Paragraph 6 above or this Paragraph 7 shall be limited to the areas known and designated on a certain Map entitled "Final Subdivision Plat for Hidden Oak Subdivision prepared by William J. Welsh, Welsh Engineering \& Land Surveying, P.C. and filed in the office of Westchester County Clerk, Division of Land Records on
8. The approval of the Town and the North Castle Planning Board, by resolution or otherwise shall be required prior to any amendment to this Agreement or the SWPPP.
9. This Agreement shall run with the land and shall be binding on the successors and assigns of McKenna Custom. This Agreement is to be recorded in the Office of the County Clerk of Westchester (Division of Land Records) upon the approval of the subdivision and shall be effective as of the date of recording.
10. The singular number as used herein shall be read as the plural number, and vice versa, and the masculine gender shall be read as the feminine or neuter gender, whenever necessary to give full effect to the terms and provisions hereof.

IN WITNESS WHEREOF, the parties hereto have executed this Agreement as of the date first written above.

McKENNA CUSTOM HOMES, INC.

BY:

TOWN OF NORTH CASTLE

BY:
Supervisor

\section*{STATE OF NEW YORK} COUNTY

On the day of
State, personally appeared
2016. before me, a notary public of New York , personally known to me or proved to me by satisfactory evidence to be the individual whose name is subscribed to the within instrument and (s) he duly acknowledged to me that (s) he executed the same in his/her capacity and that by his/her signature on the instrument, the individual or person upon behalf of which the individual acted, executed the instrument. Notary Public:

STATE OF NEW YORK

On the day of personally appeared
2016. before me, a notary public of New York State, , personally known to me or proved to me by satisfactory evidence to be the individual whose name is subscribed to the within instrument and (s)he duly acknowledged to me that (s)he executed the same in his/her capacity as the Supervisor of the Town of North CASTLE and that by his/her signature on the instrument, the individual or person upon behalf of which the individual acted, executed the instrument.

Record and Return:
\(\qquad\)

\title{
SCHEDULE "A" TO STORMWATER CONTROL FACILITY MAINTENANCE AND ACCESS AGREEMENT BY AND BETWEEN MCKENNA CUSTOM, LTD. AND THE TOWN OF NORTH CASTLE
}

As used herein, "Short Term Maintenance Requirements" are those stormwater control measures to be undertaken by a lot owner during such time as a residence is under construction upon said lot. "Long Term Maintenance Requirements" are those stormwater control measures to be undertaken following the completion of construction of a residence on any such lot.

\section*{Maintenance and Inspection Requirements:}

In accordance with New York State Department of Environmental Conservation SPDES General Permit for Stormwater Discharges from Construction Activity, Permit No. GP-0-15-002, the qualified inspector shall conduct at least two (2) site inspections every seven (7) calendar days. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.

At a minimum, the qualified inspector shall inspect all erosion and sediment control practices and pollution prevention measures to ensure integrity and effectiveness, all post-construction stormwater management practices under construction to ensure that they are constructed in conformance with the SWPPP, all areas of disturbance that have not achieved final stabilization, all points of discharge to natural surface waterbodies located within, or immediately adjacent to, the property boundaries of the construction site, and all points of discharge from the construction site.

