November 9, 2023
John Kellard, P.E.
Kellard Sessions Consulting
500 Main Street
Armonk, NY 10504
Re: Town of North Castle
Proposed Single-Family Dwelling 6 Cannato Place
Section 101.01, Block 1, Lot 45
Dear Mr. Kellard:
We have received your comment memo dated September 8, 2023, and offer the following responses on behalf of the applicant:

1. The applicant is proposing to mitigate stormwater runoff from the project with the installation of fourteen (14) Cultec infiltration units which will accept runoff from the proposed impervious driveway and residence. The applicant is required to mitigate the increase in runoff through the 100 -year, 24 -hour storm event. However, since Cannato Place does not have stormwater collection or piping facilities to accept discharge from the project, the applicant has designed a mitigation system which infiltrates all runoff from impervious surfaces through the 100 -year event. We find the design acceptable, subject to verification of soil test data and the review of the system details.

Comment noted. See revised stormwater management plan. Location has been revised.
2. The applicant is required to perform deep soil tests and percolation tests in the vicinity of the stormwater mitigation system, to be witnessed by the Town Engineer. The applicant should contact our office to schedule testing.

Field testing occurred on 9/08/23 and was witnessed by personnel from Kellard Sessions.
3. The applicant should submit calculations confirming that the 6 " diameter drainpipe along the front of the proposed residence has sufficient capacity to convey runoff from the roof and driveway.

See revised Stormwater Narrative. Pipe calculations are now included.

John Kellard, P.E.
Kellard Sessions Consulting
500 Main Street
Armonk, NY 10504
Page 2 of 3
4. The applicant has provided a driveway profile for the proposed driveway. Additional detail would be helpful in reviewing the design and constructing the driveway. Please include the existing portion of driveway approaching the proposed driveway so the transition can be understood, vertical curves where changes of grade occur and proposed finish grade elevations along the drive. Please also show on the profile the location of drainage structures, rim elevations and location of the garage. Please provide driveway stationing on the Site Plan.

See revised plan sheet.

5. The driveway approach at the garage and limited area to back out of the garage will make for an uncomfortable maneuver entering and exiting the garage. This is further complicated by the significant elevation drop within the garage backout area. The applicant should examine the turning movements at the garage and increase the depth of the backout area as required.

See revised driveway layout and turning radius plan shown on sheet C-4.

6. Site grading will require the construction of retaining walls within the rear yard, along the driveway and the garage backout area. Walls within the backyard will extend to a height of five (5) feet, while walls along the driveway will extend to a height of eight (8) feet with double walls making up a total height of approximately 15 feet. The applicant will need to submit retaining wall designs, details, and specifications. Walls adjacent to the proposed driveway will need to evaluate loading from vehicles above and designed for bearing, sliding, and overturning.

A note has been added to sheet C-2 stating that all retaining walls over 4' high need to be designed by a structural engineer. Hudson Engineering is not responsible for the design of walls proposed on the site over 4' in height.
7. Driveway access to the lot is along a common driveway which crosses lands of two (2) neighboring properties. The applicant should submit driveway and utility easements agreements for the common driveway. In addition, the common driveway providing access to other properties crosses the subject property. A portion of the common driveway is not within the easement area. The Planning Board should

HUDSON
ENGINEERING CONSULTING. PAC.

John Kellard, P.E.
Kellard Sessions Consulting
500 Main Street
Armonk, NY 10504
Page 3 of 3
determine whether such discrepancy should be addressed by modifying the easement at this time.

Comment noted. The revised site plan includes an updated survey which shows the location and extent of the existing driveway easement.

If you should have any additional questions or comments, please do not hesitate to contact our office at (914) 909-0420, or via email at nick@hudsonec.com.