The qualified inspector shall prepare an inspection report subsequent to each and every inspection. At a minimum, the inspection report shall include and/or address the following:
a. Date and time of inspection;
b. Name and title of person(s) performing inspection;
c. A description of the weather and soil conditions (e.g. dry, wet, saturated) at the time of the inspection;
d. A description of the condition of the runoff at all points of discharge from the construction site. This shall include identification of any discharges of sediment from the construction site. Include discharges from conveyance systems (i.e. pipes, culverts, ditches, etc.) and overland flow;
e. A description of the condition of all natural surface waterbodies located within, or immediately adjacent to, the property boundaries of the construction site which receive runoff from disturbed areas. This shall include identification of any discharges of sediment to the surface waterbody;
f. Identification of all erosion and sediment control practices and pollution prevention measures that need repair or maintenance;
g. Identification of all erosion and sediment control practices and pollution prevention measures that were not installed properly or are not functioning as designed and need to be reinstalled or replaced;
h. Description and sketch of areas with active soil disturbance activity, areas that have been disturbed but are inactive at the time of the inspection, and areas that have been stabilized (temporary and/or final) since the last inspection;
i. Current phase of construction of all post-construction stormwater management practices and identification of all construction that is not in conformance with the SWPPP and technical standards;
j. Corrective action(s) that must be taken to install, repair, replace or maintain erosion and sediment control practices and pollution prevention measures; and to correct deficiencies identified with the construction of the post-construction stormwater management practice(s);
k . Identification and status of all corrective actions that were required by previous inspection; and
1. Digital photographs, with date stamp, that clearly show the condition of all practices that have been identified as needing corrective actions. The qualified inspector shall attach paper color copies of the digital photographs to the inspection report being maintained onsite within seven (7) calendar days of the date of the inspection. The qualified inspector shall also take digital photographs, with date stamp, that clearly show the condition of the practice(s) after the corrective action has been completed. The qualified inspector shall attach paper color copies of the digital photographs to the inspection report that documents the completion of the corrective action work within seven (7) calendar days of that inspection.

Within one business day of the completion of an inspection, the qualified inspector shall notify the owner or operator and appropriate contractor or subcontractor identified in Part III.A.6. of this permit of any corrective actions that need to be taken. The contractor or subcontractor shall begin implementing the corrective actions within one business day of this notification and shall complete the corrective actions in a reasonable time frame.

All inspection reports shall be signed by the qualified inspector. Pursuant to Part II.C.2. of this permit, the inspection reports shall be maintained on site with the SWPPP.

\section*{Short Term Maintenance and Inspection Requirements:}

Inspections performed during construction shall verify all practices are functioning properly, correctly maintained, and accumulated sediment is removed from all control structures. The inspector must also examine the site for any evidence of soil erosion, the potential for pollutants to enter the storm drain system, turbid discharge at all outfalls, and the potential for soil and mud to be transported on the public roadway at the site entrance. In addition to these general guidelines, the project plans will provide more specific erosion control guidelines, as well as a construction sequence to guide the contractor through the construction process. Discussed below are specific maintenance and inspection requirements for the temporary practices to be employed at the site. The short-term maintenance requirements may be referenced in the Stormwater Pollution Prevention Plan report in the section entitled "Erosion and Sediment Control Measures Maintenance Schedule" beginning on page 22 of said report.

The contractor shall notify the Town of North Castle Stormwater Management Officer at least 48 hours prior to the commencement of any of the following construction stages: start of construction, installation of erosion and sediment control measures, completion of site clearing, completion of rough grading, installation of stormwater management practices, completion of final grading and stabilization of disturbed areas, closure of construction, and completion of final landscaping.

Once construction is completed and the site has been stabilized, a Notice of Termination shall be filed.

\section*{Long Term Maintenance and Inspection Requirements:}

Once final stabilization is achieved, and construction is complete, maintenance and inspections will be performed by the parties identified in Exhibit 1, attached. The Maintenance and Inspection Checklists from Appendix "G" of the New York State Stormwater Management Design Manual shall serve as a guide for maintaining and inspecting the infiltration and bioretention facilities. Appendix "G" can be found as part of the Hidden Oak SWPPP report on file with the Town of North Castle as well as using the following link http://www.dec.ny.gov/docs/water_pdf/swdmappendixg.pdf. The entire New York State Stormwater Management Design Manual may be found at the following web page http://www.dec.ny.gov/docs/water pdf/swdm2015entire.pdf.

Inspections of the stormwater management practices and the collection and conveyance facilities shall be performed in accordance with Exhibit 1 which is excerpted from the approved Stormwater Pollution Prevention Plan.