Sincerely,
Nicholas Shirriah

STORMWATER MANAGEMENT PLAN \& DRAINAGE ANALYSIS

6 Cannato Place
Town of North Castle - New York

June 1, 2023
Revised August 4, 2023
Revised September 21, 2023
Revised November 22, 2023

Hudson Engineering \& Consulting, P.C.
45 Knollwood Road - Suite 201
Elmsford, NY 10523
(914) 909-0420

Narrative

STORMWATER MANAGEMENT PLAN \& DRAINAGE ANALYSIS 6 Cannato Place Town of North Castle - New York

INTRODUCTION

This Stormwater Management Plan presents the proposed Best Management Practices (BMPs) to control erosion and sedimentation and manage stormwater during and upon construction of Single-Family Dwelling on a 1.0 Acre lot at 6 Cannato Place, Armonk [SBL: 101.01-1-45] in the Town of North Castle, Westchester County, New York.

This Plan consists of this narrative and a plan set entitled: "Proposed Single Family Dwelling, 6 Cannato Place, Town of North Castle, Westchester County - New York", all as prepared by Hudson Engineering and Consulting, P.C., Elmsford, New York, latest date November 22, 2023. The design is in accordance with the Town of North Castle's requirements. The approximate area of the limits of disturbance is 0.70 -acres. Since the project disturbance is less than one acre the New York State Department of Environmental Conservation [NYSDEC] stormwater regulations are not applicable.

METHODOLOGY

The stormwater analysis was developed utilizing the Soil Conservation Service (SCS) TR-20, 24-hour Type III storm events (HydroCad®) to assist with the design of the mitigating practices. The "Complex Number" (CN) value determination is based on soil type, vegetation, and land use. The design is in accordance with the Town of North Castle's stormwater regulations. The "Time of Concentration" (T_{c}) was determined as a direct entry of one-minute. The CN and T_{c} data are input into the computer model. The project site was modeled for the 100-year Type III - 24hour storm event.

PRE-DESIGN INVESTIGATIVE ANAL YSIS

A pre-design investigative analysis was performed including percolation and deep hole tests in the locations shown on the plans. A series of percolation tests were performed in the vicinity of the potential stormwater mitigation practice [TP-1] until constant rates were achieved, their results as follows:

- TP-1: A percolation rate of 1.0-minute per inch (60.0-inches per hour) was observed. A percolation rate of 25 -inches per hour was utilized in the design.
- TP-2: A percolation rate of 1.0-minute per inch (60.0-inches per hour) was observed. A percolation rate of 25 -inches per hour was utilized in the design.

Two (2) deep test holes were excavated and labeled \{TP-1 \& TP-2] as shown on the plans.

- TP-1 was excavated to a depth of 79-inches. The test revealed topsoil to a depth of 12 -inches, and moderately compact sandy loam to the invert. No groundwater was observed. Ledge rock was encountered at the invert.
- TP-2 was excavated to a depth of 66 -inches. The test revealed topsoil to a depth of 6 -inches, and moderately compact sandy loam to the invert. No groundwater was observed. Ledge rock was encountered at the invert.

The deep test hole log and percolation test data sheets are attached.

PRE-DEVELOPED CONDITION

In the pre-developed condition, the site is characterized as sloping from northeast to southwest. The soil classification based upon USDA Web Soil Survey is primarily Charlton-Chatfield complex, 15 to 35 percent slopes, very rocky. The site vegetation can be characterized as lawn and landscaped. The site is located on the western side of the cul-de-sac on Cannato Place. The site consists of an existing dwelling, detached garage, stone patio, retaining walls and asphalt driveway.

In the pre-developed condition, the project site is modeled as one watershed denoted as Watershed 1, tributary to Design Point 1.

Watershed 1 contains approximately 43,562 square feet, consisting of 6,994 sf of impervious area in the form of the existing dwelling, detached garage, asphalt driveway and other impervious areas. The remaining 36,478 sf in Watershed 1 consists of woodland areas in "B" soils. The weighted complex number (CN) value is calculated as 61 and the Time of Concentration (Tc) is calculated as 11.9 minutes. Overland flow from this watershed originates at the rear of the existing dwelling and flows in a western direction, eventually exiting the watershed at the western property line.

Pre-Developed Conditions	
	$100-$ Year
	cfs
DP-1	4.20

POST-DEVELOPED CONDITION

In the post-developed condition, the project site is modeled as two watersheds denoted as Watershed $1 A$ \& $1 B$.

Watershed 1A contains approximately 7,369 square feet of tributary area in the form of the proposed dwelling, asphalt driveway \& patio. The weighted Complex Number (CN) value for this area is 98 and the Time of Concentration (Tc) is calculated as a direct entry of 1 minute. The stormwater runoff from this tributary area is conveyed via a comprehensive drainage system to Fourteen (14) Cultec® 330XLHD stormwater chambers set in one foot of gravel at the sides and six inches of gravel at the invert. The system is designed to fully accept (no release) the entire stormwater runoff volume for the 100-year storm event from the watershed and exfiltrate the runoff into the surrounding soil sub-strata.

Watershed $1 B$ contains approximately 36,193 square feet, consisting of 855 sf of impervious area in the form of the proposed walkway and a section of the proposed asphalt driveway. The remaining 35,338 sf in Watershed $1 B$ consists of woodland areas in " B " soils. The weighted complex number (CN) value is calculated as 56 and the Time of Concentration (Tc) is calculated as 8.4 minutes. Overland flows from this watershed originates near the north rear end of the proposed dwelling and flows in a western direction, eventually exiting the watershed at the western property line.

Post-Developed Conditions	
	$100-$ Year
	cfs
DP-1	3.30

SUMMARY OF FLOWS AT DESIGN POINT

The peak runoff rates at DP-1 were calculated as follows:

Flows at Design Point (DP-1)	
	$100-$ Year
	cfs
Pre-	4.20
Post-	3.30

PIPE CALCULATIONS:

All drainage pipes have been sized to convey the flows for all storm events up to and including the 100-year Type III 24 -hour event, as required. The pipe sizes, slopes, materials, and maximum capacities have been calculated as follows:

Pipe Capacity Calculations (Watershed 1A-1)					
Pipe Dia. (in)	Pipe Material	Manning's Coefficient	Slope (\%)	Pipe Capacity (cfs)	100-Year Peak Flow (cfs)
6	HDPE	0.013	5.05	1.26	0.74
Pipe Capacity Calculations (Watershed 1A-2)					

CONCLUSION:

The stormwater management plan meets all the requirements set forth by the Town of North Castle. Design modification requirements that may occur during the approval process will be performed and submitted for review to the Town of North Castle.

Soils Map

MAP LEGEND

Area of Interest (AOI)		C
Area of Interest (AOI)		C/D
Soils \square		
Soil Rating Polygons		
$\square \mathrm{A}$	\square	Not rated or not available
A/D	Water Fe	ures
	\checkmark	Streams and Canals
B		
	Transpo	tion
B/D	H+	Rails
C	\sim	Interstate Highways
C/D	-	US Routes
D	\approx	Major Roads
Not rated or not available	12)	Local Roads
Soil Rating Lines	Background	
$\cdots \mathrm{A}$		Aerial Photography
\cdots A/D		
$\cdots B$		
\cdots B/D		
$\cdots \mathrm{C}$		
\cdots C/D		
\cdots D		
* Not rated or not available		
Soil Rating Points		
$\square \quad \mathrm{A}$		
$\square \quad \mathrm{A} / \mathrm{D}$		
$\square \quad \mathrm{B}$		
$\square \mathrm{B} / \mathrm{D}$		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:12,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: Westchester County, New York
Survey Area Data: Version 18, Sep 10, 2022
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Oct 21, 2022-Oct 27, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
CrC	Charlon-Chatfield complex, 0 to 15 percent slopes, very rocky	B	4.2	53.6%
CsD	Chatfield-Charlton complex, 15 to 35 percent slopes, very rocky	B	3.3	42.3%
HrF	Hollis-Rock outcrop complex, 35 to 60 percent slopes	D	0.3	4.0%
Totals for Area of Interest	$\mathbf{7 . 8}$	$\mathbf{1 0 0 . 0 \%}$		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