EXHIBIT 1: Post-Construction Stormwater and Erosion Control Maintenance Responsibilities
\begin{tabular}{|c|c|}
\hline Maintenance Item & Entity Responsible for Maintenance Following Construction and Sale of Lots \\
\hline Stormwater Management Facilities & \begin{tabular}{l}
The three future homeowners collectively and under the legal agreement between them will be responsible for the maintenance of the following stormwater management practices: \\
SWMF-1.1 (bioretention facility) \\
SWMF-1.2 (infiltration facility) \\
SWMF-1.3 (stormwater management basin) \\
SWMF-2.2 (infiltration facility). \\
Individual homeowner has responsibility for the maintenance of the following stormwater management facilities located on the lot to which he/she has acquired title: \\
- On Lot 1, SWMF-L1 (infiltration facility); \\
- On Lot 2, SWMF-L2. 1 (infiltration facility) and SWMF-L2.2 (infiltration facility); \\
- On Lot 3, Rain Gardens \#1 and \#2, and Green Infrastructure Tree Planting.
\end{tabular} \\
\hline Stormwater Collection and Conveyance System & \begin{tabular}{l}
Town of North Castle responsibility includes: \\
Storm drainage facilities within the right-of-way in the subdivision road which is to be dedicated to the Town. \\
Maintaining the vegetated swales within the Town roadway right-of-way. \\
The three future homeowners collectively and under the legal agreement between them will be responsible for: \\
Storm drainage facilities (catch basin, manholes and outlet control structures outside of the subdivision road right-of-way which convey runoff to SWMF-1.3 (stormwater management basin). \\
Individual homeowner has responsibility for: \\
Storm drainage facilities (catch basin, manholes and outlet control structures on the individual lot to which he/she has obtained title and which convey runoff to stormwater management facilities to manage the runoff from that lot. This includes the collection and conveyance storm drainage system which conveys runoff to: \\
- On Lot 1, SWMF-L1 (infiltration facility) \\
- On Lot 2, SWMF-L2. 1 (infiltration facility) and SWMF-L2.2 (infiltration facility) \\
- On Lot 3, Rain Gardens \#1 and \#2.
\end{tabular} \\
\hline Erosion in Landscaped Areas of the Individual Lots & Each individual homeowner for the lot to which he/she has obtained title \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Maintenance Item & \begin{tabular}{l} 
Entity Responsible for Maintenance Following Construction and \\
Sale of Lots
\end{tabular} \\
\hline \begin{tabular}{l} 
Erosion of Slopes, Sand, Grit \\
and Debris in the Subdivision \\
Road Right-of-Way
\end{tabular} & Town of North Castle \\
\hline
\end{tabular}

\section*{EXHIBIT 2: MAINTENANCE OF STORMWATER FACILITIES}

Maintenance of stormwater management facilities is described below for each stormwater management practice and component of the stormwater collection and conveyance system.

Definitions:
Owner - Refers to the present owner and applicant for the three lot subdivision of the property, McKenna Custom Homes, or its successors and assigns.

Homeowner - Refers to an individual owner of one of the three lots that has acquired the title to one of the lots.

Legal Agreement between the Three Homeowners ("three future homeowners collectively") Refers to the legal agreement between the three future homeowners of the individual lots. Under the legal agreement, the three future homeowners collectively have maintenance and financial responsibility with regard to the stormwater practices and facilities noted in Exhibit 1.