Extreme Precipitation Table

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Metadata for Point			
Smoothing State	Yes		
Location Latitude	41.148 degrees North Longitude Elevation Date/Time		73.711 degrees West
:---			
170 feet			
Mon Apr 10 2023 14:06:16 GMT-0400 (Eastern Daylight			
Time)			

Extreme Precipitation Estimates

	5 min	10min	15 min	30min	60 min	120 min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1 yr	0.34	0.52	0.64	0.84	1.05	1.31	1 yr	0.91	1.23	1.50	1.85	2.28	2.80	3.18	1 yr	2.48	3.05	3.55	4.26	4.90	$\mathbf{1 y r}$
2 yr	0.40	0.62	0.77	1.02	1.28	1.60	2 yr	1.11	1.49	1.84	2.27	2.79	3.42	3.85	2 yr	3.03	3.70	4.26	5.04	5.71	2 yr
5 yr	0.47	0.73	0.92	1.23	1.58	1.99	5 yr	1.36	1.83	2.30	2.85	3.51	4.31	4.88	5 yr	3.81	4.69	5.45	6.32	7.09	5 yr
10 yr	0.53	0.83	1.05	1.42	1.85	2.35	10yr	1.59	2.15	2.73	3.40	4.19	5.13	5.84	10 yr	4.54	5.62	6.56	7.51	8.35	10 yr
25 yr	0.61	0.97	1.24	1.71	2.28	2.94	25 yr	1.97	2.66	3.42	4.28	5.29	6.46	7.42	25 yr	5.72	7.14	8.40	9.42	10.38	25 yr
50 yr	0.69	1.11	1.42	1.99	2.68	3.48	50 yr	2.31	3.12	4.07	5.10	6.30	7.70	8.90	50 yr	6.82	8.56	10.13	11.19	12.23	50yr
100 yr	0.78	1.27	1.63	2.31	3.15	4.13	100 yr	2.72	3.67	4.84	6.08	7.52	9.19	10.67	100 yr	8.13	10.26	12.22	13.30	14.42	100yr
200 yr	0.89	1.45	1.88	2.69	3.72	4.91	200 yr	3.21	4.31	5.77	7.26	8.98	10.97	12.80	200 yr	9.71	12.31	14.75	15.80	17.00	200 yr
500 yr	1.06	1.75	2.28	3.31	4.63	6.16	500 yr	3.99	5.34	7.26	9.17	11.36	13.89	16.31	500 yr	12.29	15.68	18.93	19.86	21.16	500 yr

Lower Confidence Limits

	5 min	10 min	15 min	30 min	60 min	120 min		1 hr	2hr	3hr	6 hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1 yr	0.26	0.39	0.48	0.65	0.80	1.00	1 yr	0.69	0.98	1.29	1.60	2.00	2.58	2.70	1 yr	2.28	2.59	3.19	3.66	4.35	1 yr
2 yr	0.39	0.61	0.75	1.01	1.25	1.49	2 yr	1.08	1.46	1.70	2.18	2.74	3.33	3.73	2 yr	2.94	3.59	4.12	4.88	5.55	2 yr
5yr	0.43	0.66	0.82	1.13	1.44	1.74	5 yr	1.24	1.70	1.97	2.57	3.21	3.99	4.53	5 yr	3.53	4.35	5.02	5.83	6.59	5 yr
10 yr	0.47	0.72	0.89	1.24	1.61	1.96	10 yr	1.39	1.92	2.21	2.92	3.64	4.59	5.23	10 yr	4.07	5.03	5.82	6.58	7.48	10yr
25 yr	0.51	0.77	0.96	1.37	1.80	2.29	25 yr	1.55	2.24	2.54	3.45	4.29	5.52	6.36	$25 y \mathrm{r}$	4.89	6.12	7.10	7.67	8.84	yr
50 yr	0.53	0.81	1.00	1.44	1.94	2.56	50 yr	1.68	2.51	2.83	3.92	4.85	6.38	7.39	50 yr	5.64	7.11	8.25	8.53	10.01	50 yr
100 yr	0.56	0.85	1.06	1.53	2.10	2.86	100 yr	1.81	2.80	3.16	4.45	5.49	7.37	8.59	100 yr	6.52	8.26	9.60	9.52	11.34	100 yr
200 yr	0.59	0.89	1.13	1.64	2.29	3.21	200 yr	1.97	3.14	3.52	5.07	6.24	8.52	9.98	200 yr	7.54	9.60	11.19	10.54	12.86	200 yr
500 yr	0.63	0.94	1.21	1.76	2.51	3.74	500 yr	2.16	3.65	4.08	6.07	7.40	10.35	12.20	500 yr	9.16	11.73	13.72	12.02	15.18	500 yr

Upper Confidence Limits

	5 min	10 min	15 min	30 min	60 min	120 min		1 hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1 yr	0.37	0.58	0.70	0.94	1.16	1.41	1 yr	1.00	1.38	1.58	2.08	2.62	3.06	3.47	1 yr	2.70	3.34	3.82	4.59	5.30	1 yr
2 yr	0.43	0.66	0.81	1.10	1.36	1.58	2 yr	1.17	1.55	1.82	2.31	2.89	3.54	3.98	2 yr	3.13	3.83	4.41	5.30	5.93	2 yr
5 yr	0.51	0.79	0.98	1.35	1.72	2.02	5 yr	1.48	1.97	2.32	2.97	3.71	4.63	5.27	5 yr	4.10	5.07	5.86	6.80	7.63	5 yr
10 yr	0.61	0.93	1.16	1.62	2.09	2.43	10 yr	1.81	2.37	2.80	3.60	4.51	5.70	6.50	10 yr	5.04	6.25	7.26	8.37	9.26	10yr
25 yr	0.77	1.18	1.46	2.09	2.75	3.13	25 yr	2.37	3.06	3.63	4.65	5.81	7.47	8.59	25 yr	6.62	8.26	9.67	11.00	11.98	25 yr
50 yr	0.92	1.40	1.74	2.50	3.37	3.81	50 yr	2.91	3.72	4.42	5.65	7.05	9.18	10.62	50 yr	8.13	10.21	12.01	13.55	14.55	50 yr
100 yr	1.11	1.68	2.10	3.03	4.16	4.64	100 yr	3.59	4.53	5.39	6.88	8.58	11.29	13.14	100 yr	9.99	12.63	14.93	16.69	17.70	100 yr
200 yr	1.34	2.01	2.55	3.69	5.14	5.63	200 yr	4.44	5.50	6.57	8.35	10.42	13.87	16.23	200 yr	12.28	15.61	18.55	20.56	21.53	200 yr
500 yr	1.73	2.58	3.31	4.81	6.85	7.28	500 yr	5.91	7.12	8.55	10.83	13.49	18.22	21.50	500 yr	16.13	20.67	24.72	27.20	27.87	500 yr

Pownod by CACIS
Northoast Regional
Climato Conter

Pre-Development Analysis of the 100-year Storm Event

Watershed 1

6 Cannato - Existing Condition

Prepared by Hudson Engineering \& Consulting, P.C.
Printed 8/4/2023
HydroCAD® 10.10-7c s/n 02549 © 2022 HydroCAD Software Solutions LLC

Rainfall Events Listing (selected events)

Event\#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	100-Year	Type III 24-hr		Default	24.00	1	9.19	2

Summary for Subcatchment 1: Watershed 1

Runoff $=4.20$ cfs @ 12.17 hrs, Volume $=15,883 \mathrm{cf}$, Depth= 4.38"

Routed to Reach DP-1 : Design Point 1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=9.19"