\section*{STORMWATER MANAGEMENT BASIN}
(SWMF-1.3):
1. Description: The stormwater management basin is used to control the rate of discharge from the property, and to improve the quality of the runoff.
2. Maintenance measures include:
(i) Periodically remove debris and litter from basin.
(ii) Clean trash rack when trash or debris has accumulated.
(iii) Mow side slopes, embankments, emergency spillway and access road at least once a year, preferably after August. Woody growth on the side slopes into the basin and on the berm outside of the basin should be discouraged.
(iv) Remove sediment from forebay every five to six years or when depth has reached 6 " measured on the sediment stick; from main portion of the basin if depth of sediment has reached 6 " or long flow path of water is hindered. Some replacement wetland planting may be necessary following removal of sediment.
(v) Stabilize eroding soils of stormwater management basin side slopes, embankment, and emergency spillway by placing topsoil as may be needed, then seeding and mulching with straw or other appropriate means.
(vi) Repair or replace structural elements such as inlet and outlet structures as necessary.
(vii) Remove larger borrowing animals, such as muskrats, from structural features. Trapping may be necessary.
(viii) Rock/riprap pads have not migrated, but are placed as per the design, and that vegetation, especially woody plants, are not growing within these areas.
3. Inspect for:
(i) Erosion, cracking, embankment subsidence, tree growth, burrowing animals.
(ii) Sediment and clogging in the outlet control facility, stormwater inlets, emergency spillway and drain (if present).
(iii) Sediment in forebay.
(iv) Adequacy of channel erosion controls at the outlet.
(v) Adequacy of plant coverage in shallow marsh (vegetated wetland) areas.
(vi) Proper functioning of structural elements.
(vii) Sources of erosion in the contributory drainage area.
4. Erosion in Stormwater Management Basin:
(i) In the event the Owner and/or the three future homeowners collectively under the legal agreement observe bare soils exceeding 20 square feet within the stormwater management basin, it shall seed those areas with a quick germination rye seed mix as soon as possible, or as directed by the landscape architect or civil engineer.
(ii) In the event the Owner and/or the three future homeowners collectively observe gully erosion more than 3" deep within the stormwater management basin or in vegetated or grassed swales, it shall fill the same immediately and seed the area with a quick germination rye seed, or as directed by the landscape architect or civil engineer.
(iii) Any debris accumulation, litter, and/or fallen trees or brush within Drainage Easement Areas shall be removed and disposed of off-site.
5. Sediment Deposits in Stormwater Management Basin:
(i) Sediment deposits obstructing more than one-third of the inlet or outlet structures or pipes associated with the basin shall be removed therefrom by the Owner and/or the three future homeowners collectively and be placed in a suitable upland area of the property or removed from the property and properly disposed of.
(ii) Sediment deposits that exceed one inch in depth within the vegetated areas of any detention basin or infiltration basin encompassing more than 20 square feet shall be removed by the Owner and/or the three future homeowners collectively and be placed in a suitable upland area of the property or removed from the property and properly disposed. Any plants affected by the removal process shall be dug out or replanted. (iii) Sediment deposits in the forebay and micropool shall not exceed six (6) inches in depth. All sediment removed shall be deposited and stabilized in a location that is not likely to erode.

\section*{INFILTRATION FACILITIES}
(SWMF-1.2, SWMF-L1, SWMF-L2.1 and SWMF-L2.2, and SWMF-2.2):
1. Description: Infiltration facilities are used to improve the quality of the runoff, provide for a reduction in the volume of runoff, and in some cases, reduce the peak rate of runoff. Maintenance of infiltration facilities is essential to ensure their continued effectiveness. Principally, this involves preventing suspended solids from being discharged to the infiltration facilities. These may have the effect of filling the void spaces thereby clogging the soil. A log shall be maintained for each infiltration facility.
2. Maintenance Measures Include:
(i) Observation of the depth of sediment, if any, through inspection via the installed observation port on each row of the chambers during the first 2 to 3 months of operation, and thereafter on an annual basis.
(ii) Remove sediment from pre-treatment facility when the depth of sediment reaches \(50 \%\) of capacity of the facility.
(iii) Remove sediment from chambers when the depth of sediment is \(3 "\) in depth.
(iv) The manufacturer of the chambers recommends cleaning of the stormwater management chambers every 9 years after installation and every 9 years thereafter.
(v) The manufacturer also recommends that 45 years after installation, the chambers be inspected using closed circuit television (CCTV) or other comparable technique to determine the condition of the interior of the chambers, and rehabilitate or replace as may be necessary.
(vi) Ensuring that the meadow vegetation to be established above the infiltration facilities, where it is proposed, achieves good growth and final stabilization of the ground surface above the chambers. Periodic mowing of the meadow, once in the spring (midApril and once in autumn (late October) is needed to ensure that woody vegetation does not become established in the meadow.
3. Inspect for:
(i) Depth of sediment, if any, through inspection via the installed observation port on each row of the chambers during the first 2 to 3 months of operation, and thereafter on an annual basis.
(ii) The rate of dewatering of the infiltration facility following a precipitation event. The chambers should fully dewater within 48 hours of the end of the precipitation event.