Subcatchment 1: Watershed 1

Summary for Reach DP-1: Design Point 1

Inflow Area $=\quad 43,562$ sf, 15.11% Impervious, Inflow Depth $=4.38$ " for 100-Year event Inflow = 4.20 cfs @ 12.17 hrs, Volume=

15,883 cf
Outflow = 4.20 cfs @ 12.17 hrs , Volume $=\quad 15,883 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Routing by Stor-Ind+Trans method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs

Reach DP-1: Design Point 1

Hydrograph

Post-Development Analysis of the 100-year Storm Event

Watershed 1A
14 Cultec R-330XLHD

Watershed 1B

Design Point 1

6 Cannato - Proposed Condition

Prepared by Hudson Engineering \& Consulting, P.C.
Printed 9/21/2023
HydroCAD® 10.10-7c s/n 02549 © 2022 HydroCAD Software Solutions LLC

Rainfall Events Listing (selected events)

Event\#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	100-Year	Type III 24-hr		Default	24.00	1	9.19	2

Summary for Subcatchment 1A: Watershed 1A
Runoff $=\quad 1.82$ cfs @ 12.01 hrs, Volume= $5,496 \mathrm{cf}$, Depth= 8.95"
Routed to Pond 1P : 14 Cultec R-330XLHD
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=9.19"

	Area (sf)	CN	Description
$*$	4,386	98	Proposed Dwelling
$*$	2,330	98	Section of Proposed Driveway
$*$	653	98	Proposed Patio

Subcatchment 1A: Watershed 1A

Summary for Subcatchment 1B: Watershed 1B
Runoff $=\quad 3.30 \mathrm{cfs} @ 12.12 \mathrm{hrs}$, Volume= $\quad 11,312 \mathrm{cf}$, Depth= 3.75" Routed to Reach DP-1 : Design Point 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=9.19"

	Area (sf)	CN	Description		
*	196	98	Proposed Walkway		
	35,338	55	Woods, Good, HSG B Section of Proposed Driveway		
*	659	98			
	36,193	56	Weighted Average 97.64\% Pervious Area 2.36\% Impervious Area		
	35,338				
	855				
$\begin{array}{r} \mathrm{Tc} \\ (\min) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
8.2	99	0.2010	0.20		Sheet Flow, A->B
					Woods: Light underbrush $\mathrm{n}=0.400 \quad \mathrm{P} 2=3.42$ "
0.2	52	0.6635	- 4.07		Shallow Concentrated Flow, B->DP-1
					Woodland Kv= 5.0 fps
8.4	151	Total			

Subcatchment 1B: Watershed 1B

Summary for Reach DP-1: Design Point 1

| Inflow Area $=$ | $36,193 \mathrm{sf}$, | 2.36% Impervious, | Inflow Depth $=3.75 "$ for $100-$ Year event | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Inflow | $=$ | $3.30 \mathrm{cfs} @$ | 12.12 hrs , Volume= | $11,312 \mathrm{cf}$ |
| Outflow | $=$ | $3.30 \mathrm{cfs} @$ | 12.12 hrs , Volume $=$ | $11,312 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$ |

Routing by Stor-Ind+Trans method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs

Reach DP-1: Design Point 1

Hydrograph

Summary for Pond 1P: 14 Cultec R-330XLHD

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs / 3
Peak Elev= 3.39' @ 12.40 hrs Surf.Area= 586 sf Storage= 1,121 cf
Plug-Flow detention time $=15.0 \mathrm{~min}$ calculated for $5,495 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time= $15.0 \min (749.9-734.9)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	0.00'	397 cf	11.17'W x 52.50'L x 3.54'H Field A
			2,076 cf Overall - 753 cf Embedded $=1,324$ cf $\times 30.0 \%$ Voids
\#2A	1.00'	753 cf	Cultec R-330XLHD $\times 14$ Inside \#1
			Effective Size $=47.8$ "W $\times 30.0$ "H $=>7.45 \mathrm{sf} \times 7.00^{\prime} \mathrm{L}=52.2 \mathrm{cf}$
			Overall Size $=52.0$ "W $\times 30.5{ }^{\prime \prime} \mathrm{H} \times 8.50$ 'L with 1.50' Overlap
			Row Length Adjustment $=+1.50$ x $7.45 \mathrm{sf} \times 2$ rows
		1,150 cf	Total Available Storage
Stora	ge Group A	ated with Cham	er Wizard
Device	Routing	Invert Outl	et Devices
\#1	Discarded	0.00' 25.0	$00 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area

Discarded OutFlow Max=0.34 cfs @ 11.64 hrs HW=0.04' (Free Discharge)
L-1=Exfiltration (Exfiltration Controls 0.34 cfs)

Pond 1P: 14 Cultec R-330XLHD

Inflow Area=7,369 sf Peak Elev=3.39' Storage $=1,121$ cf

Section of Roof Area \&
6" HDPE Patio

Driveway \& Portion of Roof Area

6 Cannato - Pipe Calculations

Prepared by Hudson Engineering \& Consulting, P.C.
Printed 11/22/2023
HydroCAD® 10.10-7c s/n 02549 © 2022 HydroCAD Software Solutions LLC

Rainfall Events Listing (selected events)

Event\#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	$100-$ Year	Type III 24-hr		Default	24.00	1	9.19	2

6 Cannato - Pipe Calculations

Prepared by Hudson Engineering \& Consulting, P.C. Printed 11/22/2023
HydroCAD® 10.10-7c s/n 02549 © 2022 HydroCAD Software Solutions LLC

Pipe Listing (all nodes)

Line\#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Width (inches)	Diam/Height (inches)	Inside-Fill (inches)
1	$1 R$	595.00	590.00	99.0	0.0505	0.013	0.0	6.0	0.0
2	$2 R$	593.00	590.00	95.0	0.0316	0.013	0.0	8.0	0.0

Summary for Subcatchment 1A-1: Section of Roof Area \& Patio

Runoff $=\quad 0.74$ cfs @ 12.01 hrs, Volume=
Routed to Reach 1R : 6" HDPE
$2,246 \mathrm{cf}$, Depth= $8.95{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=9.19"

	Area (sf)	CN	Description		
*	2,358	98	Proposed Dwelling Proposed Patio		
*	653	98			
	$\begin{aligned} & \hline 3,011 \\ & 3,011 \end{aligned}$	98	Weighted Average 100.00\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description
1.0					Direct Entry

Subcatchment 1A-1: Section of Roof Area \& Patio

Summary for Subcatchment 1A-2: Driveway \& Portion of Roof Area

Runoff $=\quad 1.08 \mathrm{cfs} @ 12.01 \mathrm{hrs}$, Volume= $\quad 3,250 \mathrm{cf}$, Depth= 8.95"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=9.19"

	Area (sf)	CN D	Description		
*	2,028	98 S	Section of Roof Area		
*	2,330	98 S	Section of Proposed Driveway		
	4,358	98	Weighted Average		
	4,358		100.00\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
1.0					Direct Entry

Subcatchment 1A-2: Driveway \& Portion of Roof Area

Summary for Reach 1R: 6" HDPE

Inflow Area $=$	3,011 sf, 100.00% Impervious,	Inflow Depth $=8.95 "$	for $100-$ Year event	
Inflow	$=$	$0.74 \mathrm{cfs} @$	12.01 hrs , Volume=	$2,246 \mathrm{cf}$
Outflow	$=$	$0.74 \mathrm{cfs} @ 12.02 \mathrm{hrs}$, Volume $=$	$2,246 \mathrm{cf}$, Atten $=1 \%$, Lag $=0.5 \mathrm{~min}$	