\section*{CATCH BASINS, MANHOLES AND STORM DRAINAGE PIPES}

Catch basins, drain inlets and manholes located within the right of way of the subdivision road will be maintained by the Town of North Castle. If these structures are located on private property, their maintenance shall be carried out by the Owner and/or by the three future homeowners collectively under their legal agreement.
1. Description: Catch basins have sumps to allow sediment and debris to drop out before the water exits this drainage junction. Storm pipes normally need no maintenance.
2. Maintenance Measures Include:
(i) Clean out and dispose of sediment and debris from sump, if there is less than 12" between top of sediment and invert of pipe.
(ii) Trash or debris which is located immediately in front of the catch basin opening or is blocking inletting capacity of the basin by more than \(10 \%\).
3. Inspection:
(i) Annual visual check for sediment accumulation is usually sufficient.
(ii) Recommend using tool to open cover, flashlight and dipstick for inspection of deep water quality catch basins.
(iii) Check that the grate is sitting flush on the structure, and that there are no holes or cracks in the pavement or ground adjacent to the catch basin.

\section*{LEVEL SPREADER}
1. Description: Level spreader serves to dissipate the flow of water over a broad area to reduce the potential for erosion. Maintenance of the level spreader is to be performed under by the legal agreement between the three homeowners.
2. Maintenance:
(i) Periodically remove debris and litter.
(ii) Mow at least twice per year the meadow vegetation to be established. Mowing is to be done in spring (mid-May) and in autumn (mid-October).
(iii) Periodically remove sediment in order to maintain original design depth.
(iv) Stabilize eroding soils by seeding and mulching or other appropriate means.
3. Inspection:
(i) Annual visual check for erosion, sediment accumulation and debris is usually sufficient.
(ii) Ensure that lip over which flow is directed is level, stable and well-vegetated, and is not eroding.
(iii) Ensuring that the vegetation to be established at the level spreader achieves good growth and final stabilization of the ground surface above the chambers.

\section*{DIVERSION STRUCTURES}
1. Description: Diversion structures, also known as flow splitters, are used as required where runoff is conveyed to infiltration facilities by a storm pipe in order to divert the WQv to the filtering practice, and allow larger flows to bypass the practice. Maintenance of diversion structures is to be performed for each stormwater practice as per Exhibit 1, above.
2. Maintenance:
(i) Clean sediment out annually or when sediment has reached a depth of 6 inches using a vactor truck or clamshell scoop. Use similar procedures to cleaning underground tanks, and catch basins.
(ii) Remove trash and debris.
3. Inspection:
(i) Annual visual check for sediment accumulation is usually sufficient.

\section*{BIORETENTION FACILITY AND RAIN GARDENS}
1. Description: Bioretention facilities and rain gardens are similar stormwater management practices intended to manage and treat small volumes of stormwater runoff from impervious surfaces using a conditioned planting soil bed and planting materials to filter runoff stored within a shallow depression. SWMF-1.1 (bioretention facility) is to be maintained under by the legal agreement between the three homeowners. The two rain gardens on Lot 3 shall be maintained by the future homeowner of Lot 3 .
2. Maintenance:
(i) Routine maintenance may include the occasional replacement of plants, mulching, weeding and thinning to maintain the desired appearance.
(ii) Weeding and watering are essential the first year, and can be minimized with the use of a weed-free mulch layer. Re-mulch bioretention facilities annually.
(iii) Homeowners and landscapers must be educated regarding the purpose and maintenance requirements of the bioretention facility and/or rain garden, so the desirable aspects of ponded water are recognized and maintained.
(iv) Keep plants pruned if they start to get "leggy" and floppy. Cut off old flower heads after a plant is done blooming.
(v) Inspect for sediment accumulations or heavy organic matter where runoff enters the bioretention facility and/or rain garden and remove as necessary. The top few inches of planting soil mix should be removed and replaced when water ponds for more than 48 hours. Re-mulch following such removal.
(vi) If the overflow device is an earthen berm or lip, check for erosion and repair as soon as possible. If this continues, a harder armoring of stone may be necessary.
(vii) Make sure all appropriate elevations have been maintained, no settlement has occurred and no low spots have been created.
(viii) Mow the grass filter strip between the bioretention facility and the level spreader weekly during the growing season or as per the adjacent lawn areas. Maintenance of level spreader as per noted above.