Routing by Stor-Ind+Trans method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs
Max. Velocity $=6.68 \mathrm{fps}$, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=2.19 \mathrm{fps}$, Avg. Travel Time $=0.8 \mathrm{~min}$
Peak Storage= 11 cf @ 12.02 hrs
Average Depth at Peak Storage $=0.28^{\prime}$, Surface Width= 0.50^{\prime}
Bank-Full Depth= 0.50 ' Flow Area= 0.2 sf, Capacity= 1.26 cfs
6.0" Round Pipe
$\mathrm{n}=0.013$ Corrugated PE , smooth interior
Length= 99.0' Slope= 0.0505 '/'
Inlet Invert= 595.00', Outlet Invert=590.00'

Reach 1R: 6" HDPE
Hydrograph

Summary for Reach 2R: 8" HDPE

Inflow Area $=$	4,358 sf, 100.00% Impervious,	Inflow Depth $=8.95 "$	for $100-$ Year event	
Inflow	$=$	$1.08 \mathrm{cfs} @$	12.01 hrs , Volume	$3,250 \mathrm{cf}$
Outflow	$=$	$1.07 \mathrm{cfs} @ 12.02 \mathrm{hrs}$, Volume $=$	$3,250 \mathrm{cf}$, Atten $=1 \%$, Lag $=0.5 \mathrm{~min}$	

Routing by Stor-Ind+Trans method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs
Max. Velocity $=6.15 \mathrm{fps}$, Min. Travel Time $=0.3 \mathrm{~min}$
Avg. Velocity $=2.00 \mathrm{fps}$, Avg. Travel Time $=0.8 \mathrm{~min}$
Peak Storage= 17 cf @ 12.02 hrs
Average Depth at Peak Storage $=0.33^{\prime}$, Surface Width= 0.67^{\prime}
Bank-Full Depth= 0.67 ' Flow Area= 0.3 sf, Capacity $=2.15$ cfs
8.0" Round Pipe
$\mathrm{n}=0.013$ Corrugated PE, smooth interior
Length= 95.0' Slope= 0.0316 '/'
Inlet Invert= 593.00', Outlet Invert= 590.00'

Reach 2R: 8" HDPE
Hydrograph

Percolation \& Deep Hole Test Logs

SITE ADDRESS: 6 Cannato Place
TOWN/VILLAGE: Town of North Castle
DATE: 09/08/2023 TIME: 9:30am
WEATHER: Cloudy
TEMP. $75^{\circ} \mathrm{F}$
WITNESSED BY: Nicholas Shirriah

DEEP TEST HOLE DATA SHEET - STORMWATER MANAGEMENT SYSTEM

- Indicate level at which Ground Water (GW), Mottling and/or Ledge Rock is encountered.
- Indicate level for which water level rises after being encountered.

EXCAVATION PERFORMED BY: PRECISION FIELD TESTING

HUDSON
ENGINEERING CONSULTING, P.C.

SITE ADDRESS: 6 Cannato Place
TOWN/VILLAGE: North Castle (Armonk)
DATE: 09/08/2023 TIME: 11:00am
WEATHER: Sunny \qquad TEMP. $\quad 75^{\circ} \mathrm{F}$

PERCOLATION TEST HOLE DATA SHEET - STORMWATER MANAGEMENT SYSTEM

Owner

HOLE \#	CLOCK TIME				PERCOLATION				
	Run No.	Start	Stop	Elapse Time (Min.)	Depth to Water From Ground Surface		Water Level in Inches Drop in inches	Soil Rate	
Hole Number					Start Inches	Stop Inches		Min. per inch	Inches per Hour
\# _1	1	11:06	11:20	14	22	46	24	0.583	102.92
4" \varnothing	2	11:21	11:41	20	22	46	24	0.833	72.03
	3	11:42	12:06	24	22	46	24	1	60
	4	12:06	12:30	24	22	46	24	1	60
	5								
\# _2	1								
$\underline{\prime \prime}$ "	2								
	3								
	4								
	5								
\# _3	1								
$\underline{"}$ " \varnothing	2								
	3								
	4								
	5								

Notes:

1) Tests to be repeated at the same depth until approximately equal soil rates are obtained at each percolation test hole. All data to be submitted for review.
2) Depth measurements to be made from top of hole