EXHIBIT 2: Summary of Maintenance Schedule for Permanent Stormwater Management Practices and Stormwater Infrastructure
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
STORMWATER \\
MANAGEMENT \\
PRACTICE
\end{tabular} & MAINTENANCE ACTIVITY & FREQUENCY \\
\hline \begin{tabular}{l} 
STORMWATER \\
MANAGEMENT BASIN
\end{tabular} & Cleaning and removal of debris & \begin{tabular}{l} 
Inspect after major storm events \\
\((>2\) " of rainfall); otherwise \\
annual removal of debris
\end{tabular} \\
\hline & \begin{tabular}{l} 
Inspect vegetation and harvest vegetation \\
when a 50\% reduction in the original \\
open water surface area occurs
\end{tabular} & Inspect annually \\
\hline & \begin{tabular}{l} 
Inspect and repair embankment and side \\
slopes
\end{tabular} & Inspect annually \\
\hline & \begin{tabular}{l} 
Inspect outlet control structure and repair \\
if needed
\end{tabular} & Inspect annually \\
\hline & \begin{tabular}{l} 
Removing accumulated sediment from \\
forebay or sediment storage areas when \\
\(60 \%\) of the original volume has been lost
\end{tabular} & Every 5 years \\
\hline & \begin{tabular}{l} 
Removing accumulated sediment from \\
main cells of pond once 50\% of the \\
original volume has been lost
\end{tabular} & Every 5 years \\
\hline & \begin{tabular}{l} 
Remove invasive plants
\end{tabular} \\
\hline & \begin{tabular}{l} 
Inspect annually; remove \\
invasive plants promptly
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
INFILTRATION \\
FACILITY
\end{tabular} & MAINTENANCE ACTIVITY & FREQUENCY \\
\hline & \begin{tabular}{l} 
Inspect level of sediment in subsurface \\
chambers through observation port and \\
remove if depth > 3"
\end{tabular} & \begin{tabular}{l} 
Inspect after first year in \\
operation, then every 5 years
\end{tabular} \\
\hline & Inspect water level in observation well & Inspect annually \\
\hline & \begin{tabular}{l} 
Inspect structural integrity of inlet and \\
outlet control structures and repair if \\
needed
\end{tabular} & Inspect annually \\
\hline & \begin{tabular}{l} 
Inspect if side slopes areas of the facility \\
are eroding
\end{tabular} & Inspect annually \\
\hline \begin{tabular}{l} 
BACILITY AND RAIN \\
GARDENS
\end{tabular} & Apply mulching to bare or void areas & Inspect annually \\
\hline & \begin{tabular}{l} 
Removing and replacing all dead and \\
diseased vegetation
\end{tabular} & Inspect annually \\
\hline & Watering plant material & \begin{tabular}{l} 
As may be needed in summer \\
months
\end{tabular} \\
\hline & \begin{tabular}{l} 
Removing mulch and applying a new \\
layer to prevent weed growth
\end{tabular} & Inspect annually \\
\hline & Remove invasive plants & \begin{tabular}{l} 
Inspect annually; remove \\
invasive plants promptly
\end{tabular} \\
\hline & \begin{tabular}{l} 
Inspect annually; observe if \\
runoff water is present above the \\
surface for more than 24 hr after \\
rain event
\end{tabular} \\
\hline & & \begin{tabular}{l} 
Sediment removal \\
\hline
\end{tabular} \\
\hline
\end{tabular}
```


[^0]: * Overall drainage area to proposed stormwater management basin.

[^1]: 17.9974 Total

[^2]: 25.6 1,046 Total

[^3]: 25.6 1,046 Total

[^4]: 17.9974 Total

[^5]: 25.6 1,046 Total

[^6]: 17.9974 Total

[^7]: 25.6 1,046 Total

[^8]: 17.9974 Total

[^9]: 25.6 1,046 Total

